Bài giảng Phương trình vi phân và lí thuyết chuỗi - Bài 5: Chuỗi lũy thừa - Nguyễn Xuân Thảo

Đặt vấn đề

1. Định nghĩa. a a x a x a x 0 1 2 + + + + + 2   n n (1)

Ký hiệu là

0

n

n

n

a x

∞∑=

,ởđó an là các sốthực, x là biến số.

Ta bảo chuỗi luỹ thừa hội tụ (phân kỳ) tại x0 chuỗi số 0

0

n

n

n

a x

∞∑=

hội tụ (phân kỳ),

chuỗi

0

n

n

n

a x

∞∑=

hội tụ trên khoảng (a b ; ) chuỗi số 0

0

n

n

n

a x

∞∑=

hội tụ, x0 tuỳ ý ( ; ) a b .

Ví dụ 1. 2

0

n 1

n

x x x

∞ =

∑ = + + +

Đã biết hội tụ khi x < 1, có

0

1

1

n

n

x

x

∞ =

=

Phân kỳ khi x ≥ 1

pdf8 trang | Chia sẻ: trungkhoi17 | Lượt xem: 413 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng Phương trình vi phân và lí thuyết chuỗi - Bài 5: Chuỗi lũy thừa - Nguyễn Xuân Thảo, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn PH ƯƠ NG TRÌNH VI PHÂN VÀ LÍ THUY ẾT CHU ỖI BÀI 4 § 5 Chu ỗi lu ỹ th ừa • nh ngh a • Các tính ch t • Khai tri n thành chu i lu th a ••• Đặt v ấn đề 2 n 1. Định ngh ĩa. a0++ axax 1 2 ++ axn +  (1) ∞ n Ký hi u là ∑ an x , ó an là các s th c, x là bi n s . n=0 ∞ n Ta b o chu i lu th a h i t (phân k ) t i x0 ⇔ chu i s ∑ an x 0 h i t (phân k ), n=0 ∞ ∞ n n chu i ∑ an x h i t trên kho ng (a; b ) ⇔ chu i s ∑ an x 0 h i t , x0 tu ý ∈ (a ; b ) . n=0 n=0 ∞ Ví d ụ 1. ∑ xn =+1 x + x 2 +  n=0 ∞ 1 ã bi t h i t khi x < 1, có ∑ xn = 1− x n=0 Phân k khi x ≥ 1 ∞ n Định lí 1 ( Abel ). ∑ an x h i t t i x0 ≠ 0 ⇒ h i t tuy t i t i x: x< x 0 n=0 ∞ n n n Ch ứng minh. +) ∑an x 0 h i t ⇒ liman x 0 = 0 ⇒ axn 0≤ M, ∀ n ≥ N 0 n→∞ n=1 n n n n x  x +) axn0= ax n 0   ≤ M x0  x 0 ∞ n ∞ x x n +) < 1 ⇒ ∑M h i t ( nh lí so sánh 1) ⇒ ∑ an x h i t tuy t i x x 0 n=1 0 n=0 ∞ n Nh ận xét. T nh lí Abel suy ra: Nu ∑ an x phân k t i x0 ⇒ phân k t i x: x> x 0 n=0 a n+1 n Định lý 2. Nu lim = ρ (ho c lim an = ρ ) thì bán kính h i t R c a chu i lu n→∞ an n→∞ 1  , 0 < ρ < ∞ ∞ ρ th a a x n ưc xác nh b i R =  ∑ n 0, ρ = +∞ n=1  ∞, ρ = 0 PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn Nh ận xét. • Quy ưc vi t R = 0 kh ng nh 2), R = +∞ kh ng nh 3), t ó có th ∞ n phát bi u g n nh lý này nh ư sau: Mọi chu ỗi lu ỹ th ừa ∑ an x đều có m ột bán kính h ội n=0 tụ R v ới 0 ≤R ≤+∞ , khi đó chu ỗi h ội t ụ tuy ệt đố i v ới x R . a 1 • Cách tìm bán kính h i t R : R = lim n ho c R = lim n→∞ a n→∞ n n+1 an ∞ xn Ví d ụ 1. Tìm kho ng h i t c a chu i ∑ 2 n=1 n 2 a 1 1n + 1  n =: = 2 2   an+1 n ()n + 1  n  a limn = 1 n→∞ an+1 R = 1, chu i h i t v i x 1. x2 1 ∞ 1 Ti x = 1 có = , m t khác h i t , do ó chu i lu th a h i t t i x = 1. 2 2 ∑ 2 n n n=1 n Kho ng h i t là [−1; 1 ]. ∞ n + 2 Ví d ụ 2. Tìm kho ng h i t c a chu i lu th a xn ∑ n n=0 3 a n+2 n + 3 n + 2 n =: = 3 n n +1 an+1 3 3 n + 3 a limn = 3 n→∞ an+1 R = 3 , chu i h i t khi x 3 . ∞ ∞ n Ti x = 3 có ∑an x= ∑ () n + 2 phân k . n=0 n = 0 ∞ ∞ n n Ti x = − 3 có ∑an x= ∑ ()() −1 n + 2 phân k n=0 n = 0 Kho ng h i t : (−3 ; 3 ). ∞ xn Ví d ụ 3. Tìm kho ng h i t c a chu i lu th a ∑ n + 1 n=0 an  1 1n + 2   =: = an+1  nn+1 + 2 n + 1 an  lim  = 1 n→∞ an+1  PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn R = 1, chu i h i t v i x 1 ∞ 1 Khi x = 1 có ∑ phân k n + 1 n=1 n ∞ ()−1 Khi x = − 1 có là chu i an d u h i t ∑ n + 1 n=1 Kho ng h i t là [− 1; 1) . ∞ 2n n x Ví d ụ 4. Tìm kho ng h i t c a chu i lu th a: ∑ ()−1 . 2n ! n=0 () Không th dùng ngay công th c vì m t n a các h s c a chu i b ng 0 : a2n+ 1 = 0 n ∞ ()−1 t y = x 2 có chu i lu th a: y n ∑ 2n ! n=0 () n n +1 a ()−1() − 1 (2()n + 1) ! Có n =: = =++()() 2122n n an+1 ()2! n()2()n + 1 ! () 2! n a lim n = ∞ n→∞ an+1 Kho ng h i t : (−∞, ∞ ) Ví d ụ 5. Tìm mi n h i t c a chu i lu th a 5 n2 ∞ ()n + 1 ∞ ∞ ()x + 2 a) ∑ x2n ( −1 <x < 1 ) b) ∑ xn! ( x ∈ » ) c) ( −3 ≤x ≤− 1 ) 2n + 1 ∑ n n=1 n=1 n=1 n 2 ∞ ()n! ∞ ()x − 3 2n d) ∑ xn ( −4 <x < 4 ) e) ∑ ( 2<x < 4 ) ()2n ! ()()n+1ln n + 1 n=1 n=1 ∞ n2 1  n 1 1 f) 1+  ()x − 1 ( 1− <x <+ 1 ) ∑n  e e n=1 ∞ ∞ n+1 2n + 3 g) n! x n! ( −1 <x < 1 ) h) ()−1 x2n− 1 ( x ≤ 1) ∑ ∑ 2 n=1 n=0 3n+ 4 n + 1 ∞ n+1 2n + 3 i) ()−1 x2n ( x ≤ 1) ∑ 2 n=0 3n+ 4 n + 5 ∞ n n+13 2 n 1 1  k) ()−1()x + 1 ( −−1 ; −+ 1 ) ∑ 2   n=1 n + 1 3 3  2n ∞ ()x − 1 l) ∑ (0<x < 2 ) ()()n+1ln n + 1 n=1 PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn ∞ n2 1  n 1 1 m) 1+  ()x + 2 ( −−2 <x <−+ 2 ) ∑n  e e n=1 4n ∞ ()x − 3 n) ∑ ( 2<x < 4 ) ()()n+2 ln n + 1 n=1 2n ∞ ()x − 4 o) ∑ ( 3<x < 5 ) ()()n+1ln n + 2 n=1 Nh ận xét ∞ n ∑ an () x− a (1) ưc g i là chu i lu th a t i x= a , n=0 ∞ n t z = x – a có ∑ an z (2), tìm bán kính h i t R c a chu i (2), thì có t p hi t n=0 ca chu i (1), c th h i t v i: –R < x – a < R hay a – R < x < a + R và phân k v i x a + R ; nh n ưc kho ng h i t ta c n xét t i x = a – R và x = a + R . 2. Các tính ch ất c ủa chu ỗi lu ỹ th ừa ∞ n a) Chu i lu th a ∑ an x hi t u trên m i on [a; b ] nm trong kho ng h i t c a nó. n=0 ∞ n ( ) b) ∑ axn = Sx(), x < R ≠ 0 ⇒ S x liên t c trên kho ng (−R; R ). n=0 ∞ n ( ) c) ∑ axn = Sx(), x < R ≠ 0 ⇒ S x kh tích trên m i on [ab;] ⊂( − RR ; ) và có n=0 b∞  ∞  b  axn  dx=  axdx n  ∫∑n  ∑  ∫ n  an=0  n = 0  a  ∞ n ( ) d) ∑ axn = Sx(), x < R ≠ 0 ⇒ S x kh vi trên kho ng (−R; R ) và có: n=0 ∞  ∞ dn d n ∑axn  = ∑ ax n dx  dx () n=0  n = 0 ∞  ∞ n n Nh ận xét. Th c ch t t a) ta có: lim∑axn  = ∑ lim ax n xx→  xx → () 0n=0  n = 0 0 Ví dụ 1. Tìm bi u th c chu i lu th a c a ln( 1 + x) Mi n xác nh: x < 1. 1 f′( x ) = , ó t f(x) = ln(1 + x) 1+ x PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn ∞ ∞ 1 1 n n fx′( )= =−=−∑()() x ∑ 1 x n x+1 1( − − x ) n=0 n = 0 x x ∞  n ftdt′() = − 1 tdtn  ∫ ∫ ∑ ()  0 0 n=0  ∞x ∞ n+1 n n x fxf()0−=() ∑()() − 1 tdtn  =− ∑ 1 ∫   n + 1 n=00 n = 0 ∞ n 2 3 4 n+1 x xxx Do f (0) = 0 nên có ln1()()+=−x∑ 1 =−+−+ x ,1 x < n 2 3 4 n=1 Ví d ụ 2. Tìm bi u di n chu i lu th a c a hàm tan −1 x π π t fx()tan=−1 x , −<< fx () 2 2 1 f′( x ) = 1+ x2 ∞ ∞ 1 1 n n = =−=−x21. x 2 n , x < 1 2 2 ∑() ∑ () 1+ x 1−() − x n=0 n = 0 x x x ∞  ∞x ∞ 2n+ 1 dt n n n x ftdt′() = =∑ () − 1 tdt2n  =−∑()()1t2n dt =− ∑ 1 ∫ ∫1+ t 2 ∫   ∫ 2n + 1 0 0 0 n=0  n=00 n = 0 ∞ 2n+ 1 3 5 7 n x x x x tan−1x − tan0 − 1 =∑ () − 1 =−+−+x, x < 1 2n + 1 3 5 7 n=0 x3 x 5 x 7 ⇒⇒⇒ tan −1 x =−+−+x, x < 1 3 5 7 ∞ xn Ví d ụ 3. Tính t ng ∑ n n=1 Có R = 1 , chu i h i t v i |x| < 1 ∞ xn t f( x ) = ∑ có n n=1 ∞xn−1 ∞ 1 fx′( ) =∑ n = ∑ x n−1 = n1− x n=1 n = 1 x x dt ftdt′( )= x < 1 ∫ ∫ 1− t 0 0 fxf()−( 0) =− ln1( − xx) , < 1 ⇒ fx()=− ln1( − xx) , < 1 PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn 1 Ví d ụ 4. Bi u di n chu i lu th a c a hàm 2 ()1− x ∞  ∞ ∞ 1d 1  d n n−1 n =  = ∑ x  =∑nx =+ ∑ () nx1 , x < 1 2 dx1− x  dx   ()1− x n=0  n=1 n = 0 ∞ Ví d ụ 5. Tính t ng c a chu i ∑ n2 x n n=1 R = 1 , chu i h i t v f(x) v i |x| < 1 . ∞ ∞ fx( )=∑ nx2n = ∑ xnx . 2 n − 1 = xgx ( ), n=1 n = 1 ∞ ∞ ∞ ∞  2 d d d gx()=∑()() nx + 1n = ∑ n + 1 x n +1 =∑()nx +=1n+1  xnx ∑ () + 1 n  dx dx dx   n=0 n = 0 n=0 n = 0  ∞ 1 Theo ví d 4 có n+1 x n = ∑ () 2 n=0 ()1− x   d x1+ x g( x ) =  = 2 2 dx ()1−x  () 1 − x   x+ x 2 f( x ) = 3 ()1− x Ví d ụ 6. Tính t ng ∞ 2n− 1 ∞ n−1 x 1 1 + x n x a) ∑()−1 ( ln ,x 1 ) 2n − 1 2 1 − x n 2 n=1 n=1 x (x − 1) ∞ 2n − 1 c) (3 ) ∑ n n=1 2 ∞ 3n+ 2 n ()x −1  1x 123 x − π  d) ∑ ()−1 ( ()x −1 ln + arctan +  , 0<x ≤ 2 ) 3n + 1 3 2 n=0  x−3 x + 3 3 3 63  ∞ 3n+ 2 n ()x + 1  1x+ 2 1 21 x + π  e) ∑ ()−1 ((x + 1) ln + arctan +  , −2 <x < 0 ) 3n + 1 3 2 n=0  x+ x + 1 3 363  ∞ n−1 ()−1 n f) ∑ ()x + 1 ( lnx + 2 , −2 <x < 0 ) n n=1 ∞ 2 n−1 n x −1 g) ()()()−1n + 1 x − 1 ( , 0<x < 2 ) ∑ 2 n=1 x PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn n ∞ ()−1 1 1 π  h) ∑ ( ln3 + ) 3n+ 2 2 3  n=0 ()3n + 1 2 6 3  ∞ n + 1 ∞ n + 1 9 k1) ( 4) k2) ( ) ∑ n ∑ n 4 n=0 2 n=0 3 n+1 ∞ 1 ∞ ()−1 3 k3) ( ln2 ) k4) ( ln ) ∑ () n+1 ∑ () n+1 4 n=0 n + 1 2 n=0 n + 1 3 Hng d n. ∞ x x n 1 1 a) +) R = 1 +) S′()() x=∑ −1 x 2n = +) Stdt′() = dt 1+ x2 ∫ ∫ 1+ t 2 n=0 0 0 +) SxS( ) −(0) = arctan x ⇒ S( x) = arctan x ∞ 1 2n− 2 1  c) +) Xét chu i Sx() =∑()2 nx − 1 có S  = A 2 n=1 2  d∞  1 dx  1 1 + x 2 1  +) R = 1 +) S() x= x 2n− 1  = = . +) ∑ 2  2 S   = 3 dx  2 dx   2 2   n=1  1− x ()1− x 2 3. Khai tri ển thành chu ỗi lu ỹ th ừa ∞ (n) f( x ) n Định ngh ĩa. 0 ()x− x ưc g i là chu i Taylor c a hàm s f( x ) ti lân c n ∑ n! 0 n=0 im x0 . ∞ (n ) f (0) n Nu x0 = 0 ta có ∑ x ưc g i là chu i MacLaurin c a hàm s f( x ) . n! n=0 ∞ f (n ) (0) Định ngh ĩa. Nu ∑ xn = f( x ) ta b o hàm s f( x ) ưc khai tri n thành chu i n! n=0 Taylor Định lí 3. f( x ) có o hàm m i c p trong lân c n nào ó c a x0 , limRn ( x ) = 0 , n→∞ f (n+1)(ξ ) Rx() =( xx − ) n+1, ξ gi a x và x n (n + 1)! 0 0 ∞ (n ) f( x 0 ) n ⇒ fx()=∑ () xx − 0 n! n=0 Định lí 4. f( x ) có o hàm m i c p trong lân c n nào ó c a im x0 ; (n ) f(ξ ) ≤ M , ∀ξ thu c lân c n c a x0 nói trên ∞ (n ) f( x 0 ) n ⇒ fx()=∑ () xx − 0 . n! n=0 PGS. TS. Nguy ễn Xuân Th ảo thaonx-fami@mail.hut.edu.vn Chú ý. • Có hàm kh vi vô h n không ưc khai tri n thành chu i Taylor, ví d 1  −  2 f( x ) = ex , x ≠ 0  0,x = 0 ⇒ f (n)(0)= 0 , n t nhiên b t k Th t v y có ngay 1 − 2 1 fxf()(0)− e x − 0 t 1 f′ x =lim = lim = lim x =lim = lim = 0 . () 1 2 t x→0x− 0 x → 0 x x → 0 t→∞et t →∞ 2t e e x T ó có o hàm m i c p t i x = 0 c ng b ng 0. Chu i Taylor c a hàm f(x) là 0 + 0 + 0 + 0 + .... Chu i này h i t , chúng h i t v 0 Nên f(x) nói trên không ưc khai tri n thành chu i Taylor f (n+ 1) (ξ ) • S d ư R( x ) = x n+1 nh n ưc do s d ng nh lý Rolle n ()n + 1 ! HAVE A GOOD UNDERSTANDING!

Các file đính kèm theo tài liệu này:

  • pdfbai_giang_phuong_trinh_vi_phan_va_li_thuyet_chuoi_bai_5_chuo.pdf
Tài liệu liên quan