Quy trình công nghệ tổng hợp Fischer-Tropsch sản xuất các nhiên liệu đồng hành. 
Các nhiên liệu hóa thạch hoặc sinh khối được biến đổi thành khí đồng hành bằng phương 
pháp loại bỏ hơi nước. Khí đồng hành được biến đổi thành diesel và naphtha trong phản 
ứng xúc tác Fischer-Tropsch. Nam Phi đã triển khai công nghệ này trên phạm vi rộng 
trong vòng 50 năm qua và hiện nay nhà máy hóa lỏng than đang hoạt động với sản lượng 
0,15 triệu thùng/ngày. Sản phẩm hỗn hợp gồm 80% diesel và 20% naphthan. Trung Quốc 
đang quan tâm tới phiên bản mới của quy trình sản xuất này, có thể tăng tới 1,2 triệu 
thùng/ngày vào năm 2020.
Hiện nay, 40% nhiên liệu lỏng thu được từ than bằng quy trình xử lý Fischer-Tropsch. Sản xuất nhiên liệu lỏng từ than ít bị ảnh hưởng bởi giá nguyên liệu đầu vào 
hơn là sản xuất từ khí thiên nhiên, nhưng chi phí đầu tư rất cao do chi phí bổ sung để khí 
hóa, sản xuất ôxy. Trong trường hợp sử dụng đầu vào là khí, khoảng 17-25% các bon đi 
vào theo nguyên liệu đầu vào vào và thải ra trong quá trình xử lý. Trong trường hợp đầu 
vào là than, tổng lượng phát thải trong quá trình xử lý là hơn 50% cácbon trong nhiên liệu 
đầu vào, Việc thu, lưu giữ CO2 có thể được áp dụng để giảm mạnh phát thải CO2
                
              
                                            
                                
            
 
            
                 19 trang
19 trang | 
Chia sẻ: maiphuongdc | Lượt xem: 2612 | Lượt tải: 1 
              
            Bạn đang xem nội dung tài liệu Đề tài Nhiên liệu thay thế viễn cảnh của công nghệ tương lai, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
, muội đen, mùi và sự thiếu linh hoạt khiến động cơ diesel chưa được chấp nhận 
trên thị trường đã được giải quyết. 
Ngày nay, động cơ diesel chạy êm hơn và được trang bị bộ tăng áp (turbocharger), 
hệ thống phun nhiên liệu trực tiếp, và hệ thống xử lý khí thải. Bộ tăng áp giúp động cơ 
đốt cháy nhiều nhiên liệu hơn bằng cách nén thêm nhiên liệu vào xi-lanh trong mỗi chu 
kỳ nổ. Mercedes Benz đang tự hào là sở hữu công nghệ “sạch” nhất thế giới - BLUETEC 
- tổ hợp trung hòa khí thải dùng cho động cơ diesel do Audi, Mercedes-Benz và 
Volkswagen hợp tác phát triển. 
Điện sinh học 
Về lý thuyết, động cơ diesel có thể chạy bằng bất cứ nhiên liệu nào, bao gồm cả 
dầu ăn đã qua sử dụng. Tuy nhiên, các yếu tố thực tế như độ lỏng, mức ổn định nhiệt 
độ… đã dẫn đến việc phải xác định tiêu chuẩn cho các loại nhiên liệu dùng cho động cơ 
diesel là loại nhiên liệu có nguồn gốc từ các loại dầu tự nhiên như dầu nành hay dầu hạt 
cải, có thể đáp ứng được các tiêu chuẩn về khí thải và môi trường. Biodiesel, hay còn gọi 
là “diesel sinh học”, là hỗn hợp tỷ lệ 2-5% dầu tự nhiên với dầu diesel làm từ dầu mỏ. 
Lợi ích của việc sử dụng biodiesel là giảm lượng khí carbon monoxide (CO), 
hydrocarbons, và sulfur dioxide ra môi trường. Biodiesel nhờn hơn nên sẽ giúp chủ xe 
giảm chi phí bảo dưỡng động cơ, đây là nhiên liệu có thể tái chế. 
Bio-DME (Dimethyl Ether) 
Bio-DME sử dụng khí tổng hợp để sản xuất. Loại khí tổng hợp này được lấy từ 
quá trình khí hóa sinh khối. Tuy nhiên, có thể sản xuất loại khí này rất dễ dàng từ than đá 
và khí thiên nhiên trên quy mô lớn, tại các nhà máy điện và các quá trình khí hóa lỏng. 
Ethanol 
Một loại nhiên liệu khác có thể thay thế xăng là ethanol. Đây là một loại rượu cồn 
làm từ thực vật, thường là từ ngô và mía. Vì cồn vốn có hàm lượng octane cao nên 
ethanol là loại nhiên liệu lý tưởng cho động cơ có tỷ số nén cao. Có thể dễ dàng hiệu 
chỉnh các loại động cơ hiện nay, với mức chi phí không cao, để sử dụng ethanol hoặc hỗn 
hợp ethanol và xăng - thông dụng nhất hiện nay là E85, một hỗn hợp gồm 85% ethanol 
và 15% xăng. Hiện nay ở Hoa Kỳ có gần 2 triệu xe "flex-fuel" (ô tô có động cơ dùng 
nhiên liệu linh hoạt) đang sử dụng có thể chạy bằng ethanol. 
Một ưu điểm lớn của ethanol là có lượng khí thải thấp, nhờ hàm lượng ôxy cao. 
Nhiên liệu khác 
Khí thiên nhiên: Là khí được khai thác từ các mỏ khí có sẵn trong tự nhiên. Thành phần 
chủ yếu của khí thiên nhiên là mêtan (CH4) từ 80÷90%. Khí thiên nhiên dùng làm nhiên 
liệu cho ôtô dưới 3 dạng sau đây: 
- Khí thiên nhiên nén (Compressed Natural Gas/CNG): khí nén ở thể tích nhỏ 
hơn với một áp suất cao 250 bars và chứa trong một bình chứa chắc chắn. Bình 
chứa chứa được 40-50 lít khí. 
- Khí thiên nhiên hoá lỏng (Liquid Natural Gas/LNG): khí được làm lạnh ở nhiệt 
độ -162oC, áp suất khoảng 8,9 bars để chuyển sang trạng thái lỏng và chứa 
trong các bình cách nhiệt. 
- Khí thiên nhiên hấp thụ (Adsorbed Natural Gas/ANG): khí thiên nhiên được 
chứa dưới dạng hấp thụ trong các vật liệu đặc biệt (như ống mao dẫn Cacbon 
hoạt tính) ở áp suất 30-40 bars. 
Thành phần khí xả của khí thiên nhiên so với nhiên liệu xăng và Diesel ít ô nhiễm 
môi trường hơn vì nó giảm được khí CO, năng lượng Hydrocacbon, lượng Sunfuadioxit 
SO2 và không có chì (Pb). Đồng thời việc sản xuất khí thiên nhiên đơn giản, an toàn hơn 
và lượng khí thiên nhiên trên thế giới có trữ lượng rất lớn. 
Hyđrô, CNG, propane và methanol cũng là các nhiên liệu có thể dùng cho động cơ xăng; 
tất nhiên, cần phải có một số hiệu chỉnh cơ bản. Khí tự nhiên nén hiện đang được sử dụng 
rộng rãi cho xe buýt ở các đô thị của Mỹ nhằm góp phần giảm lượng khí thải ra môi 
trường. Các nhà sản xuất cũng đang dùng công nghệ DOD (displacement-on-demand, 
hay dung tích xi-lanh biến thiên) để tăng hiệu quả tiêu thụ nhiên liệu. Sử dụng hộp số tự 
động 6, 7, thậm chí là 8 cấp để tối đa hóa hiệu quả công suất động cơ. Một số hãng như 
Nissan còn dùng hộp số vô cấp CVT cho hầu hết tất cả các xe. Công nghệ này cho phép 
động cơ hoạt động ở mức hiệu quả nhất trong hầu hết mọi điều kiện. Tăng áp 
(turbocharge) cũng là một công nghệ nổi tiếng trong việc tăng hiệu quả đốt nhiên liệu. 
Động cơ Hybrid 
Ôtô chạy điện rất lý tưởng về việc hạn chế mức độ gây ồn cũng như không phát 
sinh các chất gây ô nhiễm thông thường như bồ hóng và các chất độc hại dạng khí khác. 
Ôtô điện đựoc xếp vào dạng ôtô sạch (ZEV: Zero Emission Vehicles). 
Hiện nay những ôtô vừa hoạt động bằng nhiệt, vừa hoạt động bằng điện được gọi 
là ôtô Hybrid đựoc quan tâm nghiên cứu. Đây là loại động cơ sử dụng động cơ tổ hợp kết 
hợp giữa một động cơ đốt trong thông thường với một động cơ điện sử dụng điện năng 
của ắc quy. Ôtô Hybrid hoạt động theo nguyên tắc: động cơ điện sử dụng để khởi động 
xe, sau đó trong quá trình chạy bình thường sẽ vận hành đồng bộ. Động cơ điện còn có 
công dụng tăng cường năng lượng để xe gia tốc hoặc leo dốc. Khi phanh xe hoặc xuống 
dốc, động cơ điện sẽ được sử dụng như một máy phát để nạp điện cho ắc quy. Việc điều 
khiển sự phối hợp đồng bộ giữa động cơ đốt trong và động cơ điện sẽ được quyết định 
bởi một bộ điều khiển điện tử. Với sự phối hợp giữa động cơ đốt trong và động cơ điện, 
động cơ Hybrid đựơc mở rộng giới hạn làm viêc, giảm tiêu thụ nhiên liệu cho động cơ 
đốt trong, hiệu suất tổ hợp động cơ cao, moment lớn ở số vòng quay nhỏ và giảm thiểu ô 
nhiễm môi trường. 
Hybrid - động cơ kết hợp xăng-điện - đang là đề tài nóng hổi hiện nay, với Toyota 
và Honda thống lĩnh thị trường. Nhiều nhà sản xuất khác cũng đã sẵn sàng nhập cuộc. 
Động cơ hybrid có nhiều ưu điểm, trong đó nổi bật nhất là giảm khí thải, tăng hiệu quả sử 
dụng nhiên liệu, vận hành êm và mang lại cho chủ xe cảm giác mình đang góp phần bảo 
vệ môi trường. 
Pin nhiên liệu 
Công nghệ pin nhiên liệu hiện đang được nhiều nhà sản xuất ô tô lớn nghiên cứu 
phát triển. Đây là giải pháp hứa hẹn nhất cho dự án ô tô chạy bằng điện trong tương lai, 
theo đó, dòng điện dùng để chạy mô-tơ được sinh ra từ một thiết bị điện hóa. Pin nhiên 
liệu có sức hấp dẫn rất lớn vì nó không chỉ cung cấp năng lượng cho ô tô mà còn có thể 
ứng dụng trong nhiều lĩnh vực khác như nông nghiệp nông thôn, quân sự… Pin nhiên 
liệu sạch, không có khí thải nào khác ngoài hơi nước. 
Hiện nay, Honda, DaimlerChrysler, Toyota, Hyundai, Nissan, Audi, BMW, Daihatsu, 
Fiat, Kia, Mitsubishi, Peugeot, Suzuki, Volkswagen, Ford, GM và Tập đoàn dầu khí Shell 
đang hoạt động tích cực trong các dự án pin nhiên liệu. 
Dầu phi truyền thống 
Ba loại nguồn dự trữ dầu phi truyền thống có thể được thấy rõ; dầu nặng, bitum 
chứa cát nhựa và đá phiến chứa dầu. Dầu nặng trung bình và dầu nặng quá mức trung 
bình có tỷ trọng trong phạm vi từ 25o API tới 7o API và độ nhớt từ 10-10000 centiPoise 
(cP). các nguồn tài nguyên này hay thay đổi trong điều kiện các hồ chứa. Cát có nhựa và 
bitum có tỷ trọng từ 12oAPI tới 7o API và độ nhớt khoảng 10000 cP. Các loại cát chứa 
dầu này thay đổi chậm trong các điều kiện hồ chứa. 
Các nguồn dự trữ dầu nặng trên mức trung bình được tập trung ở Venezuela, trong 
khi cát chứa dầu và bitum lại tập trung ở Canada. Tổng lượng dầu ở mỏ ở hai quốc gia 
này lần lượt là: 1200.109 thùng và 1630.109 thùng, chiếm khoảng 80% dự trữ dầu toàn 
thế giới. Đối với cả hai nguồn dự trữ có thể so với dầu dữ trữ của Ảrập Xêút (310.109 
thùng của Canađa và 270.09 thùng của Venezuela). 
Cát có dầu chứa 10-15% bitum. 10% cát nhựa được đặt ở vị trí trong vòng 50 m 
trên bề mặt và có thể được khai thác lộ thiên. Thu hồi cát chứa dầu đối với các nguồn tài 
nguyên được khai thác trên bề mặt tới là rất thuận lợi. Tới 90% cát chứa dầu có thể được 
khai thác sử dụng công nghệ phù hợp (phần lớn tỷ lệ thu hồi thấp từ 10-20%). Hàng loạt 
các công nghệ khai thác dưới lòng đất có thể được thể hiện như: phương pháp kích thích 
hơi tuần hoàn (CSS), điều khiển hơi tuần hoàn bằng áp lực (PCSD), sản xuất dầu nặng 
trong cát bằng phương pháp làm mát (CHOPS); phun dung môi và tiêu nước bằng trọng 
lực có sự trợ giúp của hơi nước (SAGD). Khai thác lộ thiên vẫn là công nghệ chủ đạo 
hiện nay ở Canađa (chiếm khoảng 80%) 
Cát được khai thác và vận chuyển tới nhà máy xử lý, loại bỏ bitum sử dụng quy 
trình làm sạch hỗn hợp bằng nước, natri hyđrôxit và một số dạng khác. Sau khi làm sạch 
bitum được pha loãng bằng naptalin và chuyển tới nhà máy tuyển chọn. Đun nóng bitum 
ở nhiệt độ 500oC, thu được khoảng 70% nhiên liệu thô đồng hành. Nhiên liệu thô đồng 
hành tạo ra sản lượng dầu hỏa tối ưu và các sản phẩm chưng cất trung gian khác. Phần 
còn lại sẽ được crack bằng phương pháp nhiệt tạo ra sản phẩm khí hoặc chuyển đổi thành 
than cốc. 
Trong trường hợp cát nhựa của Orinoco, Venezuela, nhiệt độ của bể chứa tại độ 
sâu 1000 m là 55oC. Nhiệt độ của bể chứa cao sẽ làm giảm độ nhớt. Theo một kết quả, 
dầu có thể được thu hồi không cần hoặc sử dụng nhiệt rất hạn chế. Dầu nặng có tỷ trọng 
trung bình là 9,5o API (100 t/m3) được hút lên từ các giếng được lắp đặt theo cụm, sử 
dụng bơm trục vít. 
Đặc biệt, chi phí sản xuất cũng thấp hơn chi phí sản xuất dầu truyền thống. Điều 
này minh chứng cho việc sản xuất ngày càng tăng nhanh. 829 triệu thùng bitum được sản 
xuất ở Canađa năm 2002. Vào năm 2011, cát chứa dầu của Alberta sẽ sản xuất được gần 
2 triệu thùng dầu thô /ngày, tương ứng với 57% tổng sản lượng dầu thô của Canađa. 
Venezuela đang xây dựng kế hoạch áp dụng công nghệ chuyển đổi nhiều cát có nhựa để 
sản xuất nhiên liệu dùng trong giao thông có giá trị cao. Quá trình luyện cốc là công nghệ 
chuyển đổi sơ cấp. 
Tổng sản lượng nhiên liệu dầu thô/ ngày của Venezuela và Canađa trong năm 
2010 sẽ là 3 triệu thùng, chiếm 3% sản lượng dầu thế giới. Tổng quan năng lượng thế 
giới của IEA dự báo tổng sản lượng dầu thô chứa khí (syncrude) vào năm 2030 là 6 triệu 
thùng/ngày, sản lượng này đạt được nhờ vào các dự án nhiều tỷ đô la được xây dựng và 
thực hiện. Các dự án này đòi hỏi môi trường chính sách phải ổn định. 
Quy trình tổng hợp Fischer-Tropsch từ khí thiên nhiên và than 
Quy trình công nghệ tổng hợp Fischer-Tropsch sản xuất các nhiên liệu đồng hành. 
Các nhiên liệu hóa thạch hoặc sinh khối được biến đổi thành khí đồng hành bằng phương 
pháp loại bỏ hơi nước. Khí đồng hành được biến đổi thành diesel và naphtha trong phản 
ứng xúc tác Fischer-Tropsch. Nam Phi đã triển khai công nghệ này trên phạm vi rộng 
trong vòng 50 năm qua và hiện nay nhà máy hóa lỏng than đang hoạt động với sản lượng 
0,15 triệu thùng/ngày. Sản phẩm hỗn hợp gồm 80% diesel và 20% naphthan. Trung Quốc 
đang quan tâm tới phiên bản mới của quy trình sản xuất này, có thể tăng tới 1,2 triệu 
thùng/ngày vào năm 2020. 
Hiện nay, 40% nhiên liệu lỏng thu được từ than bằng quy trình xử lý Fischer-
Tropsch. Sản xuất nhiên liệu lỏng từ than ít bị ảnh hưởng bởi giá nguyên liệu đầu vào 
hơn là sản xuất từ khí thiên nhiên, nhưng chi phí đầu tư rất cao do chi phí bổ sung để khí 
hóa, sản xuất ôxy. Trong trường hợp sử dụng đầu vào là khí, khoảng 17-25% các bon đi 
vào theo nguyên liệu đầu vào vào và thải ra trong quá trình xử lý. Trong trường hợp đầu 
vào là than, tổng lượng phát thải trong quá trình xử lý là hơn 50% cácbon trong nhiên liệu 
đầu vào, Việc thu, lưu giữ CO2 có thể được áp dụng để giảm mạnh phát thải CO2. 
Trong những năm gần đây đã có sự chú ý về sản xuất kết hợp giữa điện và nhiên 
liệu đồng hành, chẳng hạn như methanol, diesel và hyđrô theo công nghệ Fischer-
Tropsch. Việc sản xuất kết hợp sẽ cho phép hệ số tải trung bình cao, có thể giảm chi phí 
vốn trên một đơn vị sản phẩm. Việc sản xuất nhiên liệu cho giao thông theo công nghệ 
Fischer-Tropsch và điện năng từ than đang làm tăng hiệu suất chuyển đổi năng lượng từ 
40-50% so với nhà máy cùng loại không đồng thời sản xuất nhiên liệu và phát điện. Một 
kết quả phân tích cho thấy, chi phí sản xuất nhiên liệu đồng hành có thể giảm được 10%, 
nếu áp dụng chiến lược sản xuất đồng thời cả nhiên liệu và phát điện. 
Xe chạy bằng khí thiên nhiên 
Các động cơ xe có thể chạy bằng khí thiên nhiên, nhưng đòi hỏi một số cải tiến đối 
với động cơ. Sử dụng khí yêu cầu phải có bình chứa và tuổi thọ của động cơ sẽ ngắn hơn. 
Những bộ phận thay mới của xe ôtô chạy gas có chi phí trung bình khoảng 3400 
USD/ôtô. Điện năng đầu ra của xe giảm khoảng 15-20%. Hiện nay những bộ phận thay 
mới kiểu này đang thu hút được các loại xe ở Đức, bởi vì khí thiên nhiên không phải chịu 
thuế như nhiên liệu là dầu mỏ. Tuy nhiên, việc triển khai mở rộng bị hạn chế bởi các trạm 
nạp khí thiên nhiên và việc cung cấp khí thiên nhiên đồng thời về phương diện xe cộ 
cũng bị hạn chế. Chi phí đầu tư cho các bộ phận thay mới bằng cách đưa vào giá xăng, 
theo tính toán sẽ tương đương khoảng 35 cent/lít. Các chi phí đầu tư này là không đáng 
kể, phải tính đến sự thích hợp của các nhiên liệu thay thế. Trên toàn thế giới, khoảng 3,8 
triệu xe động cơ chạy bằng khí thiên nhiên, chủ yếu là ở các nước như: Argentina, 
Braxin, Pakistan, Italy, Ấn Độ và Hoa Kỳ, chiếm 0,5% tổng số xe gắn động cơ trên thế 
giới. 
Công nghệ sử dụng Bioethanol và các nhiên liệu sinh học khác 
Năm 2003, sản lượng ethanol của thế giới là 28 tỷ lít (tương đương với 0,5 % tiêu 
thụ dầu mỏ trên toàn cầu). Sản xuất loại nhiên liệu này tập trung chủ yếu ở Braxin và Hoa 
Kỳ, chủ yếu từ các nguyên liệu đầu vào là cây mía (Braxin) và ngô (Hoa Kỳ), sau đó dần 
mở rộng sang sử dụng cây trồng cellulose và thậm chí là từ gỗ. Như vậy chi phí nguyên 
liệu đầu vào sẽ thấp, tạo ra khả năng sản xuất gia tăng trên toàn cầu, vì sản xuất ethanol 
có chi phí thấp. Các nước và các khu vực khác nhau đang xây dựng kế hoạch nhanh 
chóng mở rộng sản xuất ethanol. Một số kịch bản đưa ra là vào năm 2020 sẽ tăng sản 
lượng gấp 10 lần chỉ riêng từ nguyên liệu đầu vào là cây mía đường. Sinh khối cũng có 
thể chuyển đổi thành nhiên liệu thay thế bằng công nghệ Fischer-Tropsch, nhưng chi phí 
sẽ cao hơn so với sản xuất từ gas và than bởi vì nguồn cung cấp không thuận lợi. 
Viễn cảnh lâu dài của ethanol hoặc bất kỳ của nhiên liệu sinh học nào khác như methanol 
và diesel sinh học sẽ phụ thuộc vào sự có sẵn của nguồn nhiên liệu sinh khối. Sự có sẵn 
này phụ thuộc vào nhu cầu và mô hình lương thực trong tương lai các loại hình sử dụng 
đất và sản lượng nông nghiệp. các yếu tố khuyến khích có thể đưa vào nhằm giảm phát 
thải ở mức 80 USD/1 tấn CO2, khả năng hiệu quả chi phí đối với sinh khối sơ cấp “mới” 
trong khoảng 50-100 EJ vào năm 2050, khoảng xấp xỉ một nửa sản lượng nhiên liệu sinh 
học được sử dụng. Hiệu suất thu hồi sinh khối khoảng 50% đối với 25-50 EJ sản lượng 
nhiên liệu sinh học. Theo kết quả đánh giá sự tập trung sản lượng nông nghiệp và thương 
mại tư do các sản phẩm nông nghiệp trên toàn cầu, nên việc chi phí cho khuyến khích 
giảm CO2 khá cao. 
Sản xuất hyđrô 
Hiện nay, việc sản xuất hyđrô từ khí thiên nhiên là sự lựa chọn sản xuất quy mô 
lớn giá thấp. Các nhà máy sản xuất tập trung quy mô lớn có thể được trang bị thiết bị thu 
giữ CO2, như vậy hệ thống vận tải sẽ không phát thải CO2. Tuy nhiên, việc chuyển đổi 
hệ thống giao thông sử dụng nhiên liệu hyđrô có thể dẫn đến một giai đoạn chuyển đổi 
hyđrô có giá cao hơn do sản xuất bằng phương pháp điện phân. 
Trong thời gian dài, than hoặc năng lượng hạt nhân có thể được sử dụng sản xuất 
hyđrô không phát thải CO2. Dự án FutureGen, Hoa Kỳ được xây dựng để vận hành nhà 
máy điện có công suất 275 MW sản xuất cả điện năng và hyđrô từ than và cô lập 1 triệu 
tấn CO2/năm. Dự án này sẽ chi phí 950 triệu USD. Nhà máy dự kiến hoàn thành vào năm 
2012 và thử nghiệm vào năm 2015. Nhiệt hạt nhân có nhiệt độ cao (khoảng 850oC) có 
thể được sử dụng để khởi động chu trình sulphur-Iot để sản xuất hyđrô. Chi phí của loại 
lò phản ứng này sẽ giảm từ 5-10 USD/GJ, có thể cung cấp cho các hệ thống quy mô rất 
lớn sử dụng và chi phí đối với các lò hạt nhân mới có thể giảm 1000 USD/ kW. Hyđrô 
có thể được sử dụng cho động cơ đốt trong, nhưng nó lại là một loại nhiên liệu đặc biệt 
phù hợp đối với các pin nhiên liệu hiệu suất cao. Tuy nhiên, tại thời điểm này các pin 
nhiên liệu chưa sẵn sàng đưa ra thị trường đại trà. Chi phí của pin nhiên liệu cần phải 
được giảm từ 2000 USD/kW xuống 50 USD/kW và thời gian hoạt động cần được nâng 
cao. Trong thời gian dài, hyđrô sẽ còn giữ vai trò quan trọng, tạo ra nguồn cung cấp an 
toàn và lợi ích phát tán CO2. 
Methnol và DME từ khí thiên nhiên và than 
Các nhiên liệu khác đang còn tranh luận là methanol và DiMethylEther (DME). 
DME không độc hại như methanol. Cả hai nhiên liệu này được sản xuất ra từ một khối 
lượng lớn các nguyên liệu đầu vào gồm; than, khí thiên nhiên và sinh khối. Công nghệ 
sản xuất methanol từ khí thiên nhiên đã được chính thức hóa. Tuy nhiên, phần chủ yếu 
của methanol được sử. DME có thể được sử dụng làm nhiên liệu để chạy tua bin phát 
điện, động cơ diesel hoặc thay thế LPG sử dụng trong các hộ gia đình. Hiện nay, sản 
lượng DME toàn cầu đạt 0,15 triệu tấn /ngày, sử dụng chủ yếu trong các bình xịt tóc. hai 
nhà máy DME từ than đang vận hành ở Trung Quốc với tổng công suất 40.000 tấn/ngày. 
các dự án sản xuất từ khí thiên nhiên đã được lên kế hoạch và dự định ở Trung Đông. Sản 
xuất DME được tiến hành theo quy trình 2 bước. Bước 1, methanol được sản xuất từ khí 
đồng hành. Tiếp theo methanol được khử nước bằng xúc tác để tạo ra DME. 
Sản xuất điện 
Các phương tiện giao thông hybrid (HEVs) gần đây đã thu được nhiều lợi ích. Các 
phương tiện giao thông sử dụng động cơ đốt trong, chạy điện. Nguồn điện này được sử 
dụng để khởi động động cơ điện. Hiệu suất năng lượng của các loại phương tiện giao 
thông này đạt tới 50% cao hơn ICEs truyền thống. Đặc biệt trong trường hợp giao thông 
đô thị theo tuyến khép kín, nhiều bến đỗ, khoản tiết kiệm thu được là đáng kể. Khi các 
loại phương tiện giao thông này có lắp ắc quy, có thể nạp bằng điện lưới đối với quang 
đường đi lại ngắn. Phần lớn các tuyến giao thông ngắn sẽ tiết kiệm được một lượng điện 
đáng kể do sử dụng nhiên liệu, mặc dù phạm vi hạn chế. 
Một trạm nạp cỡ trung bình cho HEV có ắc quy nạp điện cho xe chạy trong phạm 
vi 35 km sẽ có giá từ 4000 đến 6100 USD, trạm nạp trong phạm vi 100 km sẽ có giá 7400 
tới 10300 USD. Ắc quy có tổng giá là 5800 USD cho xe chạy trong phạm vi 100 km, 
còn lại là chi phí bổ sung cho hệ thống hybrid. 
Chi phí và vấn đề an ninh nguồn cung cấp 
Viêc đưa vào sử dụng các nhiên liệu thay thế phụ thuộc vào chi phí so với các 
nhiên liệu từ dầu mỏ. Tuy nhiên các chính phủ giữ vai trò quan trọng trong việc xây dựng 
giá. Ở châu Âu, hơn 2/3 của giá tiêu dùng chịu thuế. Sự thay đổi các mức thuế đối với các 
nhiên liệu khác nhau có thể tác động đáng kể tới hiệu quả chi phí. Tuy nhiên giá dầu mỏ 
trong tương lai sẽ thay đổi. Phần lớn giá xăng cao và diesel có thể xảy ra trong trường 
hợp khan hiếm nhiên liệu. Hiệu suất của xe thay đổi khi sử dụng các loại nhiên liệu khác 
nhau. Động cơ diesel đạt khoảng 20%, hiệu suất cao hơn các loại xe sử dụng xăng. Đặc 
biệt, hyđrô làm nhiên liệu cho pin nhiên liệu của xe có thể đạt hiệu suất cao gấp 2 lần 
hiệu suất của các động cơ đốt trong. Tuy nhiên, nếu HEV được đưa vào sử dụng trên quy 
mô lớn, thì sự khác nhau về hiệu suất giữa hyđrô và các nhiên liệu khác là không nhiều. 
Do hiệu suất và chi phí khác nhau, so sánh về giá nhiên liệu/một đơn vị năng lượng là 
không khách quan. Nhiên liệu sẽ phân loại hệ thống động cơ được sử dụng với hiệu suất 
khác nhau và tình trạng phát triển khác nhau. Chi phí của các loại phương tiện khác nhau 
cũng khác nhau. Bởi vậy chi phí vòng đời là tiêu chuẩn thực tế tốt nhất để đánh giá. 
Bất kỳ giá nhiên liệu đầu vào nào cũng được xác định, nó phụ thuộc vào thời 
điểm. Đặc biệt, việc tìm kiếm trong tương lai một loại khí giá rẻ sẽ là khó khăn, nó phụ 
thuộc vào việc cạnh tranh sử dụng khí.. như LNG hay các đường ống dẫn cao áp. Mối 
liên hệ giữa giá khí và giá dầu đang tăng lên và giá khí hóa lỏng, vận chuyển và tái khí 
hóa, giá của khí khan hiếm cũng tăng dần. Như vậy, những đặc trưng về an ninh nguồn 
cung cấp các nhiên liệu thay thế khác so với dầu truyền thống khai thác ở Trung Đông. 
Cát chứa dầu của Canađa và các nhiên liệu sinh học rõ ràng làm tăng an ninh nguồn cung 
cấp, nếu giảm thiểu nhu cầu nhập khẩu dầu. Việc tăng chuyển đổi loại khí khan hiếm trên 
quy mô lớn để tăng cường an ninh nguồn cung cấp cũng là không thực tế. Điện sản xuất 
từ than, nhiên liệu hạt nhân, tái tạo có thể làm tăng an ninh nguồn cung cấp, nhưng mỗi 
một loại đều có các vấn đề nan giải riêng. 
3. CÂN BẰNG CO2 CỦA NHIÊN LIỆU THAY THẾ 
Phát thải CO2 của các nhiên liệu có thể tách ra thành các phát thải trong quá trình 
sử dụng và phát tán ngược. Đối với nhiên liệu dầu mỏ, các phát thải trong quá trình sử 
dụng la những yếu tố quan trọng nhất. Hyđrô không gây các phát thải CO2 trong quá 
trình sử dụng và các phát thải từ nhiên liệu sinh học như ethanol được cân bằng bởi được 
thu giữ CO2 trong quá trình phát triển sinh khối. Phát thải ngược đối với các nhiên liệu 
thay thế là có thể xảy ra. Tuy nhiên, đối với các quy trình sản xuất trên quy mô lớn, CO2 
có thể được thu và lưu giữ dưới đất. Phương pháp này có thể làm giảm các phát thải 
ngược từ 85-95%. Phụ thuộc vào việc lựa chọn nhiên liệu ban đầu và sử dụng hệ thống 
thu giữ cácbon (CCS), các phát thải ngược có thể thay đổi cơ bản. 
Không sử dụng CCS, các phát thải của hầu hết các nhiên liệu thay thế cao hơn các 
nhiên liệu tinh chế, trừ ethanol. Điều này lý giải rằng tổn thất năng lượng ngược cao hơn 
và như vậy các phát thải này cao hơn phát thải của các nhà máy lọc dầu hiện nay. Sử 
dụng methanol, DME và CNG cho phép giảm phát tán ở mức vừa phải. 
Các nhiên liệu khí đồng hành và than phát thải tương tự như những nhiên liệu dầu 
tinh lọc hiện nay. Giảm phát các phát thải lớn có thể thực hiện được trong trường hợp sử 
dụng sinh khối và nhiên liệu hóa thạch có áp dụng CCS. Sử dụng sinh khối có thể gây ra 
phát thải của hàng loạt các nhiên liệu tiêu cực. 
Bảng 1: Nhiên liệu phát thải CO2 có hoặc không sử dụng hệ thống CCS 
Phát thải 
trong 
quy 
trình sản 
xuất 
[kg 
CO2/GJ] 
Phát thải 
sử dụng 
[kg 
CO2/GJ] 
CCS 
[kg 
CO2/GJ] 
Tổng 
phát thải 
có/khôn
g CCS 
[kg 
CO2/GJ] 
Chỉ số 
Tổng 
phát thải 
có CCS 
[kg 
CO2/GJ] 
Chỉ số 
Phƣơng tiện giao thông hiện tại/ cơ sở hạ tầng cung cấp nhiên liệu 
Xăng từ 
dầu thô 
5-10 73 -5-0 78-83 98-102 78 100 
Xăng 
CO2-EOR 
5-10 73 -50-100 78-83 98-102 -22-33 -28-42 
Xăng phi 
truyền 
thống 
35 73 -30 108 133 78 100 
Ethanol 
(sinh khối) 
10-30 0 -90-0 10-30 12-37 -80-10 -103-13 
Xăng/ 
diesel 
(khí) 
25 73 -20 98 126 78 100 
 ăng/diesel 
(than) 
160 73 -145 233 288 88 113 
Xăng/ 
diesel 
(sinh khối) 
5 0 -100 5 6 -95 -122 
Xe mới/cần cơ sở hạ tầng cung cấp nhiên liệu 
Methanol 
(khí) 
10 65 10 75 93 65 83 
DME 
(khí) 
10 67 10 77 95 67 86 
CNG 
(khí) 
5-10 56 0 61-66 75-81 61-66 78-85 
Hyđrô 
(điện) 
0-100 0 -90-0 0-90 0-123 0-10 0-13 
Hyđrô 
phân tán 
(khí) 
80-100 0 0 80-100 99-123 80-100 103-128 
Hyđrô tập 
trung (khí) 
70-90 0 -85- 60 70-90 86-111 5-10 6-13 
Hyđrô tập 
trung 
(than) 
134-156 0 
-110-
145 
134-156 165-193 9-24 12-31 
4. TÁC ĐỘNG THỊ TRƢỜNG CỦA DẦU TIỀM NĂNG 
Nhiều kịch bản về khả năng cung cấp nhiên liệu được đưa ra không có sự thay đổi 
về nhu cầu. Tuy nhiên, chỉ một số ít trong số này đáp ứng tất cả các mục tiêu chính sách 
năng lượng. Theo tính toán sơ bộ, vào năm 2050 khoảng 30-60% nhiên liệu giao thông 
được thay bằng các nhiên liệu thay thế. Tổng nhu cầu nhiên liệu giao thông theo kịch bản 
giao thông thông thường sẽ vào khoảng 175 EJ/năm. Vì vậy sẽ cần tới khoảng 55-105 EJ 
nhiên liệu thay thế (hiệu suất năng lượng). Điều này có nghĩa là khoảng 70-125 EJ nhiên 
liệu giao thông là dầu truyền thống, một khu vực sản xuất và sử dụng dầu mỏ truyền 
thống ổn định tăng 2/3 so với mức năm 2000. Dự báo phát triển đến năm 2030 được dựa 
trên cơ sở kế hoạch và các chương trình đầu tư. Các dự báo đến năm 2030 và phát triển 
hàng năm trong giai đoạn 2030-2050 cho thấy có thể đáp ứng nhu cầu nhiên liệu trong 
thời gian dài (đến năm 2050), không có sự thay đổi về nhu cầu. Khí thiên nhiên và khí 
thiên nhiên dựa vào các nhiên liệu thay thế có thể coi như là một giải pháp “cuối cùng” 
trong trường hợp cung cấp dầu truyền thống thấp hơn các kịch bản giả định. 
5. CÁC VẤN ĐỀ MÔ HÌNH HÓA CHÍNH SÁCH 
Triển khai các loại nhiên liệu thay thế trong tương lai là vấn đề của hàng loạt các 
bất định. Dựa vào các mục tiêu chính sách năng lượng, các kết quả đạt được có thể hoàn 
toàn khác nhau. Những thay đổi quan trọng nhất mà các nhà chính sách có thể xem xét là: 
 Xác định lượng dầu mỏ truyền thống có thể thu hồi; 
 Chi phí thu hồi và giá; 
 Những liên quan về an ninh nguồn cung cấp của việc tăng phụ thuộc vào dầu mỏ; 
 Biện pháp cung cấp nhanh các loại nhiên liệu thay thế khác nhau; 
 Giá trong tương lai của khí khan hiếm; 
 Hiệu quả 
            Các file đính kèm theo tài liệu này:
 Cl06_2010R.pdf Cl06_2010R.pdf