Chuyên đề Lượng giác và phương trình lượng giác - Ôn thi Toán đại học

Nội dung chính

1. Hệ phương trình lượng giác

2. Hệ thức lượng trong tam giác

3. Lượng giác

4. Nhận dạng tam giác

5. Phương trình bậc 2 với hàm lượng giác

6. Phương trình bậc nhất theo sin & cos

7. Phương trình đẳng cấp

8. Phương trình đối xứng theo sin & cos

9. Phương trình lượng giác cơ bản

10. Phương trình lượng giác không mẫu mực

11. Phương trình lượng giác

pdf14 trang | Chia sẻ: maiphuongdc | Lượt xem: 3017 | Lượt tải: 5download
Bạn đang xem nội dung tài liệu Chuyên đề Lượng giác và phương trình lượng giác - Ôn thi Toán đại học, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHƯƠNG IX: HỆ PHƯƠNG TRÌNH LƯỢNG GIÁC I. GIẢI HỆ BẰNG PHÉP THẾ Bài 173: Giải hệ phương trình: ( ) ( ) 2cos x 1 0 1 3sin2x 2 2 − =⎧⎪⎨ =⎪⎩ Ta có: ( ) 11 cos x 2 ⇔ = ( )x k2 k 3 π⇔ = ± + π ∈ Z Với x k 3 2π= + π thay vào (2), ta được 2 3sin2x sin k4 3 2 π⎛ ⎞= + π =⎜ ⎟⎝ ⎠ Với x 3 π= − + πk2 thay vào (2), ta được 2 3sin2x sin k4 3 2 π⎛ ⎞= − + π = − ≠⎜ ⎟⎝ ⎠ 3 2 (loại) Do đó nghiệm của hệ là: 2 , 3 π= + π ∈x k k Bài 174: Giải hệ phương trình: sin x sin y 1 x y 3 + =⎧⎪ π⎨ + =⎪⎩ Cách 1: Hệ đã cho x y x y2sin .cos 1 2 2 x y 3 + −⎧ =⎪⎪⇔ ⎨ π⎪ + =⎪⎩ π − −⎧ ⎧= =⎪ ⎪⎪ ⎪⇔ ⇔⎨ ⎨ ππ⎪ ⎪ + =+ = ⎪⎪ ⎩⎩ x y x y2.sin .cos 1 cos 1 6 2 2 x yx y 33 42 2 33 −⎧ − = π= π ⎧⎪⎪ ⎪⇔ ⇔ π⎨ ⎨π + =⎪ ⎪+ = ⎩⎪⎩ x y x y kk x yx y ( ) 2 6 2 6 π⎧ = + π⎪⎪⇔ ∈⎨ π⎪ = − π⎪⎩ x k k Z y k Cách 2: Hệ đã cho 3 3 3 1sin sin 1 cos sin 13 2 2 3 3 sin 1 2 3 3 2 2 6 2 6 π π⎧ ⎧= − = −⎪ ⎪⎪ ⎪⇔ ⇔⎨ ⎨π⎛ ⎞⎪ ⎪+ − = + =⎜ ⎟⎪ ⎪⎝ ⎠ ⎩⎩ π⎧ π⎧= − = −⎪ ⎪⎪ ⎪⇔ ⇔⎨ ⎨π π π⎛ ⎞⎪ ⎪+ = + = + π⎜ ⎟ ⎪⎪ ⎩⎝ ⎠⎩ π⎧ = + π⎪⎪⇔ ∈⎨ π⎪ = − π⎪⎩ y x y x x x x x y x y x x x k x k k y k Bài 175: Giải hệ phương trình: sin x sin y 2 (1) cos x cos y 2 (2) ⎧ + =⎪⎨ + =⎪⎩ Cách 1: Hệ đã cho x y x y2sin cos 2 (1) 2 2 x y x y2cos cos 2 (2) 2 2 + −⎧ =⎪⎪⇔ ⎨ + −⎪ =⎪⎩ Lấy (1) chia cho (2) ta được: +⎛ ⎞ =⎜ ⎟⎝ ⎠ x y x ytg 1 (do cos 0 2 2 − = không là nghiệm của (1) và (2) ) 2 4 2 2 2 2 + π⇔ = + π π π⇔ + = + π⇔ = − + π x y k x y k y x k thay vào (1) ta được: sin x sin x k2 2 2 π⎛ ⎞+ − + π =⎜ ⎟⎝ ⎠ sin x cosx 2⇔ + = 2 cos 2 4 2 , 4 π⎛ ⎞⇔ −⎜ ⎟⎝ ⎠ π⇔ − = π ∈ = x x h h Do đó: hệ đã cho ( ) 2 , 4 2 , , 4 π⎧ = + π ∈⎪⎪⇔ ⎨ π⎪ = + − π ∈⎪⎩ x h h y k h k h Cách 2: Ta có A B A C B C D A C B D = + =⎧ ⎧⇔⎨ ⎨= − =⎩ ⎩ D+ − Hệ đã cho ( ) ( ) ( ) ( ) ⎧ − + − =⎪⇔ ⎨ + + − =⎪⎩ ⎧ π π⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎝ ⎠⇔ ⎨ π π⎛ ⎞ ⎛ ⎞⎪ + + + =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩ sin x cos x sin y cos y 0 sin x cos x sin y cos y 2 2 2 sin x 2 sin y 0 4 4 2 sin x 2 sin y 2 2 4 4 sin sin 0 4 4 sin sin 0 4 4 sin 1 4 sin sin 2 4 4 sin 1 4 2 4 2 2 4 2 sin sin 0 4 4 x y x y x x y y x k y h x y ⎧ π π⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟⎪⎧ π π ⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞ ⎪− + − =⎜ ⎟ ⎜ ⎟⎪ ⎪ π⎪ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞⇔ ⇔ + =⎨ ⎨ ⎜ ⎟π π ⎝ ⎠⎛ ⎞ ⎛ ⎞⎪ ⎪+ + + =⎜ ⎟ ⎜ ⎟⎪ ⎪ π⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎩ + =⎪ ⎜ ⎟⎝ ⎠⎩ ⎧ π π+ = + π⎪⎪ π π⎪⇔ + = + π⎨⎪⎪ π π⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩ π⎧ = + π⎪⎪⇔ ⎨ π⎪ = + π ∈⎪⎩ x k2 4 y h2 , h, k 4 Z Bài 176: Giải hệ phương trình: − − =⎧⎪⎨ + = −⎪⎩ tgx tgy tgxtgy 1 (1) cos 2y 3 cos 2x 1 (2) Ta có: tgx tgy 1 tgxtgy− = + ( ) 2 1 tgxtgy 0 tg x y 1 tgx tgy 0 1 tgxtgy 0 1 tg x 0 (VN) ⎧ + =− =⎧⎪ ⎪⇔ ∨ − =⎨ ⎨+ ≠⎪⎩ ⎪ + =⎩ (x y k k Z 4 π⇔ − = + π ∈ ) , với x, y k 2 π≠ + π x y k 4 π⇔ = + + π, với x, y k 2 π≠ + π Thay vào (2) ta được: cos2y 3 cos 2y k2 1 2 π⎛ ⎞+ + + π = −⎜ ⎟⎝ ⎠ cos 2 3 s 2 1 3 1 1s 2 cos 2 sin 2 2 2 2 6 y in y in y y y ⇔ − = − π⎛ ⎞⇔ − = ⇔ −⎜ ⎟⎝ ⎠ 1 2 = ( )52 2 2 2 6 6 6 6 y h hay y h h Zπ π π π⇔ − = + π − = + π ∈ , , 6 2 ( lọai)y h h hay y h hπ π⇔ = + π ∈ = + π ∈ Do đó: Hệ đã cho ( ) ( ) 5 6 , 6 x k h h k Z y h π⎧ = + + π⎪⎪⇔ ∈⎨ π⎪ = + π⎪⎩ Bài 177: Giải hệ phương trình 3 3 cos x cos x sin y 0 (1) sin x sin y cos x 0 (2) ⎧ − + =⎪⎨ − + =⎪⎩ Lấy (1) + (2) ta được: 3 3sin x cos x 0+ = 3 3 3 sin x cos x tg x 1 tgx 1 x k (k 4 ⇔ = − ⇔ = − ⇔ = − π⇔ = − + π ∈ Z) Thay vào (1) ta được: ( )3 2sin y cos x cos x cos x 1 cos x= − = − = =2 1cos x.sin x sin 2x sin x 2 π π⎛ ⎞ ⎛= − − +⎜ ⎟ ⎜⎝ ⎠ ⎝ 1 sin sin k 2 2 4 ⎞π⎟⎠ π⎛ ⎞= − − + π⎜ ⎟⎝ ⎠ 1 sin k 2 4 ⎧⎪⎪= ⎨⎪−⎪⎩ 2 (nếu k chẵn) 4 2 (nếu k lẻ) 4 Đặt 2sin 4 α = (với 0 2< α < π ) Vậy nghiệm hệ ( )π π⎧ ⎧= − + π ∈ = − + + π ∈⎪ ⎪⎪ ⎪∨⎨ ⎨= α + π ∈ = −α + π ∈⎡ ⎡⎪ ⎪⎢ ⎢⎪ ⎪= π − α + π ∈ = π + α + π ∈⎣ ⎣⎩ ⎩ x 2m , m x 2m 1 , m 4 4 y h2 , h y 2h , h y h2 , h y h2 , h II. GIẢI HỆ BẰNG PHƯƠNG PHÁP CỘNG Bài 178: Giải hệ phương trình: ( ) ( ) 1sin x.cos y 1 2 tgx.cotgy 1 2 ⎧ = −⎪⎨⎪ =⎩ Điều kiện: cos x.sin y 0≠ Cách 1: Hệ đã cho ( ) ( )1 1sin x y sin x y 2 2 sin x.cos y 1 0 cos x.sin y ⎧ + + − =⎡ ⎤⎣ ⎦⎪⎪⇔ ⎨⎪ − =⎪⎩ − ( ) ( ) ( ) ( ) ( ) + + − =⎧⎪⇔ ⎨ − =⎪⎩ − + + − =⎧⎪⇔ ⎨ − =⎪⎩ sin x y sin x y 1 sin x cos y sin y cos x 0 sin x y sin x y 1 sin x y 0 − ( ) ( ) + = −⎧⎪⇔ ⎨ − =⎪⎩ π⎧ + = − + π ∈⎪⇔ ⎨⎪ − = π ∈⎩ sin x y 1 sin x y 0 x y k2 , k 2 x y h , h ( ) ( ) π π⎧ = − + + ∈⎪⎪⇔ ⎨ π π⎪ = − + − ∈⎪⎩ ≠ x 2k h , k, h 4 2 y 2k h , k, h 4 2 (nhận do sin y cos x 0) Cách 2: ( ) sin x cos y2 1 cos xsin y ⇔ = ⇔ =sin x cos y cos x sin y ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( 1sin cos 3 2 1cos sin 4 2 sin 1 3 4 sin 0 3 4 Thế 1 vào 2 ta được: x y x y x y x y ⎧ = −⎪⎪⎨⎪ = −⎪⎩ + = − +⎧⎪⇔ ⎨ − = −⎪⎩ ) ) 2 , 2 , x y k k x y h h π⎧ + = − + π ∈⎪⇔ ⎨⎪ − = π ∈⎩ ( ) ( ) ( ) 2 4 2 , 2 4 2 x k h h k Z y k h π π⎧ = − + +⎪⎪⇔ ∈⎨ π π⎪ = − + −⎪⎩ III. GIẢI HỆ BẰNG ẨN PHỤ Bài 179: Giải hệ phương trình: ( ) ( ) 2 3 1 3 2 3cotg cotg 2 3 tgx tgy x y ⎧ + =⎪⎪⎨ −⎪ + =⎪⎩ Đặt = =X tgx, Y tgy Hệ đã cho thành: 2 3 2 3X Y X Y 3 3 1 1 2 3 Y X 2 3 X Y 3 YX ⎧ ⎧+ = + =⎪ ⎪⎪ ⎪⇔⎨ ⎨ +⎪ ⎪+ = − = −⎪ ⎪⎩ ⎩ 3 2 2 3X Y2 3X Y 3 3 2 3XY 1 X X 1 0 3 X 3 3X 33Y Y 33 ⎧⎧ + =⎪+ =⎪ ⎪⇔ ⇔⎨ ⎨⎪ ⎪= − − − =⎩ ⎪⎩ ⎧ ⎧= = −⎪ ⎪⇔ ∨⎨ ⎨= −⎪ ⎪ =⎩ ⎩ Do đó: Hệ đã cho : tgx 3 3tgx 33tgy tgy 33 ⎧ ⎧= = −⎪ ⎪⇔ ∨⎨ ⎨= −⎪ ⎪ =⎩ ⎩ , , 3 6 , , 6 3 π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= − + π ∈ = + π ∈⎪ ⎪⎩ ⎩ x k k x k k y h h y h h Bài 180: Cho hệ phương trình: 1sin x sin y 2 cos2x cos2y m ⎧ + =⎪⎨⎪ + =⎩ a/ Giải hệ phương trình khi 1m 2 = − b/ Tìm m để hệ có nghiệm. Hệ đã cho ( ) ( )2 2 1sin x sin y 2 1 2sin x 1 2sin y m ⎧ + =⎪⇔ ⎨⎪ − + −⎩ = ( ) ⎧ + =⎪⎪⇔ ⎨ −⎪ + =⎪⎩ ⎧ + =⎪⎪⇔ ⎨⎪ + − = −⎪⎩ 2 2 2 1sin x sin y 2 2 msin x sin y 2 1sin x sin y 2 msin x sin y 2sin xsin y 1 2 ⎧ + =⎪⎪⇔ ⎨⎪ − =⎪⎩ 1sin x sin y 2 1 m2sin xsin y 1 4 2 − ⎧ + =⎪⎪⇔ ⎨⎪ = − +⎪⎩ 1sin x sin y 2 3 msin xsin y 8 4 Đặt X sin x,Y sin y với X , Y 1= = ≤ thì X, Y là nghiệm của hệ phương trình ( )2 1 m 3t t 0 2 4 8 − + − = * a/ ( )= − 1Khim thì * thành : 2 − − = ⇔ − − = ⇔ = ∨ = − 2 2 1 1t t 0 2 2 2t t 1 0 1t 1 t 2 Vậy hệ đã cho sin x 1 1sin x 21sin y sin y 12 =⎧ ⎧ = −⎪ ⎪⇔ ∨⎨ ⎨= −⎪ ⎪ =⎩ ⎩ 2 , ( 1) , 2 6 ( 1) , 2 , 6 2 π π⎧ ⎧= + π ∈ = − − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= − − + π ∈ = + π ∈⎪ ⎪⎩ ⎩ h h x k k x h h y h h y k k b/ Ta có : ( ) 2m 1* t 4 2 ⇔ = − + + 3t 8 Xét ( ) [ ]2 1 3y t t C trênD 1,1 2 8 = − + + = − thì: 1y ' 2t 2 = − + 1y ' 0 t 4 = ⇔ = Hệ đã cho có nghiệm ( ) [ ]* có 2 nghiệm trên -1,1⇔ ( ) md y 4 ⇔ = cắt (C) tại 2 điểm hoặc tiếp xúc [ ]trên -1,1 ⇔ − ≤ ≤ ⇔ − ≤ ≤ 1 m 7 8 4 16 1 7m 2 4 Cách khác 2( ) 8 4 3 2 0⇔ = − − + =ycbt f t t t m có 2 nghiệm t1 , t2 thỏa 1 21 1⇔ − ≤ ≤ ≤t t / 28 16 0 (1) 1 2 0 ( 1) 9 2 0 11 1 2 4 ⎧Δ = − ≥⎪ = + ≥⎪⎪⇔ ⎨ − = + ≥⎪⎪− ≤ = ≤⎪⎩ m af m af m S 1 7 2 4 ⇔ − ≤ ≤m Bài 181: Cho hệ phương trình: 2 2 sin x mtgy m tg y msin x m ⎧ + =⎪⎨ + =⎪⎩ a/ Giải hệ khi m = -4 b/ Với giá trị nào của m thì hệ có nghiệm. Đặt X sin x= với X 1≤ Y tgy= Hệ thành: ( ) ( ) 2 2 X mY m 1 Y mX m 2 ⎧ + =⎪⎨ + =⎪⎩ Lấy (1) – (2) ta được: ( )2 2X Y m Y X 0− + − = ( ) ( )X Y X Y m 0 X Y Y m X ⇔ − + − = ⇔ = ∨ = − Hệ thành ( )22 = −= ⎧⎧ ⎪⎨ ⎨ + − =+ = ⎪⎩ ⎩ Y m XX Y hay X m m X mX mX m ( ) ( )2 2 2 X Y Y m X X mX m 0 * X mX m m 0 * * = = −⎧ ⎧⎪ ⎪⇔ ∨⎨ ⎨+ − = − + − =⎪ ⎪⎩ ⎩ a/Khi m = -4 ta được hệ ( ) ( ) 22 Y 4 XX Y X 4X 20 0 vô nghiệmX 4X 4 0 X 2 loạido X 1 Y 2 = − −= ⎧⎧ ⎪∨⎨ ⎨ + + =− + = ⎪⎩ ⎩ ⎧ = ≤⎪⇔ ⎨ =⎪⎩ Vậy hệ đã cho vô nghiệm khi m = 4. b/ Ta có (*) 2X mX m 0 với X 1⇔ + − = ≤ ( ) ( ) 2 2 X m 1 X X m domkhông là nghiệmcủa * 1 X ⇔ = − ⇔ =− Xét [ ) ( ) 2 2 2 X X 2XZ trên 1,1 Z' 1 X 1 X − += − ⇒ =− − ; Z' 0 X 0 X 2= ⇔ = ∨ = Do đó hệ ( ) 2 X Y X 1 X mX m 0 ⎧ = ≤⎪⎨ + − =⎪⎩ có nghiệm m 0⇔ ≥ Xét (**): 2 2X mX m m 0− + − = Ta có ( )2 2 2m 4 m m 3m 4mΔ = − − = − + 40 0 m 3 Δ ≥ ⇔ ≤ ≤ Kết luận: Khi m thì (I) có nghiệm nên hệ đã cho có nghiệm 0≥ Khi < thì (I) vô nghiệm mà (**) cùng vô nghiệm m 0 Δ(do < 0) nên hệ đã cho vô nghiệm Do đó: Hệ có nghiệm m 0⇔ ≥ Cách khác Hệ có nghiệm (*)hay ⇔ = + − =2f (X) X mX m 0 (**) có nghiệm trên [-1,1] = − + − =2 2g(X) X mX m m 0 ( 1) (1) 0f f⇔ − ≤ 2 1 4 0 (1) 0 ( 1) 0 1 1 2 2 m m af hay af mS ⎧Δ = + ≥⎪ ≥⎪⎪⎨ − ≥⎪ −⎪− ≤ = ≤⎪⎩ hay ( 1) (1) 0g g− ≤ 2 2 2 2 3 4 ( 1) 1 0 ( 1) ( 1) 0 1 1 2 2 m m ag m hay ag m S m ⎧Δ = − + ≥⎪ 0− = + ≥⎪⎪⎨ = − ≥⎪⎪− ≤ = ≤⎪⎩ 1 2 0m⇔ − ≤ 2 1 4 0 1 2 0 2 2 m m hay m m ⎧Δ = + ≥⎪ − ≥⎨⎪− ≤ ≤⎩ hay m = 1 hay ≤ ≤ 40 m 3 m 0⇔ ≥ IV. HỆ KHÔNG MẪU MỰC Bài 182: Giải hệ phương trình: ⎧ π⎛ ⎞+ ⎜ ⎟⎪⎪ ⎝⎨ π⎛ ⎞⎪ + ⎜ ⎟⎪ ⎝ ⎠⎩ tgx cotgx =2sin y + (1) 4 tgy cotgy =2sin x - (2) 4 ⎠ Cách 1: Ta có: 2 2sin cos sin cos 2tg cotg = cos sin sin cos sin2 α α α + αα + α + = =α α α α α Vậy hệ đã cho ⎧ π⎛ ⎞= +⎜ ⎟⎪ ⎝ ⎠⎪⇔ ⎨ π⎛ ⎞⎪ = −⎜ ⎟⎪ ⎝ ⎠⎩ 1 sin y (1) sin 2x 4 1 sin x (2) sin 2y 4 ⎧ π⎛ ⎞= +⎜ ⎟⎪⎪ ⎝⇔ ⎨ π⎛ ⎞⎪ = −⎜ ⎟⎪ ⎝ ⎠⎩ 1 sin 2x sin y (1) 4 1 sin 2y.sin x (2) 4 ⎠ Ta có: (1) = =⎧ ⎧⎪ ⎪⇔ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞+ = + = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ sin 2x 1 sin 2x 1 sin y 1 sin y 1 4 4 − π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ x k , k x k , k 4 4 3y h2 , h y h2 , h 4 4 Thay π⎧ = + π ∈⎪⎪⎨ π⎪ = + π ∈⎪⎩ x k , k 4 y h2 , h 4 vào (2) ta được sin2y.sin x sin .sin k 0 1 4 2 π π⎛ ⎞− = π = ≠⎜ ⎟⎝ ⎠ (loại) Thay −π⎧ = + π ∈⎪⎪⎨ π⎪ = − + π ∈⎪⎩ x k , k 4 3y h2 , h 4 vào (2) ta được π π π⎛ ⎞ ⎛ ⎞ ⎛− = − − + π⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ 3sin 2y.sin x sin sin k 4 2 2 ⎞⎟⎠ ⎧π⎛ ⎞= − + π = ⎨⎜ ⎟ −⎝ ⎠ ⎩ 1 ( nếu k lẻ) sin k 2 1 (nếu k chẵn) Do đó hệ có nghiệm ( ) ( ) π⎧ = − + + π⎪⎪ ∈ •⎨ π⎪ = − + π⎪⎩ x 2m 1 4 m,h Z 3y h2 4 Cách 2: Do bất đẳng thức Cauchy tgx cotgx 2+ ≥ dấu = xảy ra 1tgx cotgx tgx= tgx ⇔ = ⇔ tgx 1⇔ = ± Do đó: tgx+cotgx 2 2sin y 4 π⎛ ⎞≥ ≥ +⎜ ⎟⎝ ⎠ Dấu = tại (1) chỉ xảy ra khi = = −⎧ ⎧⎪ ⎪⇔ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞+ = + = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ tgx 1 tgx 1 sin y 1 sin y 1 4 4 x k , k x k , k 4 4(I) (II) 3y h2 , h y h2 , h 4 4 thay (I) vào (2): π⎛ ⎞+ ⎜ ⎟⎝ ⎠tgy cotgy=2sin x - 4 ta thấy không thỏa 2 2sink 0= π = thay (II) vào (2) ta thấy π⎛ ⎞= − + π⎜ ⎟⎝ ⎠2 2sin k2 chỉ thỏa khi k lẻ Vậy: hệ đã cho ( )π⎧ = − + + π⎪⎪⇔ ∈⎨ π⎪ = − + π⎪⎩ x 2m 1 4 , m, h 3y 2h 4 Bài 183: Cho hệ phương trình: ( ) 2 x y m (1) 2 cos2x cos2y 1 4 cos m 0 (2) − =⎧⎪⎨ + − − =⎪⎩ Tìm m để hệ phương trình có nghiệm. Hệ đã cho ( ) ( ) 2 x y m 4cos x y cos x y 1 4 cos m − =⎧⎪⇔ ⎨ + − = +⎪⎩ ( ) ( ) ( ) ( ) ( ) − =⎧⎪⇔ ⎨− + + + =⎪⎩ − =⎧⎪⇔ ⎨ − + + − +⎪⎩ − =⎧⎪⇔ ⎨ − + + + =⎪⎩ 2 2 2 2 2 x y m 4 cos x y cos m 4 cos m 1 0 x y m [2 cos m cos x y ] 1 cos x y 0 x y m [2 cos m cos x y ] sin x y 0 = ( ) ( ) ⎧ − =⎪⇔ + =⎨⎪ + =⎩ x y m cos x y 2cos m sin x y 0 − =⎧⎪⇔ + = π ∈⎨⎪ π =⎩ x y m x y k , k cos(k ) 2 cos m Do đó hệ có nghiệm π π⇔ = ± + π ∨ = ± + π ∈ 2m h2 m h2 , h 3 3 BÀI TẬP 1. Giải các hệ phương trình sau: a/ 2 2 sin x sin y 2 tgx tgy tgxtgy 1 f / 3sin2y 2 cos4xsin x sin y 2 + = + + =⎧ ⎧⎨ ⎨ − =+ = ⎩⎩ ⎧⎧ = − − =⎪⎪⎪ ⎪⎨ ⎨⎪ ⎪= + =⎪ ⎪⎩ ⎩ 1 3sin x sin y sin x sin 2y2 2b / g / 1 1cos x cos y cos x cos 2y2 2 ( ) ( ) 2 2 cos x y 2cos x y2 cos x 1 cos y c / h / 3cos x.cos y2 sin x sin y 4 1 sin x 7cos ysin x cos y d / k /4 5sin y cos x 63tgx tgy tgx tgy 1sin x cos x cos y e / l / x ytg tg 2cos x sin xsin y 2 2 + = −⎧⎧ = +⎪ ⎪⎨ ⎨ ==⎪ ⎪⎩ ⎩ ⎧ == ⎧⎪⎨ ⎨ = −⎩⎪ =⎩ + =⎧⎧ =⎪ ⎪⎨ ⎨ + ==⎪⎩ ⎪⎩ 2.Cho hệ phương trình: 2 cos x cos y m 1 sin xsin y 4m 2m = +⎧⎨ = +⎩ a/ Giải hệ khi 1m 4 = − b/ Tìm m để hệ có nghiệm ⎛ ⎞− ≤ ≤ −⎜ ⎟⎝ ⎠ 3 1ĐS m hay m=0 4 4 3. Tìm a để hệ sau đây có nghiệm duy nhất: ( ) ⎧ + =⎪⎨ + = + +⎪⎩ 2 2 2 y tg x 1 y 1 ax a sin x ĐS a=2 4. Tìm m để các hệ sau đây có nghiệm. 3 2 3 cos x mcos y sin x cos y ma / b / sin y cos x msin x mcos y ⎧ = ⎧ =⎪⎨ ⎨ ==⎪ ⎩⎩ ( )≤ ≤ĐS 1 m 2 ⎛ ⎞+≤ ≤⎜ ⎟⎜ ⎟⎝ ⎠ 1- 5 1 5ĐS m 2 2 Th.S Phạm Hồng Danh TT luyện thi đại học Vĩnh Viễn

Các file đính kèm theo tài liệu này:

  • pdfHe pt kuong giac.pdf
  • pdfHe thuc luong trong tam giac.pdf
  • pdfLuonggiac.pdf
  • pdfNhan dang tam giac.pdf
  • pdfPt bac 2 voi cac ham luong giac.pdf
  • pdfPt bac nhat theo sin & cos.pdf
  • pdfPt dang cap.pdf
  • pdfPt doi xung theo sin va cos.pdf
  • pdfPt luong giac co ban.pdf
  • pdfPt luong giac khong mau muc.pdf
  • pdfPt luong giac.pdf
Tài liệu liên quan