Giáo án Toán tự chọn nâng cao 11

Bài 4: Trên một vùng đồng bằng có ba thành phố A, B, C tạo thành một tam giác nhọn như hình 4.2. Người ta muốn tìm một vị trí I ở trong tam giác ABC để xây dựng một sân bay chung cho cả ba thành phố đó sao cho tổng khoảng cách từ I tới các trung tâm của ba thành phố đó là ngắn nhất.

* Để giải các bài toán tìm điểm sao cho tổng các khoảng cách từ đó đến một số điểm cho trước là ngắn nhất ta thường dùng các phép dời hình thích hợp để nối các đoạn thăẳg đang xét lại thành một đường gấp khúc. Khi đó tổng các khoảng cách là ngắn nhất khi đường gấp khúc đó thuộc một đường thẳng.

 

doc44 trang | Chia sẻ: maiphuongdc | Lượt xem: 2137 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Giáo án Toán tự chọn nâng cao 11, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ều nhất 2 bi đỏ, d. Tính kì vọng, phương sai và độ lệch chuẩn của Y. Giải: a. Y có tập giá trị là 0, 1, 2, 3 Ta thấy P[Y = 0] = Tổng quát ta có: P[Y = k] = , k = 0, 1, 2, 3 Từ đó ta có bảng phân phối sau: Y 0 1 2 3 P b. Kí hiệu [Y ³ a] là biến cố “Y nhận giá trị lớn hơn hoặc bằng a”. Ta tính P[Y ³ 1] Vì [Y ³ 1] là biến cố đối của biến cố [Y = 0] nên: P[Y ³ 1] = 1 – P [Y = 0] = 1 - c. Vì số bi đỏ được lấy là 4 – Y và 4 – Y £ 2 Û Y ³ 2 nên P[Y ³ 2] = P[Y = 2] + P[Y = 3] = d. Theo định nghĩa, ta có: III. BÀI TẬP: 1. Phân phối 4 quả cầu khác nhau vào 3 cái hộp khác nhau (có thể có hộp không chứa quả cầu nào sau khi xếp). Hỏi có bao nhiêu cách phân phối? 2. Để tổ chức một trò chơi giữa hai lớp A và B, mỗi lớp cử 5 bạn tham gia. Người ta đặt hai dãy 5 ghế hai bên một chiếc bàn dài. Hỏi có bao nhiêu cách xếp chỗ ngồi sao cho: a. Không có hai bạn cùng lớp ngồi đối diện nhau. b. Không có hai bạn cùng lớp ngồi đối diện nhau hoặc cạnh nhau? 3. Có bao nhiêu cách xếp chỗ ngồi cho 10 bạn vào ngồi quanh 2 bàn tròn sao cho bàn thứ nhất có 6 bạn, bàn thứ hai có 4 bạn? Chú ý rằng hai cách xếp n người cụ thể vào ngồi quanh bàn tròn được coi là như nhau nếu bạn bên trái mỗi người trong cách xếp này cũng chính là bạn trong cách xếp kia. 4. Có bao nhiêu cách xếp chỗ cho 6 nam, 4 nữ vào ngồi quanh một bàn tròn sao cho: a. Sự sắp xếp là tùy ý? b. Không có 2 nữ nào ngồi cạnh nhau? 5. a. Một tổ có 6 nam, 5 nữ. Có bao nhiêu cách phân công 4 bạn làm trực nhật sao cho trong đó phải có đúng k nam (k = 0, 1, 2, 3, 4)? Từ đó chứng minh rằng: b. Chứng minh đẳng thức: Ở đây n, m ³ 1 và r £ n, r £ m. 6. Có bao nhiêu cách xếp thành hàng ngang 4 quyển Toán khác nhau, 3 quyển Lí khác nhau và 2 quyển Hóa khác nhau lên giá sách nếu: a. Các quyển được sắp tùy ý? b. Các quyển cùng môn phải cạnh nhau? c. Các quyển toán cạnh nhau, còn các quyển khác xếp tùy ý? 7. Một tổ gồm 6 nam, 6 nữ được xếp ngẫu nhiên vào 6 bàn, mỗi bàn 2 bạn. Tính xác suất sao cho: a. Không bàn nào có 1 nam và 1 nữ b. Có đúng 4 bàn được xếp 1 nam và 1 nữ. 8. Cho một mạng giao thông như hình 2.3 mà các ô nhỏ đều là các hình vuông bằng nhau. Một du khác xuất phát từ A muốn đi đến B. a. Có bao nhiêu cách đi nhanh nhất (i) Từ A đến B? (ii) Từ A qua C, đến B? Dựa vào ý tưởng giải câu a, hãy chứng minh: với m, n ³ 1 Hình 2.3 b. Giải sử ở tại mỗi đỉnh của hình vuông du khách chọn ngẫu nhiên một trong hai hướng lên trên và sang phải để đi tiếp. Tính xác suất để du khách xuất phát từ A có thể đến được C. 9. Tìm các số hạng không chứa x trong các khai triển: a. b. 10. Trong khai triển của (x + a)3(x – b)6 hệ số của x7 là -9 và không có số hạng chứa x8. Tìm a và b 11. Gieo hai con xúc xắc cân đối, đồng chất, một con đỏ và một con xanh. Kí hiệu A là biến cố: “Tổng số chấm trên hai con là 6”, B là biến cố: “Con đỏ xuất hiện mặt 4 chấm” và C là biên cố: “Tổng số chấm trên hai con là 7”. Chứng tỏ rằng: a. A và B không độc lập b. B và C độc lập 12. Bốn quả cầu được rút ngẫu nhiên (cùng một lúc) từ một cái hộp chứa 8 quả cầu đen và 4 quả cầu trắng. Giả sử ta sẽ nhận được 2 cái kẹo cho mỗi quả đen được rút ra và mất 1 kẹo cho mỗi quả trắng được rút. Kí hiệu X là số kẹo nhận được. a. Lập bảng phân phối của X b. Tính kì vọng, phương sai, độ lệch chuẩn của X. 13. Con xúc xắc cân đối đồng chất được gieo 2 lần. Kí hiệu X là số nhỏ nhất trong 2 số chấm xuất hiện trên con xúc xắc. a. Lập bảng phân phối xác suất của X b. Tính E (X), V(X) 14. Trên mỗi tờ vé số, người ta in 6 ô, mỗi ô chứa một trong các số khác nhau từ 1 tới 49. Khi mở thưởng người ta rút ngẫu nhiên cùng một lúc 6 quả cầu từ 49 quả cầu được đánh số từ 1 đến 49. Nếu vé của bạn có k số trúng thì bạn được xk đồng. Giả sử bạn mua 1 vé số. Tính số tiền thưởng trung bình mà bạn nhận được nếu giả thiết x0 = 0, x1 = 100.000đ, x2 = 500.000đ; x3 = 1.000.000đ, x4 = 5.000.000đ; x5=10.000.000đ; x6 = 100.000.000đ. CHỦ ĐỀ 3: GIỚI HẠN VÀ ĐẠO HÀM I. TÓM TẮT VÀ BỔ SUNG KIẾN THỨC A. GIỚI HẠN CỦA HÀM SỐ 1. Giới hạn hữu hạn Giả sử f(x) xác định trên khoảng K (hoặc K \ {x0}, x0 Î K. 2. Giới hạn ± ¥ Giả sử f(x) xác định trên khoảng K (hoặc K \ {x0}), x0 Î K. Giả sử f(x) xác định trên khoảng (a; + ¥) 3. Dạng vô định: Khi thì có dạng Khi thì có dạng Khi thì có dạng 0. ¥ Khi thì có dạng ¥ - ¥. B. HÀM SỐ LIÊN TỤC: 4. Định nghĩa: Cho hàm số y = f(x) xác định trên (a; b); x0 Î (a; b) f(x) liên tục tại x0 Î (a; b) Û f(x) liên tục trên (a; b) Û f(x) liên tục tại mọi x Î (a; b) f(x) liên tục trên [a; b] Û 5. Định lí: a. Các hàm số đa thức liên tục trên ¡. Các hàm số lượng giác liên tục trên từng khoảng xác định. b. Nếu f(x) liên tục trên [a; b] và f(a). f(b) < 0 thì tồn tại điểm c Î (a; b) sao cho f(c)=0 (tứ là phương trình f(x)=0 có nghiệm trong khoảng (a; b)) . C. ĐẠO HÀM 6. Định nghĩa và ý nghĩa: Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 Î (a; b). Nếu tồn tại giới hạn (hữu hạn): Thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại điểm x0 và kí hiệu f’(x0) (hoặc y’(x0)), tức là f’(x0) = Phương trình tiếp tuyến của đồ thị tại M(x0; f(x0)) là: y – y0 = f’(x0)(x – x0); y0 = f(x0). Vi phân của hàm số f(x) tại x (ứng với Dx) là dy = df(x) = f’(x)dx Công thức tính gần đúng: f(x0 + Dx) » f(x0) + f’(x0) Dx Nếu hàm số y = f(x) có đạo hàm tại mọi x Î (a; b) thì hàm số x ® f’(x) được gọi là đạo hàm của f(x) trên (a; b). Nếu f’(x) có đạo hàm thì ta gọi đạo hàm của nó là đạo hàm cấp hai của f(x). Kí hiệu: (f’(x))’ = f’’(x) Tương tự đối với f’’’(x) , …., f(n)(x), … 7. Công thức: (c)’ = 0 (c là hằng số) (xn)’ = n.xn – 1 (n Î ¥*, x Î ¡); (sinx)’ = cosx; (cosx)’ = - sinx (ku + lv)’ = ku’ + lv’ (k, l là hằng số) (uv)’ = u’v + uv’ y'x = y'u . u'x (y = y(u), u = u(x)) II. RÈN LUYỆN KĨ NĂNG GIẢI TOÁN: Bài 1: Xác định dạng vô định và tính các giới hạn sau: a. ; b. c. d. Giải a. Dạng b. Dạng = c. Dạng 0. ¥ d. Dạng ¥ - ¥ Bài 2: Tìm các giới hạn sau: a. b. * Sử dụng định nghĩa giới hạn một bên. Giải: a. Với x ® 1- thì x 0. Khi đó ta có Từ đó: nếu x £ - 4 nếu -4 < x £ 3 nếu x > 3 Bài 3: Cho hàm số f(x) = a. Tính b. Tìm các khoảng liên tục của f(x) * Sử dụng các định nghĩa và định lý về liên tục tại một điểm, liên tục trên một khoảng Giải: a. b. Hàm số f(x) liên tục trên (- ¥; -4), (-4; 3), (3: + ¥) Vì nên f(x) liên tục trên (- ¥; -4] Vì nên f(x) không liên tục tại x= -4 Vì nên f(x) liên tục tại x=3 Vậy hàm số f(x) liên tục trên các khoảng (- ¥; -4] và (-4; +¥) nếu x <2 nếu x³ 2 Bài 4: Tìm số thực m sao cho hàm số: liên tục tại x = 2 * f(x) liên tục tại x = 2 nếu Giải Ta có: Từ đó: Với m = thì f(x) liên tục tại x = 2. Bài 5: Chứng minh rằng phương trình x3 – 2x2 + 1 = 0 có ít nhất một nghiệm âm. * Sử dụng định lí: Nếu f(x) liên tục trên [a; b] và f(a).f(b) < 0 thì tồn tại điểm x Î (a;b) sao cho f(c) = 0 Giải: Đặt f(x) = x3 – 2x2 + 1 Ta có f(x) liên tục trên ¡ và do đó liên tục trên [-1; 0] Mặt khác, vì f(0) = 1, f(-1) = -2 < 0 nên tồn tại số c Î (-1; 0) sao cho f(c) = 0. Vậy phương trình có ít nhất một nghiệm âm. Bài 6: Chứng minh rằng phương trình (3m2 – 5)x3 – 7x2 + 1 = 0 luôn có nghiệm âm với mọi giá trị của m. Giải: f(x) = (3m2 – 5)x3 – 7x2 + 1 là một đa thức nên liên tục trên ¡ và do đó liên tục trên [-1;0]. Hơn nữa f(0) = 1 > 0 F(-1) = -3m2 + 5 – 7 + 1 = -(3m2 + 1) < 0, "m Î ¡ Do đó tồn tại số c Î (-1; 0) sao cho f(c) = 0. Vậy phương trình luôn có nghiệm âm với mọi giá trị của m Bài 7: a. Tìm giao điểm của đồ thị các hàm số y = (H) và y = x – 2(d) b. Viết phương trình tiếp tuyến của (H) tại các giao điểm đó * Phương trình tiếp tuyến với đồ thị (H) của hàm số y=f(x) tại M0(x0;y0) là y-y0=f’(x0)(x–x0) Giải: a. Hoành độ giao điểm của (H) và (d) là nghiệm của phương trình: Vậy có hai giao điểm của (H) và (d) là A(-1; -3), B(3; 1) b. có đạm hàm là . Từ đó: f’(-1) = -3, f’(3) = - Tiếp tuyến của (H) tại A(-1; -3) có phương trình: y + 3 = -3(x + 1) Û y = -3x – 6 Tiếp tuyến của (H) tại B(3; 1) có phương trình: y – 1 = - (x – 3) Û y = -x + 2 Bài 8: Tìm đạo hàm của các hàm số sau: a. f(x) = ; b. g(x) = cos2x + cos2 c. h(x) = sin(cos2x).cos(sin2x) Sau khi tìm g’(x) có nhận xét gì về hàm g(x) Áp dụng công thức: y’x = y’u. u’x Giải: a. f’(x) = = b. Tương tự g’(x) = - 2cosxsinx – 2cos = - sin2x -sin = - sin2x + 2cossin(-2x) = -sin2x + sin2x = 0 c. h’(x) = -2cos(cos2x)cosxsinxcos(sin2x) – 2sin(cos2x)sin(sin2x)sinxcosx = -sin2xcos(cos2x)cos(sin2x) – sin2xsin(cos2x)sin(sin2x) = -sin2x [cos(cos2x)cos(sin2x) + sin(cos2x)sin(sin2x)] = -sin2xcos(cos2x – sin2x) = -sin2xcos(cos2x) Vì g’(x) = 0 nên g(x) là một hàm bằng. Bằng cách chọn x = 0, ta thấy g(0) = Vậy g(x) = với mọi x. Bài 9: Tìm a. d(tanx) ; b. dy với y = (x ¹ 1) * Áp dụng công thức: df(x) = f’(x)dx Giải: a. d(tanx) = (tanx)’dx = b. Với y = ta có: y’ = = Vậy dy = Bài 10: Không dùng máy tính và bảng số hãy tính gần đúng sin290 * Áp dụng công thức f(x0 + Dx) » f(x0) + f’(x0)Dx Giải: Vì 290 = 300 – 10 = nên sin290 = sin» sin Bài 11: Tìm y(n) biết * Dùng phương pháp quy nạp toán học. Giải: Ta có: Ta dự đoán y(n) = (-1)n (*). Ta chứng minh (*) bằng quy nạp. Từ (1) suy ra (*)đúng khi n = 1 Giả sử (*)đúng với n = k, ta có Ta chứng minh (*)đúng với n = k+1 Lấy đạm hàm hai vế của (2) ta đượC: = Vậy với mọi n Î ¥*, ta có: III. BÀI TẬP: 1. Áp dụng định nghĩa, tìm các giới hạn sau: a. b. 2. Tính các giới hạn sau: a. b. c. d. 3. Tìm các giới hạn sau: a. và b. và 4. Cho hàm số f(x) = Với giá trị nào của m, hàm số f(x) có giới hạn khi x ® 0.Tìm giới hạn đó. 5. Tìm các khoảng liên tục của các hàm số sau: a. f(x) = ; nếu nếu nếu b. g(x) = nếu nếu nếu 6. Tìm số thực a sao cho hàm số f(x) = liên tục tại x = 7. Chứng minh rằng phương trình x3 – 10x2 – 1 = 0 có ít nhất một nghiệm dương. 8. Chứng minh rằng phương trình (m2 + m +1)x5 + x3 – 27 = 0 có nghiệm dương với mọi giá trị của tham số m 9. Cho hàm số y = (C) a. Hãy tính (bằng định nghĩa) đạo hàm của hàm số tại x = 1 b. Viết phương trình tiếp tuyến của (C) tại điểm A(1; -2) 10. Chứng minh rằng hàm số f(x) = liên tục tại x = 0 nhưng không có đạo hàm tại x = 0 11. Tìm vi phân của các hàm số: a. y = b. y = 12. Tính gần đúng các số sau với sai số 0,001 a. cos610 b. tan 440 c. 13. Cho y = x2sinx. Tìm y(4). 14. Chứng minh rằng: (n Î ¥*) (n Î ¥*) CHỦ ĐỀ 4: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG I. TÓM TẮT VÀ BỔ SUNG KIẾN THỨC A. PHÉP DỜI HÌNH TRONG MẶT PHẲNG 1. Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì, nghĩa là với hai điểm M, N tuỳ ý và ảnh M’, N’ tương ứng của chúng, ta luôn có M’N’ = MN. 2. Các phép tịnh tiến, đối xứng trục, đối xứng tâm, phép quay là những phép dời hình. 3. Thực hiện liên tiếp hai phép dời hình F và G ta được một phép dời hình. Phép dời hình này được gọi là hợp thành của F và G 4. Phép dời hình: a. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy. b. Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng bằng nó. c. Biến tam giác thành tam giác bằng nó, biến gốc thành góc bằng nó. d. Biến đường tròn thành đường tròn có cùng bán kính. 5. - Nếu một phép dời hình biến tam giác ABC thành tam giác A’B’C’ thì nó cũng biến trọng tâm , trực tâm, tâm các đường tròn nội tiếp, ngoài tiếp của tam giác ABC tương ứng thành trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của tam giác A’B’C’. - Phép dời hình biến một đa giác n cạnh H thành một đa giác n cạnh H’, biến các đỉnh của H thành các đỉnh của H’, biến các cạnh của H thành các cạnh của H’… 6. Hai hình được gọi là bằng nhau khi có một phép dời hình biến hình này thành hình kia. B. PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG 7. Phép biến hình F được gọi là phép đồng dạng tỉ số k (k > 0), nếu với hai điểm M, N bất kì và ảnh M’, N’ tương ứng của chúng ta luôn có M’N’ = kMN. 8. a. Phép dời hình là phép đồng dạng tỉ số 1 b. Phép vị tự tỉ số k là phép đồng dạng tỉ số |k| c. Thực hiện liên tiếp phép đồng dạng tỉ số k và phép đồng dạng tỉ số p ta được phép đồng dạng tỉ số pk. 9. Phép đồng dạng tỉ số k là hợp thành của một phép dời hình và một phép vị tự tỉ số k. Nó cũng là hợp thành của một phép vị tự tỉ số k và một phép dời hình. 10. Phép đồng dạng tỉ số k: a. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy. b. Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng. c. Biến tam giác thành tam giác đồng dạng với nó, biến góc thành góc bằng nó. d. Biến đường tròn bán kính R thành đường tròn bán kính k R. 11. - Nếu một phép đồng dạng biến tam giác ABC thành tam giác A’B’C’ thì nó cũng biến trọng tâm, trực tâm,tâm các đường tròn nội tiếp, ngoại tiếp của tam giác ABC tương ứng thành trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của tam giác A’B’C’. - Phép đồng dạng biến một đa giác n cạnh H thành một đa giác n cạnh H’, biến các đỉnh của H thành các đỉnh của H’, biến các cạnh của H thành các cạnh của H’… 12. Hai hình được gọi là đồng dạng với nhau nếu có một phép đồng dạng biến hình này thành hình kia. II. RÈN LUYỆN KĨ NĂNG GIẢI TOÁN: Bài 1: Chứng minh rằng nếu phép dời hình biến ba điểm O, A, B lần lượt thành O’, A’, B’ thì ta có: a. b. , với t là một số tuỳ ý. * Sử dụng công thức: AB2 = Giải a. Vì O’A’ = OA.O’B’=OB,A’B’=AB và AB2 = nên ta có: A’B’2 = AB2 Þ Þ Þ Þ Từ câu a) và định nghĩa ta có: Û Û Û Û Û Bài 2: Chứng minh rằng phép dời hình biến đường thẳng thành đường thẳng * Để chứng minh hình H’ là ảnh của hình H qua phép biến hình F ta chứng minh rằng: M Î H Û M’ = F(M) Î H’ M thuộc đường thẳng AB khi và chỉ khi tồn tại t Î ¡, sao cho Giải: Cho đường thẳng d và phép dời hình F. Lấy A, B phân biệt thuộc đường thẳng d, gọi A’ = F(A), B’ = F(B). Khi đó vì A’B’ = AB nên A’ và B’ phân biệt. Ta sẽ chứng minh rằng F(d) là đường thẳng A’B’. Lấy điểm M thuộc d, gọi M’ = F(M). Áp dụng câu b) của bài 1, ta có: M Î d Û , -¥ < t < + ¥ Û , -¥ < t < + ¥ Û M’ thuộc đường thẳng A’B’. Vậy F(d)là đường thẳng A’B’. Bài 3: Cho hình vuông ABCD. Gọi I là tâm đối xứng của nó và E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA như hình 4.1. Chứng minh rằng hai hình thang AEID và FBEH bằng nhau. * Để chứng minh hai hình bằng nhau ta chỉ ra một phép dời hình biến hình này thành hình kia. Giải: Phép quay tâm I góc 900 biến FBEH thành EAHG. Phép đối xứng qua đường trung trực của AE biến EAHG thành AEID. Do đó hai hình thanh AEID và FBEH bằng nhau. Bài 4: Trên một vùng đồng bằng có ba thành phố A, B, C tạo thành một tam giác nhọn như hình 4.2. Người ta muốn tìm một vị trí I ở trong tam giác ABC để xây dựng một sân bay chung cho cả ba thành phố đó sao cho tổng khoảng cách từ I tới các trung tâm của ba thành phố đó là ngắn nhất. * Để giải các bài toán tìm điểm sao cho tổng các khoảng cách từ đó đến một số điểm cho trước là ngắn nhất ta thường dùng các phép dời hình thích hợp để nối các đoạn thăẳg đang xét lại thành một đường gấp khúc. Khi đó tổng các khoảng cách là ngắn nhất khi đường gấp khúc đó thuộc một đường thẳng. Giải Bài toán thực tiễn trên được đưa về bài toán hình học sau: Cho tam giác nhọn ABC. Tìm điểm I nằm trong tam giác đó sao cho IA + IB + IC Lâấ điểm I nằm trong tam giác ABC. Phép quay tâm B góc 600 biến I thành J và biến A thành A’. Để ý rằng (BI, BJ) = 600, (BA’, BA) = -600. Ta có: (BI, BA)=(BI,BJ)+(BJ,BA’)+(BA’,BA)=(BJ, BA’) Do đó tam giác BIA bằng tam giác BIA’ (c-g-c) Từ đó suy ra A’J = AI Do đó IA + IB + IC = A’J + JI + IC ngắn nhất khi A’, J, I, C thẳng hàng, J ở giữa A’I và I giữa JC. Khi đó: ; Vậy I nhìn các cạnh của tam giác ABC dưới góc 1200. Để xác định điểm I ta dựng ảnh A’ của A qua phép quay tâm B góc 600. Trên A’C dựng các điểm I, J sao cho BIJ là tam giác đều và (BI, BJ)=600. Ta sẽ chứng minh I là điểm cần tìm. Vật vậy, do nhọn nên 0 600 và = 600 nên I phải nằm trong tam giác ABC. Khi đó dễ thấy A’, J, I, C thẳng hàng, J ở giữa A’I, I ở giựa JC và IA + IB + IC = A’J + JI + IC = A’C nên nó ngắn nhất. Bài 5: Cho điểm A thuộc đường tròn C đường kính BC như hình 4.4. Dựng về phía ngoài của tam giác ABC tam giác ABD vuông cân ở D. Gọi I là trung điểm của DB, tìm tập hợp các điểm I khi A chạy trên nửa đường tròn C. * Để có thể dùng phép biến hình giải các bài toán tìm tập hợp điểm ta xem tập hợp điểm đó là ảnh của một hình đã biết qua một phép biến hình xác định. Giải: Trên tia BD lấy điểm E sao cho BE = BA. Do (BA, BE) = 450 nên có thể em E là ảnh của A qua phép quay tâm B góc 450. Ta lại có: Do đó: Vậy I là ảnh của E qua phép vị tự tâm B tỉ số . Khi đó I là ảnh của A qua phép đồng dạng F là hợp thành của phép quay tâm B góc 450 và phép vị tự tâm B tỉ số . Do đó khi A chạy trên nửa đường tròn C, thì I chạy trên nửa đường tròn C’ là ảnh của C qua phép đồng dạng F. III. BÀI TẬP: 1. Chứng minh rằng hợp thành của hai phép đối xứng qua hai đường thẳng song song là một phép tịnh tiến. 2. Chứng minh rằng phép dời hình biến một tia thành một tia. 3. Cho hai hình vuông ABCD và A’B’C’D’ có AB = A’B’ như hình 4.5. Tìm một phép dời hình biến hình vuông ABCD thành hình vuông A’B’C’D’. 4. Cho ba điểm A, B, C thẳng hàng theo thứ tự đó. Dựng về một phía của đường thẳng AC các tam giác đều ABD và BCE. Dựng hình bình hành DCEF. Chứng minh AEF là tam giác đều. 5. Cho hai hình vuông ABCD và AEFG như hình 4.6. Gọi I, J, L, M lần lượt là trung điểm của BD, DE, EG, GB. Chứng minh rằng tứ giác IJLM là hình vuông. 6. Cho đường tròn C và điểm A nằm ngoài đường tròn. Với mỗi điểm B thuộc C, dựng hình vuông ABCD sao cho nếu đi dọc các cạnh theo chiều ABCD thì luôn thấy hình vuông ở bên trái như hình vẽ 4.7. Chứng minh rằng B chạy trên C thì C và D cũng chạy trên những đường tròn cố định. 7. Cho hai điểm phân biệt A, B và đường tròn (O) không có điểm chung với đường thẳng AB. Chứng minh rằng khi điểm C chạy trên đường tròn (O) trọng tâm tam giác ABC cũng chạy trên một đường tròn cố định. 8. Cho dây cung AB độ dài không đổi có hai đầu mút chạy trên đường tròn tâm O bán kính R và một điểm C cố định trên (O). Chứng minh rằng trọng tâm của tam giác ABC chạy trên một đường tròn cố định. CHỦ ĐỀ 5: QUAN HỆ SONG SONG TRONG KHÔNG GIAN I. TÓM TẮT VÀ BỔ SUNG KIẾN THỨC A. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG 1. Vị trí tương đối của đường thẳng và mặt phẳng: - Đường thẳng cắt mặt phẳng - Đường thẳng song song với mặt phẳng - Đường thẳng nằm trong mặt phẳng 2. Vị trí tương đối của hai mặt phẳng: - Hai mặt phẳng cắt nhau - Hai mặt phẳng song song với nhau - Hai mặt phẳng trùng nhau. 3. Vị trí tương đối của hai đường thẳng: - Hai đường thẳng chéo nhau (không cùng nằm trong bất kì mặt phẳng) - Hai đường thẳng cắt nhau - Hai đường thẳng song song nhau - Hai đường thẳng trùng nhau 4. Các xác định một mặt phẳng Một mặt phẳng được xác định bởi: - Ba điểm phân biệt không thẳng hàng - Một điểm và một đường thẳng không chứa điểm đó - Hai đường thẳng cắt nhau - Hai đường thẳng song song B. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG 5. Một đường thẳng và một mặt phẳng gọi là song song với nhau nếu chúng không có điểm chung. 6. Nếu d’ nằm trong mặt phẳng (a) và d song song d’ thì d // (a) hoặc d chứa trong (a) 7. Cho d song song với (a). Nếu (b) chứa d và cắt (a) theo giao tuyến d’ thì giao tuyến của chúng (nếu có) cũng song song với d. C. HAI MẶT PHẲNG SONG SONG: 9. Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm chung 10. Nếu (a) chứa hai đường thẳng cắt nhau và hai đường thẳng đó cùng song song với (b) thì (a) song song với (b). 11. Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau. 12. Cho hai mặt phẳng song song với nhau. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau. 13. Định lý Ta – lét: - Ba mặt phẳng song song chắn trên hai cát tuyến bất kì những đoạn tương ứng tỉ lệ. - Giả sử trên hai đường thẳng chéo nhau a và a’ lần lượt lấy các điểm A, B, C và A’,B’,C’ sao cho: Khi đó ba đường AA’, BB’, CC’ lần lượt nằm trên ba mặt phẳng song song, tức là chúng cùng song sng với một mặt phẳng. II. RÈN LUYỆN KĨ NĂNG GIẢI TOÁN: 1. Các xác định giao tuyến của hai mặt phẳng: * - Cách 1: Tìm hai điểm chung của hai mặt phẳng. - Cách 2: Tìm một điểm chung của hai mặt phẳng và tìm phương của giao tuyến. Bài 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB > CD). Tìm giao tuyến của các cặp mặt phẳng: a) (SAC) và (SBD) b) (SAD) và (SBC) c) (SAB) và (SCD). Giải Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. a. Vì S và O là điểm chung của hai mặt phẳng (SAC) và (SBD) nên (SAC)Ç(SBD)=SO b. Tương tự, (SAD)Ç(SBC)=SI C. S là điểm chung của (SAB) và (SCD), hơn nữa (SAB) và (SCD) lần lượt chứa AB và CD song song với nhau nên giao tuyến là đường thẳng D đi qua S và song song với AB và CD. 2. Tìm tập hợp giao điểm: Bài 2: Cho hình chóp S.ACBD có đáy ABCD là tứ giác sao cho AD cắt BC tại E, M là điểm thuộc đoạn SC. a. Tìm giao điểm N của SD và (MAB). b. Gọi I là giao điểm của AM và BN. Khi M di động trên đoạn SC thì điểm I chạy trên đường nào? Giải: a. Gọi F là giao điểm của BM và SE; N là giao điểm của FA và SD. Ta có: N Î AF và AF Ì (ABM) suy ra N Î (ABM) Do đó: N = SD Ç (ABM) b. Ta có: I = AM Ç BN . Do đó I Î (SAC) Ç (SBD) Vì (SAC) Ç (SBD) = SO (O là giao điểm của AC và BD) nên I Î SO. Nhận xét rằng trong mặt phẳng (SAC), ta thấy Khi M º S thì I º S, khi M º C thì I º O Vậy điểm I chạy trên đoạn SO. Bài 3: Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC và BD. Một mặt phẳng (a) quay quanh IJ cắt cạnh AD và AC lần lượt tại K và L. a. Trong trường hợp IL và JK cắt nhau tại M thì điểm M chạy trên đường nào? b. Gọi N là giao điểm của IK và JK thì điểm N chạy trên đường nào? Giải: a. Ta có M = IL Ç JK Do đó M Î AB = (ABC) Ç (ABD) Nhận xét rằng khi mặt phẳng (a) đi qua trung điểm E của đoạn AC thì (a) không cắt đường thẳng AB. Khi L di động từ A tới E thì M di động trên tia Ax Khi L di động từ C tới E thì M di động trên tia By Vậy M chạy trên hai tia Ax, By b. Ta có N = IK Ç JL Nên N Î (IAD) Ç (JAC) Gọi O là giao điểm của ID và CJ, thì (IAD) Ç (JAC) = AO Ta có: N Î AO Ta thấy, trong mặt phẳng (IAD) khi K º D thì N º O. Vậy điểm N chạy trên đoạn AO. 3.Chứng minh đường thẳng song song với mặt phẳng cố định Bài 4: Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. M, N là hai điểm lần lượt thuộc đoạn BF và AC với . Chứng minh MN song song với mặt phẳng (CD, EF) Giải Xét 3 đoạn thẳng MN, AB, CF Từ giả thiết ta suy ra: . Theo định lí Ta – lét đảo ta có: MN,AN, CF cùng song song với một mặt phẳng. Mặt khác CF Ì (CFD) và AB // CD, suy ra AB // (CFD). Vì AB và CF chéo nhau nên (CFD) là mặt phẳng duy nhất chứa CF mà song song với AB. Vậy MN, AB, CF cùng song song với mặt phẳng (a) nào đó mà (a) song song với mặt phẳng (CFD) Vậy MN // (CFD) hay MN // (CD, FE) Bài 5:Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Gọi M, N là hai điểm di động trên hai đoạn AD và BE sao cho . Chứng minh rằng MN luôn song song với một mặt phẳng cố định. Giải: Trong mặt phẳng (ABCD), qua M kẻ đường thẳng song song với AB cắt BC tại P, ta có: nên PN // CE Ta có (MNP) // (DCE) (Vì MP // DC và PN // CE) Mà MN nằm trong (MNP) nên MN song song với (DCE) (cố định) * Chú ý: Ta có thể sử dụng định lý Ta – lét đảo trong không gia để giải bài này. III. BÀI TẬP: 1. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành a. Hãy xác định giao tuyến của hai mặt phẳng (SAB) và (SCD) và giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Một mặt phẳng (a) thay đổi qua BC cắt cạnh SA tại A’ (A’ không trùng với S và A) và cắt cạnh SD tại D’. Tứ giác BCD’A’ là hình gì? c. Gọi I là giao điểm của BA’ và CD’, J là giao điểm của CA’ và BD’. Với (a) như câu b thì I và J chạy trên các đường nào? 2. Cho tứ diện ABCD có AB = CD. Gọi M, N là hai điểm thay đổi trên hai cạnh AB và CD sao cho BM = CN. Chứng minh rằng MN luôn luôn song song với một mặt phẳng cố định. 3. Cho hình hộp ABCD.A’B’C’D’. GỌi M, N , K lần lượt là trung điểm của các cạnh AA’, AD, DC. Hãy xác định giao điểm của mặt phẳng (MNK) với cạnh CC’, C’B’, B’A’. Từ đó suy ra thiết diện tạo bởi mặt phẳng (MNK) với hình hộp đã cho. 4. Cho hình lập phương ABCD.A1B1C1D1. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, B1C1, DD1. a. Hãy xác định thiết diện tạo bởi hình lập phương đã cho và mặt phẳng (MNP). b. Chứng minh rằng đường thẳng MN song song với mặt phẳng (BDC1) 5. Cho hình hộp ABCD.A’B’C’D’. Chứng minh các cặp đường thẳng sau đây chéo nhau. a. AA’ và BD

Các file đính kèm theo tài liệu này:

  • docgiaoantoan_chude_tuchon_nangcao_full_3438.doc
Tài liệu liên quan