Đề tài Các phương pháp giảm tổn thất nhiệt lò hơi

Việc đo đạc tổn thất qua bức xạ và đối lƣu là phức tạp, khó khăn và ít khi đƣợc thực hiện.

Thay vào đó, biểu đồ tổn thất do bức xạ tiêu chuẩn của American Boiler Manufacturers

Association (ABMA) – Hiệp hội Nhà sản xuất Lò hơi Hoa Kỳ (hình trên) đƣợc sử dụng

và chấp nhận rộng rãi nhƣ một biện pháp tính toán nhanh chóng. Biểu đồ này rất phù hợp

với các dạng lò hơi thông thƣờng nhƣ nồi hơi nguyên cụm (packaged boiler), field-erected boiler và bộ hâm nƣớc (water heater) có buồng đốt (furnace) và bề mặt trao đổi

nhiệt đƣợc bọc trong cùng một khoang. Trong mọi trƣờng hợp, biểu đồ này cung cấp một

phuơng pháp tiêu chuẩn rất hữu dụng cho các mục đích so sánh. Trƣờng hợp ngoại lệ là

những việc lắp đặt nhƣ hệ thống đồng phát có các lò hơi có nhiệt thải khác nhau và lò hơi

có tầng giả hóa lỏng tuần hoàn với buồng đốt (furnace), lốc nóng và bề mặt khởi động có

mối hàn bên trong (backpass generating surfaces) là những phần tử riêng biệt.

- - Ngoài ra, lƣợng nhịêt tổn thất thƣờng làm tăng nhiệt độ phòng lò hơi, và đôi khi trong

thực tế, ngƣời ta thu lại một phần của lƣợng nhịêt này bằng cách mở rộng lỗ hút quạt gió

gần trần nhà. Điều này làm tăng nhiệt độ không khí cháy và phần nào làm giảm tổn thất

do khói khô. Tuy nhiên, nếu làm điều này thì công suất của quạt và sự thông hơi của

phòng đặt lò hơi phải đƣợc kiểm tra.

- - Đối với lò hơi và máy phát điện dùng nƣớc ở nhiệt độ cao với lƣu lƣợng hơi đầu ra lên

đến 200000lb/h hoặc 200 triệu Btu/h, và với những dạng lò hơi thông dụng, tổn thất nhiệt,

tính theo % nhiên liệu đƣa vào, có thể đƣợc xác định sử dụng bảng sau. Trong bảng này,

tổn thất nhiệt ở 100% sản lƣợng đầu ra đƣợc lấy từ biểu đồ ABMA, các lò hơi đựoc xem

nhƣ có 4 vách nƣớc, và đối với lò hơi, 1lb tƣơng đƣơng với 1000 Btu. Tổn thất truyền

nhiệt ở một phần tải đƣợc tính toán bằng cách chia tổn thất khi chạy lò với công suất tối

đa cho tỉ số giữa tải thực tế và tải tối đa. Chú ý là độ chính xác của kết quả này bị giới hạn

đến 1 số thập phân

pdf25 trang | Chia sẻ: netpro | Lượt xem: 5225 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đề tài Các phương pháp giảm tổn thất nhiệt lò hơi, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
đƣợc gọi là Hệ thống O2 TRIM, chỉ phù hợp với những hệ thống lớn. a. Nguỵên lý của hệ thống O2 TRIM Dùng 1 cảm biến đƣợc lắp đặt ở đƣờng khói thải của lò hơi để nhận biết lƣợng oxy trong khói thải. cảm biến đƣợc nối với một bộ điều khiển liên tục nhận biết lƣợng oxy và cung cấp tín hiệu điều chỉnh mắt gió hoặc van nhiên liệu để đảm bảo quá trình cháy xảy ra hoàn toàn với lƣợng không khí thừa là nhỏ nhất b. Khả năng tiết kiệm: Oxy thừa % Natural Gas 2.0 83.08% 2.5 82.37% 3.0 81.68% 3.5 80.71% 4.0 79.72% 4.5 78.60% 5.0 77.31% 5.5 75.32% 6.0 74.03% 6.5 72.01% Độ tăng hiệu suất = 1.0 - (hiệu suất lúc đầu / hiệu suất lúc sau) Ví dụ: Từ 4.5% oxy thừa giảm xuống 2.0% 1.0 - (0.7972 / 0.8308) = 0.04044 = 4.04% Bởi vì một số lò hơi đƣợc vận hành với một lƣợng oxy thừa rất lớn, cho nên lƣợng tiết kiệm đƣợc trong năm đầu tiên có thể cao hơn con số này. Tuy nhiên theo Hays Cleveland lƣợng tiết kiệm mong đợi có thể từ 2 – 4%. c. Chi phí lắp đặt Chi phí cho việc lắp đặt O2 Trim tuỳ thuộc một phần vào kích thƣớc của lò hơi và loại phân tích O2 cũng nhƣ độ chính xác trong việc điều chỉnh. Đối với một lò hơi công suất 100-600HP (74,57-447,42 kW), thì chi phí đầu tƣ cho một hệ thống O2 TRIM là: Chi phí thiết bị 10.000 - 12.000 $ Chi phí cài đặt 5.000 – 7000 $ Chi phí thiết lập ban đầu và huấn luyện cài đặt 2.500 – 4.000 $ Tổng chi phí 17.500 – 23.000 $ (Nguồn : Charles Rowan, V-P Sales at Hays-Cleveland 3/2005) Ví dụ ứng dụng O2 trim system Giả sử một lò hơi có công suất 500hp với năng lƣợng đƣa vào là 20,000,000 BTUs, vận hành 8000 giờ một năm với hệ số tải là 50% có thể tiết kiệm 2% bằng việc lắp đặt hệ thống O2 Trim: Năng lƣợng tiết kiệm đƣợc trong 1 năm 20 MMBTUs x 8,000 hrs x 50% x 2% = 2,560 MMBTUs hay 2,560 MCF Nếu giá của nhiên liệu là $7.00/MCF, thì số tiền tiết kiệm trong 1 năm: $7.00 x 2,560 = $17,920 Thời gian thu hồi vốn khoản từ 1-2 năm tuỳ theo giá lắp đặt. Chú ý rằng nếu phần trăm tiết kiệm là 4% thì thời gian thu hồi vốn có thể giảm xuống chƣa tới 1 năm. 5. Ví dụ: Lò hơi đốt dầu có thành phần làm việc Clv = 87%, Hlv = 10,9%, Olv = 1,1%, Nlv = 0,3%, Slc = 0,7%. Hệ số không khí thừa α = 1,35. Nhiệt độ khói thải tkhói thải = 250 0 C. Nhiệt độ dầu tnl = 90 0 C. Nhiệt độ không khí trong không gian đặt lò hơi tkkl = 30 0 C, cppk = 1,3 kJ/m 3 độ. - Nhiệt trị thấp làm việc của nhiên liệu: lv tQ = 339C lv + 1030H lv – 109(Olv - Sc lv ) – 25Wlv = 339.87 + 1030.10,9 – 109(1,1 – 0,7) – 25.3 = 40676,1 (kJ/kg) - Nhiệt vật lý của nhiên liệu : Cnl = (1,74 + 0,0025.tnl).tnl = 176,85 (kJ/kg) - Nhiệt lƣợng đƣa vào buồng đốt lò hơi : Qđv = lv tQ + Cnl = 40676,1 + 176,85 = 40852,95 (kj/kg) - Thể tích không khí lý thuyết : 0 kkV = 0,089.( C lv + 0,375. lv cS ) + 1030.H lv – 0,033.Olv = 0,089.(87 + 0,375.0,7) + 1030.10,9 – 0,033.1,1 = 10,62 (m3/kg) - Thể tích khí 3 nguyên tử : VR02 = 0,0187.(C lv + 0,375. lv cS )=0,0187.(87 + 0,375.0,7) = 1,63 (m 3 /kg) - Thể tích nitơ lý thuyết : 0 2NV = 0,79. 0 kkV + 0,008.N lv = 0,79.10,62 + 0,008.0,3 = 8,39 (m 3 /kg) - Thể tích hơi nƣớc lý thuyết : 0 20HV = 0,112.H lv + 0,0124.W lv + 0,0161. 0 kkV = 0,112.10,9 + 0,0124.3 + 0,0161.10,62 = 1,39 (m 3 /kg) - Entanpi của sản phẩm cháy lý thuyết : 0 KI = VR02.(Ct)RO2 + 0 2NV .(Ct)N2 + 0 20HV .(Ct)H20 - Tra bảng nhiệt độ khói t = 2500C : (Ct)kk = 328,025 ; (Ct)RO2 = 458,14 ; (Ct)N2 = 325,52 ; (Ct)H20 = 383,59 0 KI = 1,63.458,14 + 8,39. 325,52 + 1,39. 383,59= 4011,07 (kJ/kg) - Entapi của không khí lý thuyết : 0 kkI = 0 kkV .(Ct)kk = 10,62. 328,025 = 3484,05 (kJ/kg) - Entanpi của hơi nƣớc do không khí thừa mang vào : 20HI = 0,0161(α – 1). 0 kkV .(Ct)H20 = 0,0161.(1,35 – 1).10,62. 383,59 = 22,96 (kJ/kg) - Entanpi của khói thực : IK = 0 KI + (α – 1). 0 kkI + IH20 α = 4011,07 + (1,35 – 1). 3484,05 + 22,96 KI = 5253,45 (kJ/kg) - Entanpi của không khí lạnh : Ikkl = 1,35.10,62.1,3.30 = 558 (kJ/kg) - Nhiệt lƣợng do khói thải mang đi : Q2 = (5253,45 – 558).(1 – 0) = 4695,45 (kJ/kg) - Tỷ lệ phần trăm do khói thải mang đi : %5,11 95,40852 95,4695 100.22 đvQ Q q Xác định hệ số không khí thừa hợp lý α = 1,2 khi này phân tích thấy hàm lượng CO = 0,06%. Khi này - Entanpi của hơi nƣớc do không khí thừa mang vào : 20HI = 0,0161(α – 1). 0 kkV .(Ct)H20 = 0,0161.(1,2 – 1).10,62. 383,59 = 13,12 (kJ/kg) - Entanpi của khói thực : IK = 0 KI + (α – 1). 0 kkI + IH20 α = 4011,07 + (1,2 – 1). 3484,05 + 13,12 KI = 4721 (kJ/kg) - Entanpi của không khí lạnh : Ikkl = 1,2.10,62.1,3.30 = 497,02 (kJ/kg) - Nhiệt lƣợng do khói thải mang đi : Q2 = (4721 – 497,02).(1 – 0) = 4224 (kJ/kg) - Tỷ lệ phần trăm do khói thải mang đi : %3,10 95,40852 4224 100.22 đvQ Q q - Khi này tính đƣợc Q3 = 89,89, q3 = 0,22 % - Tổng tổn thất : q2 + q3 = 10,56% %94,0%56,10%5,11)( 32 qq III. XÁC ĐỊNH NHIỆT ĐỘ KHÓI THẢI HỢP LÝ 1. Đặc điểm - Khi nhiệt độ khói thải cao thì kéo theo hiệu suất của lò hơi giảm, do phải tốn nhiên liệu cung cấp vào lò để gia nhiệt cho không khí đến nhiệt độ khói. Nếu không có giải pháp nào lấy lại lƣợng nhiệt này thì sẽ gây lãng phí, làm giảm hiệu suất của lò. - Mặt khác, nếu nhiệt độ khói thải tăng cao đột biến thì có thể ƣớc chừng đƣợc rằng các bề mặt trao đổi nhiệt trong lò đang bị bám nhiều bụi, cặn bẩn. Do đó, cần tiến hành làm vệ sinh lò để tránh mất mát hiệu suất. - Nhƣng nếu các giải pháp đƣa ra làm giảm nhiệt độ khói thải xuống quá thấp, thì sẽ tạo điều kiện hình thành H2SO4 trên vách ống khói lò, đôi khi là trên các bề mặt trao đổi nhiệt do nhiệt các bề mặt này lun thấp hơn nhiệt độ khói. SO2 +1/2 O2 → SO3 Chiều thuận của phản ứng trên dễ xảy ra khi trong khói có chứa nhiều oxi (không khí thừa) và nhiệt độ giảm. - Bởi vậy, các giải pháp đƣa ra nhằm làm giảm nhiệt độ khói thì nên tránh làm giảm nhiệt độ thấp quá mức gây tổn hao vật liệu, tốn chi phí bảo dƣỡng. - Theo kinh nghiệm thực tế: nhiệt độ khói ra khỏi lò lớn hơn 2000C cho thấy tiềm năng thu hồi nhiệt. Nếu giảm nhiệt độ khói thải xuống 120C – 160C thì tổn thất q2 giảm 1%. 2. Xác định nhiệt độ đọng sương của khói - Có thể xác định nhiệt độ khói thải bằng cách dựa theo đồ thị sau: Tùy vào từng loại nhiên liệu có thành phần lƣu huỳnh khác nhau mà nhiệt độ đọng sƣơng cũng khác nhau, do đó chỉ cần khống chế nhiệt độ khói lớn hơn giá trị đọng sƣơng để có lƣợng tổn thất q2 nhỏ nhất. - Dựa vào đồ thị, nhiệt độ đọng sƣơng tăng cao đối với các loại nhiên liệu có thành phần lƣu huỳnh 0% tới 1%, và khoảng 3000F(1500C) đối với nhiên liệu có 6%S. - BÀI TẬP: xác định nhiệt độ khói hợp lí với nhiên liệu có 0,7%S. Dựa vào đồ thị liên hệ trên, với nhiên liệu có 0,7%S thì nhiệt độ khói ra vào khoảng 1200C. 3. Các giải pháp tận dụng nhiệt khói thải - Bộ hâm nước: Khi sử dụng bộ hâm nƣớc, nhiệt độ khói giảm khoảng 600C để hâm nƣớc cấp lên khoảng 150C thì hiệu suất nhiệt tăng 3%. Đối với loại lò hơi kiểu mới, khi áp dụng phƣơng pháp này có thể tăng hiệu suất nhiệt lên 5%. Ví dụ: 1 lò hơi 600 HP, lắp đặt 1 bộ hâm nƣớc để tăng hiệu suất từ 2,5% - 4% thì sẽ tiết kiệm đƣợc chí phí nhiên liệu hàng năm từ $13,000 – $21,000 ( nguồn: lubrication management - - Bộ sấy không khí: Hình trên mô tả 1 kiểu vị trí lắp đặt các bộ trao đổi nhiệt nhằm tăng hiệu suất lò hơi, trong đó có bộ sấy không khí(APH). Ở đây, không khí trƣớc khi cho vào buồng đốt đƣợc đƣa vào bộ sấy không khí nhờ quạt hút, sau khi đi qua khỏi bộ sấy này, không khí đã đƣợc đƣa lên 1 nhiệt độ nhất định để quá trình cháy trong buồng đốt đƣợc xảy ra dễ dàng hơn. Và lƣợng khí nóng này đƣợc trích 1 phần để gia nhiệt cho nhiên liệu, hòa trộn với nhiên liệu để cho nhiên liệu dễ cháy, tránh tình trạng cháy không hoàn toàn do không đốt chay hết nhiên liệu. Kinh nghiệm cho thấy nếu không khí trƣớc khi đƣa vào lò đƣợc gia nhiệt tăng khoảng 22 0 C thì hiệu suất nhiệt tăng đƣợc 1% Ví dụ: 1 lò hơi 600 HP, lắp đặt 1 bộ sấy không khí để tăng hiệu suất lên 1,5% thì sẽ tiết kiệm đƣợc chí phí nhiên liệu hàng năm là 8000$ ( nguồn: lubrication management - 4. Ví dụ tính toán: Lò hơi đốt dầu có thành phần làm việc Clv = 87%, Hlv = 10,9%, Olv = 1,1%, Nlv = 0,3%, Slc = 0,7%. Hệ số không khí thừa α = 1,35. Nhiệt độ khói thải tkhói thải = 250 0 C. Nhiệt độ dầu tnl = 90 0 C. Nhiệt độ không khí trong không gian đặt lò hơi tkkl = 30 0 C, cppk = 1,3 kJ/m 3 độ. - Nhiệt trị thấp làm việc của nhiên liệu: lv tQ = 339C lv + 1030H lv – 109(Olv - Sc lv ) – 25Wlv = 339.87 + 1030.10,9 – 109(1,1 – 0,7) – 25.3 = 40676,1 (kJ/kg) - Nhiệt vật lý của nhiên liệu : Cnl = (1,74 + 0,0025.tnl).tnl = 176,85 (kJ/kg) - Nhiệt lƣợng đƣa vào buồng đốt lò hơi : Qđv = lv tQ + Cnl = 40676,1 + 176,85 = 40852,95 (kj/kg) - Thể tích không khí lý thuyết : 0 kkV = 0,089.( C lv + 0,375. lv cS ) + 1030.H lv – 0,033.Olv = 0,089.(87 + 0,375.0,7) + 1030.10,9 – 0,033.1,1 = 10,62 (m3/kg) - Thể tích khí 3 nguyên tử : VR02 = 0,0187.(C lv + 0,375. lv cS )=0,0187.(87 + 0,375.0,7) = 1,63 (m 3 /kg) - Thể tích nitơ lý thuyết : 0 2NV = 0,79. 0 kkV + 0,008.N lv = 0,79.10,62 + 0,008.0,3 = 8,39 (m 3 /kg) - Thể tích hơi nƣớc lý thuyết : 0 20HV = 0,112.H lv + 0,0124.W lv + 0,0161. 0 kkV = 0,112.10,9 + 0,0124.3 + 0,0161.10,62 = 1,39 (m 3 /kg) - Entanpi của sản phẩm cháy lý thuyết : 0 KI = VR02.(Ct)RO2 + 0 2NV .(Ct)N2 + 0 20HV .(Ct)H20 - Tra bảng nhiệt độ khói t = 2500C : (Ct)kk = 328,025 ; (Ct)RO2 = 458,14 ; (Ct)N2 = 325,52 ; (Ct)H20 = 383,59 0 KI = 1,63.458,14 + 8,39. 325,52 + 1,39. 383,59= 4011,07 (kJ/kg) - Entapi của không khí lý thuyết : 0 kkI = 0 kkV .(Ct)kk = 10,62. 328,025 = 3484,05 (kJ/kg) - Entanpi của hơi nƣớc do không khí thừa mang vào : 20HI = 0,0161(α – 1). 0 kkV .(Ct)H20 = 0,0161.(1,35 – 1).10,62. 383,59 = 22,96 (kJ/kg) - Entanpi của khói thực : IK = 0 KI + (α – 1). 0 kkI + IH20 α = 4011,07 + (1,35 – 1). 3484,05 + 22,96 KI = 5253,45 (kJ/kg) - Entanpi của không khí lạnh : Ikkl = 1,35.10,62.1,3.30 = 558 (kJ/kg) - Nhiệt lƣợng do khói thải mang đi : Q2 = (5253,45 – 558).(1 – 0) = 4695,45 (kJ/kg) - Tỷ lệ phần trăm do khói thải mang đi : %5,11 95,40852 95,4695 100.22 đvQ Q q Xác định hệ số không khí thừa hợp lý α = 1,2 khi này phân tích thấy hàm lượng CO = 0,06%. Khi này - Entanpi của hơi nƣớc do không khí thừa mang vào : 20HI = 0,0161(α – 1). 0 kkV .(Ct)H20 = 0,0161.(1,2 – 1).10,62. 383,59 = 13,12 (kJ/kg) - Entanpi của khói thực : IK = 0 KI + (α – 1). 0 kkI + IH20 α = 4011,07 + (1,2 – 1). 3484,05 + 13,12 KI = 4721 (kJ/kg) - Entanpi của không khí lạnh : Ikkl = 1,2.10,62.1,3.30 = 497,02 (kJ/kg) - Nhiệt lƣợng do khói thải mang đi : Q2 = (4721 – 497,02).(1 – 0) = 4224 (kJ/kg) - Tỷ lệ phần trăm do khói thải mang đi : %3,10 95,40852 4224 100.22 đvQ Q q - Khi này tính đƣợc Q3 = 89,89, q3 = 0,22 % - Tổng tổn thất : q2 + q3 = 10,56% %94,0%56,10%5,11)( 32 qq Giảm nhiệt độ khói xuống còn t = 1600C - Entanpi của sản phẩm cháy lý thuyết : 0 KI = VR02.(Ct)RO2 + 0 2NV .(Ct)N2 + 0 20HV .(Ct)H20 - Tra bảng nhiệt độ khói t = 1600C : (Ct)kk = 208,7 ; .(Ct)RO2 = 282,5 ; .(Ct)N2 = 207,8 ; .(Ct)H20 = 243,1 0 KI = 1,63.282,5 + 8,39. 207,8+ 1,39. 243,1 = 2541,83 (kJ/kg) - Entapi của không khí lý thuyết : 0 kkI = 0 kkV .(Ct)kk = 10,62. 208,7 = 2216,4 (kJ/kg) - Entanpi của hơi nƣớc do không khí thừa mang vào : 20HI = 0,0161(α – 1). 0 kkV .(Ct)H20 = 0,0161.(1,2 – 1).10,62. 243,1 = 8,31 (kJ/kg) - Entanpi của khói thực : IK = 0 KI + (α – 1). 0 kkI + IH20 α = 2541,83 + (1,2 – 1).2216,4 + 8,31 KI = 2993,4 (kJ/kg) - Entanpi của không khí lạnh : Ikkl = 1,2.10,62.1,3.30 = 497,02 (kJ/kg) - Nhiệt lƣợng do khói thải mang đi : Q2 = (2993,4 – 497,02).(1 – 0) = 2496,4 (kJ/kg) - Tỷ lệ phần trăm do khói thải mang đi : %1,6 95,40852 2496 100.22 đvQ Q q  %2,4%1,6%3,102q Khi giảm nhiệt độ khói thải thì hiệu suất nhiệt tăng thêm 4,2%. Vậy tổng kết lại, nếu áp dụng cả 2 phương pháp thì lò hơi đã tăng 5,4% hiệu suất. III. NÂNG CAO HIỆU QUẢ SỬ DỤNG NHIÊN LIỆU 1. Tổn thất nhiệt do cháy không hoàn toàn về cơ học: a. Đặc điểm của tổn thất nhiệt do cháy không hoàn toàn về cơ học: - Khi đốt nhiên liệu trong buồng lửa thì có một phần nhiên liệu chƣa kịp cháy hết đã bị thải ra ngoài gọi là tổn thất nhiên liệu do cháy không hoàn toàn về cơ học - Nhiên liệu thải ra ngoài theo 3 đƣờng: theo xỉ, lọt xuống ghi và theo khói. - Tổn thất nhiệt do cháy không hoàn toàn về cơ học chủ yếu là do đốt nhiên liệu rắn, đối với nhiên liệu lỏng và khí thì rất nhỏ nên có thể bỏ qua tổn thất này. - Tổn thất nhiệt do cháy không hoàn toàn về cơ học rất khó xác định, nó phụ thuộc vào nhiều rất yếu tố khác nhau, ngƣời ta thƣờng dùng phƣơng pháp thực nghiệm để xác định. - Đối với lò công nghiệp thƣờng bị tổn thất theo 2 đƣờng: theo xỉ và lọt xuống ghi. - Đối với nhà máy nhiệt điện thƣờng bị tổn thất do bay theo khói. Giá trị q4 trong 1 số lò hơi: Loại lò q4 , % Cháy theo lớp Lò ghi cố định 7÷10 Lò ghi xích hoặc di động 8÷12 Đốt theo ngọn lửa Lò than phun 0,5÷8 Lò đốt dầu 0 Lò đốt khí 0 b. Cách giảm:  Lẫn vào xỉ: -Phụ thuộc tay nghề công nhân khi xúc xỉ ra ngoài xác định đƣợc phần nào đã cháy hết, phần nào chƣa. -Dùng than có kích thƣớc tƣơng đối đồng đều để tránh việc than nhỏ cháy hết nhƣng than lớn quá chƣa cháy kịp.  Lọt xuống ghi: -Khe hở của ghi là δ=3÷15mm -Dùng than không nhỏ hơn độ lọt của ghi. -Kiểm tra ghi trong quá trình làm việc có bị cong vênh tạo khe hở lớn hơn dự kiến.  Bay theo khói: -Nếu hạt than quá mịn thì dƣới tác dụng của gió và áp suất trong lò sẽ bị bay theo khói ra ngoài mà chƣa kịp cháy. -Cần chọn máy nghiền theo tính chất vật lý của nhiên liệu và công suất lò hơi Ví dụ: Thùng nghiền bi: nhiên liệu cứng, sản lƣợng hơi 20t/h Giếng nghiền: nhiên liệu tƣơng đối mềm, sản lƣợng hơi >12t/h Máy nghiền tốc độ trung bình: than đá, sản lƣợng hơi 12t/h 2. Tổn thất do tro xỉ a. Đặc điểm của tổn thất nhiệt do cháy không hoàn toàn về cơ học: - Nhiên liệu cấp vào lò ở nhiệt độ khoảng 20÷40oC, xỉ ra khỏi lò có nhiệt độ khoảng 600÷1500 o C, xỉ lại đƣợc thải ra ngoài, nhƣ vậy lƣợng nhiệt đó bị tổn thất. Công thức tính tổn thất nhƣ sau: Với: ax - Tỉ lệ độ tro của nhiên liệu phân phối theo xỉ A lv - độ tro làm việc Cx - tỉ nhiệt của xỉ tx - Nhiệt độ của xỉ Đối với lò ghi: tx = 600 o C Đối với lò thải xỉ lỏng: tx = t3 + 100 o C 6 . . . 100 lv x x x A Q a C t Ví dụ: tính tổn thất của lò phun xỉ lỏng dùng than B3 có A lv = 29,5% ; ax = 0,6 ; tx = 1500 o C; Cx = 1,117kJ/kg.C Vậy :Q6 = 296,56 kJ/kg b. Cách giảm: -Không thể giảm vì nhiệt độ xỉ ra khỏi lò là tự nhiên. - Dùng xỉ để hâm nƣớc cho các hộ dùng nhiệt , thu hồi 1 phần nhiệt lƣợng bị tổn thất IV.CÁCH NHIỆT VÀ TẬN DỤNG CÔNG SUẤT LÒ HƠI 1. Giới thiệu - Bề mặt tƣờng xung quanh của lò luôn có nhiệt độ cao hơn nhiệt độ môi trƣờng, vì thế luôn có sự tỏa nhiệt bức xạ và đối lƣu, gây tổn thất nhiệt ra môi truờng xung quanh - Yếu tố ảnh hƣởng: nhiệt độ, diện tích bề mặt xung quanh, hệ số tỏa nhiệt đối lƣu Q=α.F.∆t (α từ 4 tới 6 khi không khí yên tĩnh, 20 tới 30 khi không khí chuyển động) 2. Phương pháp cơ bản giảm tổn thất nhiệt do môi trường xung quanh 2.1. Bọc cách nhiệt tốt, thiết kế tường lò hợp lý  Thông số kỹ thuật một số vật liệu cách nhiệt thông dụng Bông khoáng : (Kg/m 3 ) (mm) (m 2 K/W) 40 50 1.76 1.6 60 50 2.36 2.2 Hệ số dẫn nhiệ 612-93 (Kg/m 3 ) 40 60 80 100 120 120 130 150 300 350 450 650 820 700 730 750 (W/m o C) 24 o C(75 o F) 0.036 0.035 0.035 0.034 38 o C(100 o F) 0.038 0.037 0.036 0.035 0.035 0.033 0.033 93 o C(200 o F) 0.048 0.047 0.045 0.043 0.041 0.043 0.041 0.039 149 o C(300 o F) 0.062 0.061 0.006 0.053 0.050 0.052 0.051 0.048 204 o C(400 o F) 0.068 0.064 0.060 0.062 0.060 0.057 260 o C(500 o F) 0.082 0.077 0.075 0.074 0.071 0.067 316 o C(600 o F) 0.091 0.089 0.087 0.082 0.078 371 o C(700 o F) 0.108 0.106 0.100 0.095 0.091 Bông thủy tinh Hệ số cách nhiệt: TỶ TRỌNG (Kg/m 3 ) ĐỘ DÀY (mm) KHỔ RỘNG (m) CHIỂU DÀI (m) HỆ SỐ R(m 2 K/W) 10 50 1,2 15 / 30 1,05 12 50 1,2 15 / 30 1,17 16 50 1,2 15 1,24 24 50 1,2 12 1,33 32 50 1,2 10 1,45 10 100 1,2 12 2,10 12 100 1,2 10 2,24 16 100 1,2 10 2,48 Hệ số dẫn nhiệ 177-85) (kg/m3) W/m o C BTU-in/(hrft 20 F) 10 0.0476 0.33 12 0.0425 0.29 16 0.0404 0.28 24 0.0375 0.26 32 0.0346 0.24  Ví dụ: Một lò hơi có vách lò gồm lớp gạch chịu lửa có λ 1 = 0,348 w/(m 2độ), dày 0,25m; lớp gạch đỏ có λ 2 = 0,695 w/(m 2độ) dày 0,25m, hệ số đối lƣu α 1 của sản phẩm cháy là 34,8 w/(m 2độ), hệ số đối lƣu của không khí bên ngoài lò hơi α 2 là 11,6 w/(m 2độ) => Nhiệt độ bề mặt vách lò là 122oC, q5 = 1065w/m 2 Lò hơi trên đƣợc bọc thêm một lớp cách nhiệt dày 0,1m có λ 3 = 0,05 w/(m 2độ), họat động trong cùng điều kiện nhƣ trên => nhiệt độ bề mặt vách lò là 64oC, q5 = 398w/m 2 2.2. Tăng công suất lò: - Tổn thất do bức xạ và đối lƣu tỉ lệ với diện tích bề mặt ngoài của một bộ phận, mà sức chứa của một bộ phận thì tỉ lệ với thể tích của nó, độ tăng diện tích nhỏ hơn độ tăng sản lƣợng lò nên tổn thât Q5 ứng với 1kg nhiên liệu giảm xuống. Do đó, tổn thất truyền nhiệt, tính theo tỷ lệ phần trăm nhiên liệu đƣa vào, của lò hơi nhỏ sẽ lớn hơn của lò hơi lớn. Biểu đồ thể hiện tổn thất do bức xạ và đối lƣu cho các kích cỡ thông dụng của lò hơi, trích từ biểu đồ ABMA (bao gồm kiểu lò hơi vách nƣớc và lò hơi hoạt động trong vùng áp suất từ thấp tới vừa). Biểu đồ thể hiện hầu hết lò hơi có tổn thất truyền nhiệt thấp hơn 1% trừ khi họat động thấp tải, chỉ lò hơi có lƣu lƣợng nhỏ hơn 30000lb/h có tổn thất này lớn hơn 1%. Tuy nhiên, biểu đồ này thể hiện rằng với lò hơi nhỏ và vừa, họat động thấp tải sẽ chỉ đạt hiệu suất rất thấp. Trong những nhà máy có nhiều lò hơi, việc tắt bớt lò hơi rất cần thiết để giúp các lò hơi đang họat động công suất lớn hơn nâng cao hiệu suất. - Hơn thế nữa, với loại lò hơi vách nƣớc đuợc sử dụng phổ biến hiện nay (dùng cho nhiên liệu khí, tại các nƣớc phát triển), nhiệt độ bề mặt ngòai vẫn gần nhƣ là hằng số với mọi lọai tải. Nghĩa là tổn thất thật sự (tính bằng Btu/h) cũng là hằng số đối mọi lọai tải. Vì thế, tổn thất nhiệt, tính theo % nhiên liệu đƣa vào sẽ tăng khi giá trị đầu ra giảm. - Ví dụ: nếu Q5 là 1% khi chạy hết công suất, thì nó sẽ là 2% khi giảm 1/2 tải, và là 4% khi còn 1/4 tải - Đứng trên quan điểm hiệu suất, sử dụng một bộ phận hoạt động gần hết công suất của nó sẽ tốt hơn để hai bộ phận chạy chỉ với một nửa công suất. Điều này đúng một cách đặc biệt đối với những bộ phận nhỏ. Cũng thế, xây dựng nhiều lò hơi có kích cỡ khác nhau trong một nhà máy là một ƣu điểm, và lò hơi nhỏ hơn có thể dùng để chạy khi cần tải thấp. 2.3. Thực tế - Việc đo đạc tổn thất qua bức xạ và đối lƣu là phức tạp, khó khăn và ít khi đƣợc thực hiện. Thay vào đó, biểu đồ tổn thất do bức xạ tiêu chuẩn của American Boiler Manufacturers Association (ABMA) – Hiệp hội Nhà sản xuất Lò hơi Hoa Kỳ (hình trên) đƣợc sử dụng và chấp nhận rộng rãi nhƣ một biện pháp tính toán nhanh chóng. Biểu đồ này rất phù hợp với các dạng lò hơi thông thƣờng nhƣ nồi hơi nguyên cụm (packaged boiler), field- erected boiler và bộ hâm nƣớc (water heater) có buồng đốt (furnace) và bề mặt trao đổi nhiệt đƣợc bọc trong cùng một khoang. Trong mọi trƣờng hợp, biểu đồ này cung cấp một phuơng pháp tiêu chuẩn rất hữu dụng cho các mục đích so sánh. Trƣờng hợp ngoại lệ là những việc lắp đặt nhƣ hệ thống đồng phát có các lò hơi có nhiệt thải khác nhau và lò hơi có tầng giả hóa lỏng tuần hoàn với buồng đốt (furnace), lốc nóng và bề mặt khởi động có mối hàn bên trong (backpass generating surfaces) là những phần tử riêng biệt. - - Ngoài ra, lƣợng nhịêt tổn thất thƣờng làm tăng nhiệt độ phòng lò hơi, và đôi khi trong thực tế, ngƣời ta thu lại một phần của lƣợng nhịêt này bằng cách mở rộng lỗ hút quạt gió gần trần nhà. Điều này làm tăng nhiệt độ không khí cháy và phần nào làm giảm tổn thất do khói khô. Tuy nhiên, nếu làm điều này thì công suất của quạt và sự thông hơi của phòng đặt lò hơi phải đƣợc kiểm tra. - - Đối với lò hơi và máy phát điện dùng nƣớc ở nhiệt độ cao với lƣu lƣợng hơi đầu ra lên đến 200000lb/h hoặc 200 triệu Btu/h, và với những dạng lò hơi thông dụng, tổn thất nhiệt, tính theo % nhiên liệu đƣa vào, có thể đƣợc xác định sử dụng bảng sau. Trong bảng này, tổn thất nhiệt ở 100% sản lƣợng đầu ra đƣợc lấy từ biểu đồ ABMA, các lò hơi đựoc xem nhƣ có 4 vách nƣớc, và đối với lò hơi, 1lb tƣơng đƣơng với 1000 Btu. Tổn thất truyền nhiệt ở một phần tải đƣợc tính toán bằng cách chia tổn thất khi chạy lò với công suất tối đa cho tỉ số giữa tải thực tế và tải tối đa. Chú ý là độ chính xác của kết quả này bị giới hạn đến 1 số thập phân. Ước lượng tổn thất do tỏa nhiệt và đối lưu‚ Q5 ‚ % năng lượng đưa vào Max output‚ millions of Btu 100 % 80 % 60 % 50 % 40 % 20 % 10 1.60 2.00 2.67 3.20 4.00 8.00 20 1.05 1.31 1.75 2.10 2.62 5.25 30 0.84 1.05 1.40 1.68 2.10 4.20 40 0.73 0.91 1.22 1.46 1.82 3.65 50 0.66 0.82 1.10 1.32 1.65 3.30 60 0.62 0.78 1.03 1.24 1.55 3.10 70 0.59 0.74 0.98 1.18 1.48 2.95 80 0.56 0.70 0.93 1.12 1.40 2.80 90 0.54 0.68 0.90 1.08 1.35 2.70 100 0.52 0.65 0.87 1.04 1.30 2.60 120 0.48 0.60 0.80 0.96 1.20 2.40 140 0.45 0.56 0.75 0.90 1.12 2.25 160 0.43 0.54 0.72 0.86 1.08 2.15 180 0.40 0.50 0.67 0.80 1.00 2.00 200 0.38 0.48 0.63 0.76 0.95 1.90 Ví dụ: Tính toán tổn thất nhiệt cho lò hơi định mức 45000lb/h, họat động với lƣu lựong ra 25000lb/h Sản lƣợng hơi định mức (tính bằng Btu/h) : 45‚000 x 1000 = 45 million Btu/h Tỉ số giữa tải thực tế và tải định mức: 25‚000 ÷ 45‚000 = 0.56 Q5 khi lò hơi họat động hết công suất Nội suy từ bảng, ta có Q5 = 0,7 % năng lƣợng đƣa vào Tổn thất Q5 khi lò hơi hoạt động ở 56% công suất tối đa : 0,7/0,56 = 1,25 % năng lƣợng đƣa vào V. GIẢM TỔN THẤT NHIỆT BẰNG CÁCH XẢ ĐÁY HỢP LÝ 1. Xả đáy lò hơi Khi nƣớc đƣợc đun sôi và tạo ra hơi, bất cứ chất rắn hoà tan nào trong nƣớc sẽ đọng lại trong lò hơi. Nếu trong nƣớc cấp có nhiều chất rắn đƣa vào lò hơi, chúng sẽ cô đặc lại và có thể cuối cùng sẽ vƣợt quá khả năng hoà tan và đóng cặn. Khi mức độ cô đặc vƣợt quá một giới hạn nhất định sẽ gây ra hiện tƣợng sủi bọt và làm hạn chế quá trình sinh hơi. Những chất này cũng làm hình thành lớp cặn trong lò hơi và phát sinh những điểm quá nhiệt cục bộ trong lò hơi và gây ra các trục trặc của đƣờng ống hơi. Vì thế cần phải kiểm soát nồng độ chất rắn lơ lửng và hoà tan trong nƣớc. Để giảm nồng độ chất rắn, ngƣời ta tiến hành “xả đáy”, một lƣợng nƣớc nhất định sẽ đƣợc xả ra ngoài và lò hơi sẽ có bộ phận tự động bù lại lƣợng nƣớc xả đáy này. Việc xả đáy là cần thiết để bảo vệ các bề mặt trao đổi nhiệt trong lò hơi. Nhƣng nếu xả đáy không hợp lý sẽ dẫn đến tổn thất một lƣợng nhiệt lớn. 2. Xả đáy gián đọan và xả đáy liên tục a. Xả đáy gián đọan Xả đáy gián đoạn đƣợc thực hiện thông qua việc vận hành bằng tay một van gắn vào ống xả tại điểm thấp nhất của vỏ lò hơi để giảm các thông số (TDS hoặc độ dẫn, pH, nồng độ Silica và phốt phát) trong giới hạn định trƣớc sao cho chất lƣợng hơi không bị ảnh hƣởng. Kiểu xả đáy này cũng là một phƣơng pháp hiệu quả nhằm loại bỏ chất rắn đã rơi ra khỏi dung dịch và nằm trên ống lửa và mặt trong của vỏ lò hơi. Trong xả đáy gián đoạn, đƣờng ống có đƣờng kính rộng đƣợc mở trong một thời gian ngắn, phụ thuộc vào nguyên tắc chung nhƣ “mỗi ca một lần trong vòng 2 phút”. Xả đáy gián đoạn cần có một lƣợng nƣớc cấp vào lò hơi tăng lên nhiều trong một thời gian ngắn, do đó có thể sẽ cần các máy bơm nƣớc cấp lớn hơn so với xả đáy liên tục. Mức độ TDS cũng sẽ thay đổi, do đó gây ra những dao động trong mức nƣớc của lò hơi do thay đổi kích thƣớc bóng và phân phối hơi đi kèm với những thay đổi về nồng độ chất rắn. Đồng thời, một lƣợng lớn nhiệt bị tổn thất trong quá trình xả đáy gián đoạn. b. Xả đáy liên tục Có một dòng nhỏ nƣớc cấp cô đặc gián đoạn và đều đặn, đƣợc thay bằng một dòng nƣớc cấp liên tục và từ từ. Điều này đảm bảo độ tinh khiết của hơi và TDS ở một mức tải hơi cho trƣớc. Khi van xả đáy đƣợc thiết lập với các điều kiện cho trƣớc, không cần ngƣời vận hành phải can thiệp thƣờng xuyên. Mặc dù một lƣợng nhiệt lớn bị đƣa ra khỏi lò hơi, vẫn có các giải pháp thu hồi nhiệt bằng cách sử dụng bể giãn áp và tạo ra hơi giãn áp. Có thể sử dụng hơi giãn áp để đun sơ bộ nƣớc cấp lò hơi. Cách xả đáy này phổ biến với các lò hơi áp suất cao.

Các file đính kèm theo tài liệu này:

  • pdfThuyet minh.pdf
  • pptxGiẢM TỔN THẤT LÒ HƠI.pptx