Công nghệ lọc dầu - Phần 1

Tỷsốhồi lưu cũng có ảnh hưởng tương tựnhư ảnh hưởng của áp suất đến sựphân bốcác

sản phẩm. Tỷsốhồi lưu càng cao, hiệu suất thu cốc và khí càng cao. Thực tế, tỷsốhồi lưu sẽ

khống chế điểm cuối của phần cất nặng, tỷsốnày càng cao thì lượng sản phẩm nặng hồi lưu về

thiết bịphản ứng cốc hóa, tại đó nó sẽbịchuyển hóa thành cốc và khí. Khi muốn thu tối đa sản

phẩm lỏng thì phải giảm tỷsốhồi lưu. Tuy nhiên, khi giảm tỷsốhồi lưu, chất lượng của phần cất

nặng sẽtỷlệnghịch với hiệu suất thu phân đoạn này nhưchỉra trong bảng

pdf19 trang | Chia sẻ: maiphuongdc | Lượt xem: 2586 | Lượt tải: 5download
Bạn đang xem nội dung tài liệu Công nghệ lọc dầu - Phần 1, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ả vận tốc các phản ứng theo phương trình bậc một như sau : ( ) ⎟⎠ ⎞⎜⎝ ⎛−−== RT Exk dt dxV exp1 hay x tk −= 1 1ln' với x là phần khối lượng nguyên liệu đã bị chuyển hoá. Năng lượng hoạt hoá (E) thay đổi theo bản chất và thành phần của nguyên liệu. Nguyên liệu E (kJ/mol) Cặn chưng cất khí quyển Cặn chưng cất chân không Cặn chưng cất chân không đã tách asphalte 315 230 150 Các phản ứng tạo thành asphaltène và tạo cốc có năng lượng hoạt hoá từ 250 – 380 kJ/mol. Năng lượng hoạt hoá này càng lớn khi nhiệt độ tăng lên. II. Các thông số của quá trình : II.1 Các thông số vận hành : Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 3 II.1.1 Nhiệt độ khi ra khỏi lò (ts) : Mặc dù các phản ứng xảy ra trong vùng nhiệt độ tăng trong các ống truyền nhiệt trong lò đốt nhưng nhiệt độ sau khi ra khỏi lò vẫn được xem như một thông số vận hành, nhiệt độ này nằm trong khoảng 430 – 490°C tuỳ thuộc vào loại nguyên liệu và công nghệ. Nếu trong sơ đồ công nghệ, sau lò đốt có lắp đặt một buồng làm nguội (chambre de maturation – soaker) mà trong đó các phản ứng có thể tiếp diễn, trong trường hợp này nhiệt độ sau khi ra khỏi lò có thể chọn theo độ chuyển hoá mong muốn : tăng nhiệt độ này lên 6 -7°C sẽ làm tăng độ chuyển hoá lên 1% nhưng nó bị giới hạn trên do sự kết tủa các asphaltène trong cặn giảm nhớt. II.1.2 Lưu lượng nguyên liệu : Khi tăng lưu lượng nguyên liệu sẽ làm giảm thời gian lưu trong thiết bị phản ứng nhưng đồng thời cũng làm biến đổi chế độ chảy trong các ống truyền nhiệt và trong buồng làm nguội. Khi lưu lượng tăng lên 10%, nếu muốn giữ nguyên độ chuyển hoá có thể tăng nhiệt độ sau khi ra khỏi lò (ts) lên 3°C để bù trừ hiệu ứng do tăng lưu lượng. II.1.3 Áp suất : Trong sơ đồ công nghệ không có buồng làm nguội, áp suất chỉ cần vài bars là đủ để tránh hiện tượng hoá hơi của nguyên liệu. Trong sơ đồ có buồng làm nguội, áp suất được chọn sao cho các sản phẩm mong muốn phải ở trạng thái hơi và thoát nhanh khỏi vùng phản ứng, trong khi các sản phẩm nặng làm nguội ở trạng thái lỏng. Trong thực tế tuỳ thuộc vào loại nguyên liệu mà chọn áp suất phù hợp, với cặn nặng (résidu court) thì áp suất vào khoảng 5-8 bars và cặn nhẹ (résidu long) thì áp suất vào khoảng 10 – 12 bars. II.1.4 Phun hơi nước vào trong ống cấp nhiệt: Phun hơi nước vào trong ống cấp nhiệt để cải thiện sự truyền nhiệt trong các ống. Quá trình này sẽ làm giảm độ chuyển hoá, để bù trừ độ chuyển hoá bị giảm có thể tăng nhiệt độ của lò. II.2 Hiệu suất và đặc tính của các sản phẩm: Trong quá trình giảm nhớt, người ta thu được 4 sản phẩm: phân đoạn khí (C4-), xăng (C5 – 165°C), gasoil (165 – 350°C) và cặn (350°C +). Hiệu suất của các sản phẩm này cũng như đặc tính của chúng phụ thuộc vào bản chất của nguyên liệu và độ chuyển hoá thu được trong các điều kiện vận hành thích hợp. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 4 Bảng 1 : Hiệu suất điển hình Chế độ vận hành Một giai đoạn, không hồi lưu, không làm nguội Hai giai đoạn (*), có hồi lưu, không làm nguội Loại nguyên liệu d415 V50 Hiệu suất (% kl) C1 – C4 Xăng (C5 – 165°C) Gazole (165 – 350°C) Cặn 350°C + Độ chuyển hoá (%) Résidu court 1,010 42,0 1,9 4,1 11,7 82,3 6,0 Résidu long 0,978 34,6 3,6 7,8 25,8 62,8 11,4 (*) Giảm nhớt và cracking nhiệt DSV Bảng 2 : Hiệu suất so với độ chuyển hoá Sản phẩm Hiệu suất/độ chuyển hoá C4- Xăng Gazole H2S 0,32 0,68 2,3 0,01 của % S trong nguyên liệu (*) (*) Giá trị trung bình phụ thuộc vào bản chất của S trong nguyên liệu II.2.1 Độ chuyển hoá : Độ chuyển hóa được định nghĩa bằng tổng lượng khí (H2S, C4-) và xăng so với lượng nguyên liệu của quá trình. Người ta xác định giá trị này khi xem xét đến 3 yếu tố : Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 5 - Bản chất và đặc tính của nguyên liệu - Các đặc trưng của quá trình (lò đốt có kèm theo buồng làm nguội hay không) - Các sản phẩm mong muốn nhận được Các yếu tố này không độc lập với nhau ; với một loại nguyên liệu đã cho, người ta phải vận hành quá trình sao cho các sản phẩm thu được trong điều kiện tối ưu (lượng cốc tạo thành trong lò thấp, thời gian dừng để bảo dưỡng phải ngắn, cặn giảm nhớt phải có độ ổn định cao…). Trong thực tế, trong các phân xưởng giảm nhớt, độ chuyển hóa (phụ thuộc theo nguồn gốc nguyên liệu) thay đổi từ 6 đến 7 %. Trong trường hợp muốn sản xuất lượng gazole cực đại, độ chuyển hóa có thể đạt đến 10 – 12%. Loại dầu thô Độ chuyển hóa (% kl) so với nguyên liệu Arabe nặng Iran nặng Koweit Nigeria Brent Sarin (paraffinique) Souedieh (asphalténique) 6,0 6,5 7,0 7,0 7,0 4,0 5,5 Hình 1 : Quan hệ giữa độ chuyển hóa và độ ổn định của sản phẩm Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 6 II.2.2 Chất lượng sản phẩm - Phân đoạn khí (C4-) chứa các khí trơ (CO, CO2, N2), H2S tạo thành từ quá trình chuyển hóa nguyên liệu và các hydrocacbon từ C1 đến C4. Hàm lượng S trong phân đoạn này cao hơn trong nguyên liệu từ 2-5 lần. H2S phải được loại bỏ bằng quá trình xử lý bằng amine trước khi đưa đi sử dụng như LPG hay khí đốt. Phân đoạn HC chứa các lượng bằng nhau các HC không no (éthylène, propylène, butènes) và các đồng đẳng bão hòa của chúng. - Xăng (C5 – 165°C) là loại nhiên liệu có chất lượng thấp : chỉ số octane thấp, hàm lượng oléfin cao (∼ 45%), hàm lượng S lớn (0,2 – 0,5 lần hàm lượng S trong nguyên liệu), nó có chứa các hợp chất của nitơ. Trong xăng này cũng có chứa các dioléfin (thông qua chỉ số anhydride maléique, IAM = 10). Khi sử dụng xăng này làm nguyên liệu cho quá trình reforming xúc tác cần phải xử lý bằng hydro. - Gazole (165 – 350°C) có chỉ số cetane thấp (<= 50), nó chứa từ 2 – 3% lưu huỳnh (0,4 – 0,8 lần hàm lượng S trong nguyên liệu). Màu của nó (xác định theo ASTM) thay đổi rất nhanh do sự oxy hóa bằng không khí. Hàm lượng oléfin trong gazole này rất cao (chỉ số Brôm khoảng 25). Khi hàm lượng S của gazole này thấp thì nó có thể được sử dụng như là chất pha loãng cho dầu nặng để làm giảm độ nhớt. Khi hàm lượng S cao thì nó phải được xử lý trong phân xưởng HDS để cải thiện chỉ số Cetane, độ ổn định và màu của nó. Khi đó nó có thể được sử dụng như là một thành phần phối trộn gazole thương phẩm. - Cặn (350°C +) là một loại dầu đốt có độ nhớt đã được cải thiện so với nguyên liệu. Tuy nhiên để đạt đến tiêu chuẩn của sản phẩm thương phẩm cần phải bổ sung một lượng gazole pha loãng. Để làm được điều này cần phải hiểu rõ quy tắc phối trộn giữa dầu đốt và chất pha loãng. Người ta định nghĩa chỉ số trộn lẫn V theo công thức sau : )85,0log(log5,33)( ++= tt tAV γ Trong đó : - t : nhiệt độ khi xác định - A : hằng số phụ thuộc vào nhiệt độ (A50 = 19,2 ; A100 = 26,4) - γt : độ nhớt ở nhiệt độ t (mm2.s) Đại lượng Vt có tính cộng theo khối lượng và nó cho phép tính toán độ nhớt của hỗn hợp fuel-gazole. Người ta cũng có thể xác định được lượng gazole pha loãng cần thiết để thu được một fuel đạt tiêu chuẩn thương mại. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 7 Tiêu chuẩn chất lượng chủ yếu của loại dầu này là độ ổn định, bởi vì nó chứa một lượng asphaltène ở trạng thái huyền phù. Như vậy gazole pha loãng phải có hàm lượng HC thơm cao (LCO, phân đoạn chiết HC) có khả năng phân tán các asphaltène. II. 3 Công nghệ của quá trình giảm nhớt : II.3.1 Sơ đồ công nghệ : Nguyên liệu sau khi đun nóng sơ bộ được đưa vào một lò ống để nâng nhiệt độ lên đến nhiệt độ cracking. Sau khi ra ra khỏi lò các phản ứng cracking bị ngưng lại do bị làm lạnh bởi dòng gazole hay cặn có nhiệt độ thấp. Hỗn hợp hydrocacbon sau khi đi qua một thiết bị tách dạng cyclon được đưa đến thiết bị tách phân đoạn để thu được các sản phẩm C4-, xăng và gazole (mà một phần trong đó được dùng để làm lạnh) và cặn đã giảm nhớt. Hình 2 : Sơ đồ công nghệ đặc trưng của quá trình giảm nhớt Trong một vài trường hợp, hỗn hợp sau khi ra khỏi lò được đưa đến một buồng làm lạnh. Mục đích của buồng này là để kéo dài thời gian lưu (thời gian phản ứng) và cho phép vận hành lò ở nhiệt độ thấp hơn khoảng 30°C. Nếu chúng ta mong muốn thu được lượng gazole cực đại, chúng ta có thể kết hợp một quá trình giảm nhớt và một quá trình cracking nhiệt của phần cất nặng từ tháp chưng phân đoạn như mô tả trong hình sau Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 8 Hình 3 : Sơ đồ công nghệ giảm nhớt có bố trí một buồng làm lạnh (soaker drum) Hình 4 : Sơ đồ công nghệ cải tiến của phân xưởng giảm nhớt để thu được lượng gazole cực đại II.3.2 Các thiết bị đặc trưng : II.3.2.1 Lò đốt : Vai trò của nó là nâng nhiệt độ của nguyên liệu đến nhiệt độ phản ứng và duy trì ở nhiệt độ này thời gian khá dài để thu được độ chuyển hóa mong muốn. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 9 Các loại lò khác nhau : - Loại lò trong đó sự truyền nhiệt được thực hiện chỉ do sự đối lưu hoặc chỉ do sự bức xạ hay kết hợp cả hai phương thức truyền nhiệt trên. - Lò có nhiều phòng bức xạ nối tiếp nhau - Lò được cấu tạo từ các ống thẳng đứng và ống nằm ngang - Lò dùng nhiên liệu khí hoặc dầu đốt Tuy nhiên các loại lò này phải tuân thủ một vài yêu cầu để đảm bảo vận hành tốt : - Dòng nhiệt trung bình phải từ 22 – 30 kW/m2 ; trong mọi trường hợp dòng nhiệt cục bộ không được vượt quá 60 – 70 kW/m2 hậu quả sẽ gia tăng sự đọng cốc gây hại cho sự vận hành của lò (tăng tổn thất áp suất (trở lực), tăng nhiệt độ thành ống). - Các ống phải chịu được nhiệt độ 650 °C. Thông thường người ta chọn loại vật liệu thép hợp kim (9 Cr – 0,5 Mo). - Các thiết bị phun hơi nước hoặc condensat phải được lắp đặt trong vùng nơi mà sự bay hơi của các HC là thấp để tăng sự chảy xoáy của dòng lưu thể nhằm làm giảm sự đọng cốc. Tỷ lệ phun hơi nước so với nguyên liệu vào khoảng 0,5 %. - Các thiết bị tách cốc là không thể thiếu. Chúng bao gồm một thiết bị phun hỗn hợp không khí/hơi nước cho phép tách cốc trong lò ở nhiệt độ khoảng 550°C. Hình 5 : Lò cấp nhiệt của phân xưởng giảm nhớt II. 3.2.2 Buồng làm lạnh : Đó là một bình đặt ngay sau lò đốt cho phép tăng thời gian lưu của nguyên liệu và vận hành ở nhiệt độ trong lò thấp hơn. Trong thiết bị này các phản ứng cracking xảy ra khoảng 40 – 60%. Các phản ứng này là phản ứng thu nhiệt, nhiệt độ ra thấp hơn nhiệt độ vào 10 – 20°C. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 10 Nhiệt độ ra của lò (°C) Thời gian lưu (phút) 410 440 455 470 500 32 8 4 2 0,5 Có buồng làm lạnh Có buồng làm lạnh Có buồng làm lạnh Không có buồng làm lạnh Không có buồng làm lạnh Buồng làm lạnh là một thiết bị phản ứng với dòng lưu thể chảy từ dưới lên trên, có thể tích vào khoảng 15 m3/1000 t/ngày với tỷ lệ giữa chiều cao và đường kính từ 5 – 8. Các kích thước này tương ứng với một thời gian lưu là từ 15 – 20 phút. Nhờ vào thiết bị này người ta thu được các lợi ích sau : - Giảm sự tiêu thụ nhiên liệu 15 % do nhiệt độ ra khỏi lò hạ từ 20 đến 30°C ; - Tăng khoảng thời gian giữa hai lần tách cốc do vận tốc của sự đọng cốc trong lò giảm từ 3 – 4 lần. - Độ tuyển chọn cao hơn do sự chênh lệch về năng lượng hoạt hóa của sự tạo thành các cấu tử nhẹ (250 kJ/mol) và các cấu tử nặng hơn (230 kJ/mol). Vì vậy sự tham gia của gazole vào sự hình thành xăng và khí sẽ thấp hơn khi trong sơ đồ có buồng làm lạnh. Kết quả là sự chuyển hóa các phân đoạn nặng sẽ cao hơn. - Giảm giá thành của lò và thiết bị gia nhiệt, từ đó dẫn đến giảm đầu tư ban đầu tù 10 – 15%. Những kết quả nghiên cứu gần đây về buồng làm lạnh cho thấy khi lắp đặt các đĩa lỗ nhằm làm đồng nhất hóa thời gian lưu của các phần khác nhau trong nguyên liệu sẽ làm tăng độ chuyển hóa. II.3.2.3 Thiết bị tách dạng cyclon : Chức năng của loại thiết bị này là phân tách các sản phẩm của phản ứng thành 2 pha lỏng và khí mà không làm giảm nhiệt độ. Quá trình tách xảy ra ở phần trên của thiết bị, dòng lưu thể đi vào thiết bị theo phương tiếp tuyến đảm bảo phân tách tốt 2 pha khí / lỏng. Pha lỏng chảy dọc theo thành thiết bị và tập trung ở phần dưới. Một phần chất lỏng bị làm lạnh do trao đổi nhiệt với nguyên liệu và được sử dụng như là chất làm lạnh cho phần dưới của thiết bị. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 11 QUÁ TRÌNH CỐC HÓA Quá trình chuyển hóa các phân đoạn nặng dưới tác dụng của nhiệt đã được phát triển trên cơ sở 2 công nghệ khác nhau : - Công nghệ thứ nhất được gọi là cốc hóa trễ (cokéfaction retardée – delayed coking), đây là quá trình phân hủy nhiệt được thực hiện trong một thiết bị phản ứng rỗng trong đó cốc tạo thành trong phản ứng sẽ lắng đọng, các sản phản phẩm nhẹ sẽ thoát ra đi về các thiết bị xử lý. Công nghệ này hiện nay được sử dụng rất nhiều trong công nghiệp. Nhiều công ty hoạt động trong lĩnh vực dầu khí (Foster Wheeler, Conoco, Lummus…) có nhiều bí quyết công nghệ để xây dựng, lắp đặt và vận hành loại công nghệ này. - Công nghệ thứ hai là công nghệ Flexicoking, được phát triển bởi Exxon Research and Engineering Co. Trong công nghệ này, sự chuyển hóa các hydrocacbon xảy ra trong một lớp tầng sôi tạo thành từ các hạt cốc, một phần lớp hạt này được trích ra một cách liên tục. I. Quá trình cốc hóa trễ : Công nghệ này được sử dụng rộng rãi trong công nghiệp lọc dầu. Ở Mỹ, nó được sử dụng rộng rãi, mục đích chủ yếu là chuyển hóa các cặn nặng thành các sản phẩm trắng (LPG, xăng…), cốc được sử dụng như là một chất đốt. Ở Châu Âu, nó được sử dụng để sản xuất một lượng cốc chỉ đủ để cung cấp cho công nghiệp sản xuất nhôm, để sản xuất các điện cực điện phân bauxite. Quá trình cốc hóa trễ là một quá trình rất linh hoạt, nó có thể xử lý nhiều loại nguyên liệu khác nhau và sản xuất các loại cốc có chất lượng khác nhau theo nhu cầu của thị trường. Tên gọi cốc hóa trễ xuất phát từ nguyên nhân là trước khi vào thiết bị cốc hóa nguyên liệu được đun nóng trong lò cấp nhiệt lên đến nhiệt độ cao hơn nhiệt độ tạo cốc, nhưng vận tốc của nguyên liệu đi trong ống truyền nhiệt rất lớn (thời gian lưu giảm đến tối thiểu) và phản ứng cốc hóa xảy ra trong thiết bị tạo cốc thay vì trong ống truyền nhiệt. I.1 Nguyên liệu : Các phân xưởng cốc hóa trễ có thể xử lý các loại nguyên liệu cặn nặng như : - Cặn quá trình chưng cất chân không - Cặn của quá trình cracking xúc tác (decant oil hoặc slurry) - Cặn của quá trình giảm nhớt hoặc goudron của cracking xúc tác - Asphalte hay phần trích của dầu nhớt Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 12 Hiệu suất và chất lượng của các sản phẩm phụ thuộc vào 4 đặc trưng : hàm lượng cacbon Conradson và lưu huỳnh, hàm lượng kim loại, điểm phân đoạn TBP. I.1.1 Hàm lượng cacbon cặn (CCR): Ở một điều kiện công nghệ xác định, hàm lượng cacbon cặn càng cao, hiệu suất thu hồi cốc càng cao. Thông thường, mục tiêu là thu cực đại các phân đoạn trung bình và sản xuất tối thiểu cốc, vì thế khi hàm lượng cacbon cặn càng lớn thì mục tiêu này càng khó đạt được. Trước đây, các giá trị CCR thường nhỏ hơn 10% (nguyên liệu là cặn chưng cất khí quyển - RAT), ngày nay người ta sử dụng các loại cặn nặng hơn từ các loại dầu thô nặng nên CCR có thể lên đến 20% thậm chí 30%. I.1.2 Hàm lượng lưu huỳnh Lưu huỳnh trong cặn thường có khuynh hướng tập trung trong cốc và phần chưng nặng. Cũng như CCR, nguồn gốc của nguyên liệu có ảnh hưởng đến hàm lượng lưu huỳnh, và do đó ảnh hưởng đến hàm lượng S trong cốc. I.1.3 Hàm lượng kim loại Hàm lượng các kim loại, chủ yếu là Ni và V, có khuynh hướng ngày càng cao trong nguyên liệu. Trong quá trình cốc hóa, lượng kim loại này sẽ nằm lại hầu hết trong cốc, hàm lượng có thể đến 1000 ppm. I.1.4 Điểm phân đoạn TBP Điểm phân đoạn TBP của cặn chưng cất chân không là khoảng 550°C, nhưng nó có thể thay đổi theo nguồn gốc của dầu thô và vận hành của phân xưởng chưng cất chân không. Điểm phân đoạn TBP có liên quan đến CCR, hàm lượng S và hàm lượng kim loại. Nó ảnh hưởng đến hiệu suất và chất lượng các sản phẩm của phân xưởng cốc hóa. I.2 Cơ sở quá trình : I.2.1 Các phản ứng hóa học Cơ chế chính xác của các phản ứng cốc hóa khá phức tạp, nên việc mô tả các phản ứng và quá trình chuyển hóa trong thiết bị phản ứng rất khó khăn. Người ta có thể định danh hai cơ chế chủ yếu cùng tồn tại xảy ra với nhiều loại nguyên liệu và 3 giai đoạn riêng biệt và nối tiếp nhau trong các thiết bị phản ứng. Cơ chế thứ nhất dựa vào các phản ứng tách nhóm alkyl (désalkylation) - kết tủa từ các hợp chất có khối lượng phân tử lớn, các asphaltène và hợp chất nhựa. Cơ chế thứ hai dựa vào các phản ứng ngưng tụ các hợp chất polyaromatic. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 13 Ba giai đoạn có thể định danh trong quá trình là : - Bay hơi từng phần và cracking sơ bộ trong khi nâng nhiệt độ lên đến nhiệt độ của thiết bị phản ứng - Cracking pha hơi khi nó đi qua thiết bị phản ứng - Cracking liên tiếp và trùng hợp pha lỏng lưu lại trong thiết bị phản ứng cho đến khi nó chuyển hóa thành cốc. Các phản ứng này đều là phản ứng thu nhiệt và làm giảm nhiệt độ trong thiết bị phản ứng khoảng 50°C. I.2.2 Điều kiện vận hành : Ba thông số vận hành quyết định đến hiệu suất của quá trình và chất lượng sản phẩm là : nhiệt độ, áp suất và tỷ lệ hồi lưu phần sản phẩm cặn nặng sau thiết bị phản ứng. a/ Nhiệt độ : Nhiệt độ cốc hóa (485 – 505°C) có tác động trực tiếp đến hàm lượng các chất dễ cháy (VCM – volatil combustible matter) trong cốc. Ở nhiệt độ cao, phần lớn nguyên liệu sẽ bị bay hơi tại vùng tiếp liệu của thiết bị phản ứng và góp phần làm giảm tạo thành cốc. Ở áp suất và tỷ số hồi lưu không đổi, hiệu suất thu cốc giảm khi tăng nhiệt độ. Nhưng, ở nhiệt độ quá cao, cốc tạo thành sẽ rất cứng và rất khó tách bằng cắt thủy lực. Ở nhiệt độ quá thấp, cốc tạo thành sẽ rất mềm với hàm lượng VCM cao. b/ Áp suất : Ở nhiệt độ và tỷ số hồi lưu không đổi, khi áp suất tăng sẽ duy trì các hydrocacbon ở pha lỏng trong thiết bị phản ứng và do đó sẽ làm tăng hiệu suất thu cốc và khí. Khi mục tiêu chính của phân xưởng cốc hóa là cải thiện độ chuyển hóa của nhà máy lọc dầu thì cần giảm đến mức thấp nhất hiệu suất thu cốc và tăng tối đa hiệu suất thu các trung gian. Trong trường hợp này rõ ràng là phải vận hành quá trình ở áp suất càng thấp càng tốt. Ảnh hưởng của áp suất đến hiệu suất các sản phẩm được giới thiệu trong bảng sau. Áp suất cốc hóa (bar) 1,0 3,0 Khí + C4 (% kl) C5 – 195°C naphta (% kl) 195°C+ distillat (% kl) Cốc (% kl) 9,1 12,5 51,2 27,2 9,9 15,0 44,9 30,2 Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 14 c/ Tỷ số hồi lưu : Tỷ số hồi lưu cũng có ảnh hưởng tương tự như ảnh hưởng của áp suất đến sự phân bố các sản phẩm. Tỷ số hồi lưu càng cao, hiệu suất thu cốc và khí càng cao. Thực tế, tỷ số hồi lưu sẽ khống chế điểm cuối của phần cất nặng, tỷ số này càng cao thì lượng sản phẩm nặng hồi lưu về thiết bị phản ứng cốc hóa, tại đó nó sẽ bị chuyển hóa thành cốc và khí. Khi muốn thu tối đa sản phẩm lỏng thì phải giảm tỷ số hồi lưu. Tuy nhiên, khi giảm tỷ số hồi lưu, chất lượng của phần cất nặng sẽ tỷ lệ nghịch với hiệu suất thu phân đoạn này như chỉ ra trong bảng : Áp suất (bar) Tỷ số hồi lưu (%) 1,7 15 1,0 5 Hiệu suất (% kl) Đặc trưng của distillat D420 CCR (%kl) 25,7 0,936 0,35 35,2 0,957 0,8 I.3 Sản phẩm : I.3.1 Khí : Gồm hai phần : một phần là C1 – C2, được sử dụng làm khí đốt trong phân xưởng cốc hóa hoặc đưa đi làm khí đốt trong nhà máy lọc dầu (sau khi đã rửa bằng amine- ethanol amine), một phần khác là C3-C4. Sau khi tách lưu huỳnh (rửa bằng amine và loại bỏ các mercaptans bằng Merox) do có chứa nhiều oléfin, chúng có thể được sử dụng làm nguyên liệu cho quá trình alkyl hóa hoặc polyme hóa. I.3.2 Naphta : Naphta nhẹ sau khi loại bỏ mercaptans hoặc tách loại lưu huỳnh bằng hydro, sẽ được đưa đi phối trộn xăng. Naphta nặng, sau khi khử lưu huỳnh, được sử dụng làm nguyên liệu cho reforming xúc tác, hoặc đưa đi phối trộn xăng do có hàm lượng oléfine cao. I.3.3 Phần cất : Phần cất nhẹ cần phải được xử lý bằng hydro để ổn định màu trước khi đưa đi phối trộn trong sản phẩm gazole. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 15 Phần cất nặng thường được sử dụng làm nguyên liệu cho quá trình FCC, bằng cách phối trộn với các sản phẩm của quá trình chưng cất trực tiếp. Nó có thể được sử dụng làm nguyên liệu cho quá trình hydrocracking để tăng hiệu suất thu xăng, kérosène và gazole. I.3.4 Cốc Cốc thu được từ quá trình cốc hóa trễ có thể đặc trưng một cách đơn giản theo hình dạng đặc trưng bên ngoài : cốc xốp (sponge coke), cốc hình kim (needle coke), cốc dạng viên (shot coke). Cốc xốp có dạng từng miếng hình dạng không đồng nhất, độ xốp lớn. Loại này thường làm chất đốt, một vài loại có hàm lượng lưu huỳnh và kim loại thấp có thể được sử dụng để làm anode trong sản xuất nhôm. Cốc hình kim là loại cốc có chất lượng tốt nhất của quá trình cốc hóa trễ. Nó có dạng hình kim và có cấu trúc tinh thể dài rất nhỏ. Do nó có CTE và điện trở bé nên nó có thể được dùng làm điện cực trong sản xuất thép. Cốc dạng viên là sản phẩm không mong muốn có hình dạng viên nhỏ, nó thường được phối trộn với cốc xốp để sử dụng làm nhiên liệu trong thiết bị sản xuất hơi nước (cogenerator). Tùy thuộc vào mục đích sử dụng mà cốc thu được từ dầu mỏ có thể được phân loại thành hai hạng : Fuel grade coke bao gồm cốc xốp và cốc viên và cốc đặc biệt (specialty coke) bao gồm cốc làm anode, cốc kim và một vài loại cốc có nguồn gốc khác. * Fuel grade coke bao gồm phần lớn lượng cốc thu được từ cốc hóa trễ. Các đặc trưng của loại cốc này cho trong bảng sau : Bảng 2. Đặc trưng của Fuel Grade Coke Heat content 13000 ~ 15000 BTU/lb Volatile Combustible Matter (VCM) ~ 10% Sulfur > 2.5 wt % Ash 0.1 ~ 0.3 wt% HGI (Hardgrove Index) ~ 100 Vanadium >200 ~ 400 ppm Ở Mỹ, loại fuel grade coke dược sử dụng trong hai lĩnh vực chính : các nhà máy điện và lò nung xi măng sử dụng đốt cháy hỗn hợp cốc và than đá. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 16 Ưu điểm của cốc khi sử dụng làm nhiên liệu trong các quá trình này là : cốc có BTU cao hơn than đá (10500 ~ 13000 BTU/lb đối với than đen mềm), và hàm lượng tro thấp (hầu hết các loại than đá đều có hàm lượng tro là 10%). Một trở ngại lớn khi đốt cháy loại cốc này là nó có hàm lượng thấp các chất bay hơi (VCM), so với 20~40% đối với than đen mềm. Hàm lượng VCM thấp sẽ dẫn đến một số hậu quả : trước hết để đảm bảo quá trình cháy ổn định thì phải phối hợp cốc với than đá để sử dụng như là nguồn nhiên liệu. Điều này cũng sẽ giới hạn lượng cốc trong hỗn hợp. Nói chung, nhiên liệu cho nồi hơi có thể sử dụng đến 20% coke trong hỗn hợp; đối với lò nung chậm có thể dùng đến 50% coke trong hỗn hợp. Hậu quả khác là cốc phải được nghiền mịn (normally pass 90% 200 mesh compared to 65~80 % of coal). Specialty coke Loại cốc này cần phải được nung ở nhiệt độ cao (2000 ~ 2300˚F) để loại bỏ độ ẩm, các chất hữu cơ dễ bay hơi và tăng tỷ trọng thực. *Anodes coke thường được sử dụng để chế tạo anode trong điện phân nhôm. Công nghiệp sản xuất nhôm là nơi sử dụng nhiều nhất loại cốc này. Khi sử dụng sponge coke để làm anode, cần phải chú ý đến các vấn đề sau : - Hàm lượng Vanadium và nickel sẽ ảnh hưởng rất lớn đến lò luyện nhôm, vì chúng đóng vai trò như là chất xúc tác oxy hóa anode trong quá trình điện phân làm tăng sự tiêu thụ anode. - Natri có trong cốc cũng xúc tác cho quá trình oxy hóa anode. - Tỷ trọng và kích thước của cốc là các thông số vật lý ảnh hưởng đến cấu trúc của anode do đó sẽ ảnh hưởng đến tính chất cơ học. Điện phân nhôm là một quá trình tiêu thụ anode (cacbon). Phản ứng hóa học có thể được biểu diễn như sau : 2Al2O3 + 3C —> 4 Al + 3 CO2 Hiện nay người ta sử dụng hai loại anode: Prebaked anode và Soderberg anode. Lượng anode tiêu thụ tiêu thụ đối với các loại anode : - Prebake anodes 0.44 kg/kg nhôm - Soderberg anodes 0.50kg/kg nhôm. Một vài đặc trưng của cốc anode được trình bày trong bảng 3. Công nghệ lọc dầu TS. Nguyễn Thanh Sơn 17 Bảng 3 : Đặc trưng của Anodes Coke Green Calcined VCM, wt%, Dry Basis 8-10 0.3 Sulfur, wt% 3.0 Max. 3.0 Max. Ni ppm 0.3 Max. 0.3 Max. V ppm 200 Max. 200 Max. HGI 80 VBD g/cm3 0.78 Min. Real Density g/cm3 2.06 Min. Granulometry +4 mesh -28 mesh 40% 10% Cốc hình kim (Needle coke) là loại cốc thu được từ quá trình cốc hóa trễ. Hiện nay chỉ còn một số ít nhà máy sản xuất loại cốc chất lượng cao này. Có nhiều công trình nghiên cứu về quá trình hình thành cốc hình kim, lựa chọn nguyên liệu và chuẩn bị nguyên liệu. Trong các quá trình công nghiệp, điều quan trọng cần phải tính đến khi mong muốn sản xuất cốc hình kim chất lượng cao là lựa chọn nguyên liệu phù hợp. Thông thường các loại nguyên liệu sau thường được xem xét : - Slurry oil có hàm lượng lưu huỳnh thấp của quá trình FCC (decanted oil) - Nhựa đường chuyển hóa từ gasoil bằng quá trình craking nhiệt. - Decanted oil đã khử lưu huỳnh. - Coal Tar Pitch

Các file đính kèm theo tài liệu này:

  • pdfUnlock-cong_nghe_loc_dau_1__2372.pdf