MỤC LỤC
A. LỜI MỞ ĐẦU
B. NỘI DUNG
I. THIẾT LẬP MÔ HÌNH
1. Biến phụ thuộc
2. Biến độc lập
3. Mô hình tổng thể
4. Dự đoán kì vọng giữa các biến
5. Mô hình hồi quy mẫu
6. Ý nghĩa của các hệ số hồi quy
II. KHOẢNG TIN CẬY
1. Khoảng tin cậy của β1
2. Khoảng tin cậy của β2
3. Khoảng tin cậy của β3
4. Khoảng tin cậy của β4
5. Khoảng tin cậy của β5
6. Khoảng tin cậy của β6
7. Khoảng tin cậy của β7
8. Khoảng tin cậy của β8
III. KIỂM ĐỊNH
1. Kiểm định sự ảnh hưởng của biến độc lập đối với biến phụ thuộc
2. Kiểm định sự phù hợp của mô hình SRF so với số liệu của mẫu
3. Kiểm định hiện tượng đa cộng tuyến
4. Kiểm định hiện tượng phương sai sai số ngẫu nhiên thay đổi
5. Kiểm định hiện tượng tự tương quan
IV. KIỂM ĐỊNH BIẾN KHÔNG CẦN THIẾT
V. KIỂM ĐỊNH BIẾN BỊ BỎ SÓT
VI. MÔ HÌNH HOÀN CHỈNH
1. Ý nghĩa các hệ số hồi quy
2. Khoảng tin cậy
a. Khoảng tin cậy của β1
b. Khoảng tin cậy của β2
c. Khoảng tin cậy của β3
d. Khoảng tin cậy của β4
e. Khoảng tin cậy của β5
f. Khoảng tin cậy của β6
g. Khoảng tin cậy của β7
3. Kiểm định
a. Kiểm định sự ảnh hưởng của biến độc lập đối với biến phụ thuộc
b. Kiểm định sự phù hợp của mô hình SRF so với số của liệu mẫu
VII. THỐNG KÊ MÔ TẢ
BIẾN Y
BIẾN SL
BIẾN PT
BIẾN CT
VIII. HẠN CHẾ
C. LỜI CẢM ƠN
21 trang |
Chia sẻ: leddyking34 | Lượt xem: 1798 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Đề tài Những nhân tố ảnh hưởng đến nhu cầu đi siêu thị của sinh viên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
LỜI MỞ ĐẦU
Tất cả các sinh viên đều có những nhu cầu khác nhau cho cuộc sống của mình ngoài vấn đề học tập. Những nhu cầu đó đều xuất phát dựa trên các suy nghĩ khác nhau cũng như cách cảm nhận về các vấn đề hàng ngày của bản thân. Xuất phát trên cơ sở đó mà các sản phẩm tiêu dùng hàng ngày của sinh viên cũng đa dạng và phong phú không kém.
Siêu thị là một nơi rất đáng chú ý đối với sinh viên với nhiều lí do khác nhau; sản phẩm đa dạng, giá cả cũng phải chăng…
Chính vì để hiểu thêm về nhu cầu đi siêu thị của sinh viên mà Nhóm quyết định nghiên cứu về: “ Những nhân tố ảnh hưởng đến nhu cầu đi siêu thị của sinh viên”. Và Nhóm đã phát 150 phiếu điều tra về vấn đề trên cho các sinh viên Duy Tân tại 209 Phan Thanh.
Vấn đề nghiên cứu rộng và phức tạp nên trong quá trình làm Nhóm cũng mắc không ít thiếu sót mong thầy và các nhóm khác góp ý để đề tài của nhóm hoàn thiện hơn. Nhóm xin chân thành cảm ơn!
MỤC LỤC
LỜI MỞ ĐẦU
NỘI DUNG
THIẾT LẬP MÔ HÌNH
Biến phụ thuộc
Biến độc lập
Mô hình tổng thể
Dự đoán kì vọng giữa các biến
Mô hình hồi quy mẫu
Ý nghĩa của các hệ số hồi quy
KHOẢNG TIN CẬY
Khoảng tin cậy của β1
Khoảng tin cậy của β2
Khoảng tin cậy của β3
Khoảng tin cậy của β4
Khoảng tin cậy của β5
Khoảng tin cậy của β6
Khoảng tin cậy của β7
Khoảng tin cậy của β8
KIỂM ĐỊNH
Kiểm định sự ảnh hưởng của biến độc lập đối với biến phụ thuộc
Kiểm định sự phù hợp của mô hình SRF so với số liệu của mẫu
Kiểm định hiện tượng đa cộng tuyến
Kiểm định hiện tượng phương sai sai số ngẫu nhiên thay đổi
Kiểm định hiện tượng tự tương quan
KIỂM ĐỊNH BIẾN KHÔNG CẦN THIẾT
KIỂM ĐỊNH BIẾN BỊ BỎ SÓT
MÔ HÌNH HOÀN CHỈNH
Ý nghĩa các hệ số hồi quy
Khoảng tin cậy
Khoảng tin cậy của β1
Khoảng tin cậy của β2
Khoảng tin cậy của β3
Khoảng tin cậy của β4
Khoảng tin cậy của β5
Khoảng tin cậy của β6
Khoảng tin cậy của β7
Kiểm định
Kiểm định sự ảnh hưởng của biến độc lập đối với biến phụ thuộc
Kiểm định sự phù hợp của mô hình SRF so với số của liệu mẫu
THỐNG KÊ MÔ TẢ
BIẾN Y
BIẾN SL
BIẾN PT
BIẾN CT
HẠN CHẾ
LỜI CẢM ƠN
I. THIẾT LẬP MÔ HÌNH:
Biến phụ thộc:
Y : nhu cầu đi siêu thị của sinh viên
Biến độc lập:
GT: Giới tính
SL: Số lần đi
PT: Phương tiện
CT: Chi tiêu
MH: Mặt hàng
VT: Vị trí
SP: sản phẩm
Mô hình tổng thể:
Yi = β1 + β2GT + β3SL + β4PT + β5CT + β6MH + β7VT + β8SP + Ui
Dự đoán kì vọng giữa các biến
β3 dương: Khi số lần đi siêu thị càng nhiều thì nhu cầu càng cao.
β4 âm: Khi phương tiện ảnh hưởng càng nhiều thì nhu cầu càng giảm
β5 âm: Khi chi tiêu 1 tuần cho việc đi siêu thị vượt mức thì nhu cầu tăng.
β6 dương: Khi mặt hàng ưa thích trong siêu thị tăng thì nhu cầu càng cao.
β7 dương: Khi vị trí càng thuận lợi thì nhu cầu càng cao.
β8 dương: Khi sản phẩm trong siêu thị càng đa dạng thì nhu cầu càng cao.
Mô hình hồi quy mẫu
Yi = 0.519595 + 0.034669GT + 0.778062SL – 0.156217PT
– 0.026714CT – 0.017447MH + 0.094180VT + 1.225895SP + ei
Ý nghĩa của các hệ số hồi quy
β1^: Khi các yếu tố GT, SL, PT, CT, MH, VT, SP bằng 0 thì nhu cầu đi siêu thị của sinh viên đạt giá trị nhỏ nhất là 0.519595.
β2^: Khi các yếu tố khác không đổi thì nhu cầu của nữ đi siêu thị nhiều hơn nam 0.034669 lần.
β3^: Khi các yếu tố khác không đổi, số lần đi siêu thị tăng giảm 1 lần thì nhu cầu đi siêu thị của sinh viên tăng giảm 0.778062 lần.
β4^: Khi phương tiện tăng giảm 1 mức độ và các yếu tố còn lại không đổi thì nhu cầu đi siêu thị của sinh viên tăng giảm 0.778602 lần.
β5^: Khi các yếu tố khác không đổi, chi tiêu cho 1 tuần tăng giảm 1 mức độ thì nhu cầu giảm tăng 0.026714 lần.
β6^: Khi mặt hàng tăng giảm 1 mặt hàng và các yếu tố khác không đổi thì nhu cầu đi siêu thị của sinh viên giảm tăng 0.017447 lần.
β7^: Khi các yếu tố khác không đổi, nếu vị trí của siêu thị thích hợp thì nhu cầu đi siêu thị của sinh viên lớn hơn 0.094180 lần so với vị trí không thích hợp.
β8^: Khi các yếu tố khác không đổi, sản phẩm trong siêu thị tăng giảm 1 sản phẩm thì nhu cầu đi siêu thị của sinh viên tăng giảm 1.225895 lần.
KHOẢNG TIN CẬY:
Βj^ - tα/2(n-k)*Se(βj^)≤ βj ≤ βj^ + tα/2(n-k)*Se(βj)
(với tα/2(n-k) = t0.025(142) = 1.976811)
Khoảng tin cậy của β1:
Với β1^ = 0.519595
Se(β1^) = 0.230367
Thì khoảng tin cậy của β1:
0.064203 ≤ β1 ≤ 0.974987
Ý nghĩa: Với các yếu tố khác không đổi thì nhu cầu đi siêu thị của sinh viên chênh lệch trong khoảng từ 0.064203 đến 0.974987.
Khoảng tin cậy của β2:
Với β2^ = 0.034669
Se(β2^) = 0.046718
Thì khoảng tin cậy của β2 là:
-0.057684 ≤ β2 ≤ 0.127022
Ý nghĩa: Khi các yếu tố khác không thay đổi thì nhu cầu đi siêu thị của sinh viên nam nhận giá trị trong khoảng từ -0.057684 đến 0.127022
Khoảng tin cậy của β3:
Với β3^ = 0.778062
Se(β3^) = 0.046214
Thì khoảng tin cậy của β3 là:
0.686706 ≤ β3 ≤ 0.869418
Ý nghĩa: Với các yếu tố khác không đổi và số lần đến siêu thị của sinh viên tăng giảm một mức độ thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ 0.686706 đến 0.869418.
Khoảng tin cậy của β4:
Với β4^ = -0.156217
Se(β4^ ) = 0.051104
Thì khoảng tin cậy của β4 là:
-0.25724 ≤ β4 ≤ -0.05519
Ý nghĩa:
Khi các nhân tố khác không đổi và sự ảnh hưởng của phương tiện tăng giảm 1 mức độ thì nhu cầu đi siêu thị chênh lệch trong khoảng từ -0.25724 đến -0.05519.
Khoảng tin cậy của β5:
Với β5^ = -0.026714
Se(β5^) = 0.024923
Thì khoảng tin cậy của β5 là:
-0.075982 ≤ β5 ≤ 0.022554
Ý nghĩa:
Với các yếu tố khác không đổi và chi tiêu cho 1 tuần tăng giảm 1 mức độ thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ -0.075982 đến -0.022554
Khoảng tin cậy của β6:
Với β6^ = -0.017447
Se(β6^) = 0.014153
Thì khoảng tin cậy của β6 là:
-0.045425 ≤ β6 ≤ 0.010531
Ý nghĩa:
Khi các yếu tố khác không đổi và mặt hàng trong siêu thị tăng giảm một mặt hàng thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ -0.045425 đến 0.010531.
Khoảng tin cậy của β7:
Với β7^ = 0.04918
Se(β7^) = 0.054157
Thì khoảng tin cậy của β7 là :
-0.012878 ≤ β7 ≤ 0.201238
Ý nghĩa:
Với các yếu tố khác không đổi, khi vị trí của siêu thị thích hợp thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ -0.012878 đến 0.201238.
Khoảng tin cậy của β8:
Với β8^ = 1.225895
Se(β8^) = 0.060991
Thì khoảng tin cậy của β8 là:
1.105273 ≤ β8 ≤ 1.346463
Ý nghĩa:
Với các yếu tố khác không đổi, khi sản phẩm siêu thị đáp ứng được nhu cầu sinh viên thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ 1.105273 đến 1.346463.
KIỂM ĐỊNH
Kiểm định sự ảnh hưởng của biến độc lập đối với biến phụ thuộc:
Prob(b2) = 0.4593 > = 0.05 à Giới tính không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b3) = 0.0000 < = 0.05 à số lần ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b4) = 0.0027 < = 0.05 à Phương tiện ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b5) = 0.2856 > = 0.05 à Chi tiêu không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b6) = 0.2197 > = 0.05 à Mặt hàng không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b7) = 0.0842 > = 0.05 à Vị trí không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b8) = 0.0000 < = 0.05 à Sản phẩm ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Kiểm định sự phù hợp của mô hình SRF so với số liệu của mẫu:
Prob(F-statistic) = 0.000000 < = 0.05
à Mô hình phù hợp.
Kiểm định hiện tượng đa cộng tuyến
Phát hiện đa cộng tuyến:
Xem xét qua ma trận tương quan giữa các biến (Bảng 2 phần PHỤ LỤC), ta thấy 2 biến SL và PT có mức tương quan cao: 0.840358 nên tồn tại hiện tượng đa cộng tuyến.
Để kiểm định hiện tượng đa cộng tuyến nhóm đã xây dựng mô hình hồi quy phụ trong đó lần lượt các biến độc lập sẽ trở thành biến phụ thuộc và hồi quy chúng với các biến còn lại.
Bảng hồi quy phụ theo biến PT và SL ( Bảng phụ lục 5 và 6 )
Mô hình hồi quy chính:
Yi = β1 + β2GT + β3SL + β4PT + β5CT + β6MH + β7VT + β8SP + Ui
Mô hình hồi quy phụ:
PT = α1 + α2GT + α3SL + α4CT + α5MH + α6VT + α7SP + Ui
Hồi quy mô hình hồi quy phụ theo biến PT (Bảng phụ lục 5 )
→ R12 = 0.721614
Vì Prob(F-stactistic) = 0.000000 << α = 0.05
Mô hình hồi quy phụ phù hợp.
Vậy mô hình ban đầu tồn tại hiện tượng đa cộng tuyến.
Khắc phục hiện tượng đa cộng tuyến
Loại bỏ biến PT hoặc SL ra khỏi mô hình ban đầu.
Hồi quy lại mô hình trong đó loại bỏ biến PT ( Bảng phụ lục 7)
Mô hình hồi quy đã bỏ PT:
Yi = - 0.126090 + 0.053443GT + 0.896041SL – 0.013772CT – 0.015944MH + 0.104884VT + 1.223553SP + ei.
R2bỏ PT = 0.921544
Hồi quy lại mô hình trong đó loại bỏ biến Sl ( Bảng phụ lục 8 )
Mô hình hồi quy đã bỏ SL:
Yi = 3.758749 – 0.004568GT – 0.874772PT – 0.046171CT – 0.030340MH – 0.027607VT + 1.256329SP + ei.
R2bỏ SL = 0.779446
So sánh R2 ở hai mô hình ta thấy: R2bỏ PT > R2bỏ SL
Vậy loại bỏ biến PT ra khỏi mô hình thì mô hình sẽ tốt hơn.
Kiểm định hiện tượng phương sai sai số ngẫu nhiên thay đổi.
TH1: Mô hình gốc.
Phát hiện hiện tượng phương sai sai số ngẫu nhiên thay đổi:
Theo bảng 9 phần PHỤ LỤC, ta thấy Probability = 0.000000 < α = 0.05
Tồn tại hiện tượng phương sai sai số ngẫu nhiên thay đổi
Khắc phục hiện tượng phương sai sai số ngẫu nhiên thay đổi.
Xét MHHQ:
Yi = β1 + β2GT + β3SL + β4PT + β5CT + β6MH + β7VT + β8SP + Ui (1)
Ta có: Var(Ui) = σi2PT2 = PT2 = PT2 = 0.0505297PT2
Chia 2 vế của (1) cho PT, ta được:
Đặt Yi* = ; PT*=; GT*=; SL*=; CT*=; MH*=; VT*=; SP*=; Vi=
Mô hình (2) được viết lại như sau:
Yi*= β1* + β2*GT* + β3*SL* + β4*PT* + β5*CT* + β6*MH* + β7*VT* + β8*SP + Vi (3).
Vậy: MH(3) có phương sai sai số ngẫu nhiên không đổi. Vì Var(Vi) = Var() = Var(Ui) = = CONST
TH2: Mô hình đã khắc phục đa cộng tuyến
Phát hiện hiện tượng phương sai sai số ngẫu nhiên thay đổi:
Theo bảng phụ lục 11, ta thấy Probability = 0.000003 < α = 0.05
Tồn tại phương sai sai số ngẫu nhiên thay đổi.
Khắc phục hiện tượng phương sai sai số ngẫu nhiên thay đổi:
Xét MHHQ:
Yi = β1 + β2GT + β3SL + β4CT + β5MH + β6VT + β7SP + Ui (1)
Ta có: Var(Ui) = σi2SL = 0.153636SL
Chia 2 vế của (1) cho ta được:
(2)
Đặt: Yi*=
MH(2) được viết lại như sau:
Yi*=β1*+β2*GT*+β3*SL*+β4*CT*+β5*MH*+β6*VT*+β7*SP*+Vi(3).
Vậy: MH (3) có phương sai sai số ngẫu nhiên không đổi
Vì Var(Vi) = Var() = Var(Ui) = σi2SL = σi2 = 0.153636.
Kiểm định hiện tượng tự tương quan:
TH1: Đối với mô hình gốc.
Phát hiện hiện tượng tự tương quan
Ta có k’= k – 1 = 8 – 1 = 7; n = 150
d = 2.019648 (Bảng 13 phần PHỤ LỤC)
dU = 1.722
dL = 1.53
Kiểm định giả thiết H0: Không có tự tương quan dương hoặc âm
ð dU < d < 4 – dU = 2.278
ð Không bác bỏ H0, tức là không tồn tại hiện tượng tự tương quan.
TH2: Mô hình đã khắc phục đa cộng tuyến
Phát hiện hiện tượng tự tương quan:
d = 2.031137(Bảng 14 phần PHỤ LỤC)
k’ = k – 1 = 6; n = 150
dU = 1.708
dL = 1.543
Kiểm định giả thiết H0: Không có tự tương quan dương hoặc âm
ð dU < d < 4 – dU = 2.292
ð Không bác bỏ H0, tức là không tồn tại hiện tượng tự tương quan.
KIỂM ĐỊNH BIẾN KHÔNG CẦN THIẾT:
Redundant Variables: VT
F-statistic
3.024199
Probability
0.084198
Log likelihood ratio
3.161034
Probability
0.075415
Dựa vào bảng ta thấy F = 3.024199 có xác suất Prob= 0.084198 > α = 0.05
Nên VT là biến không cần thiết trong mô hình hồi quy.
KIỂM ĐỊNH BIẾN BỊ BỎ SÓT:
Omitted Variables: PT
F-statistic
9.344247
Probability
0.002673
Log likelihood ratio
9.559495
Probability
0.001989
Dựa vào bảng ta thấy F = 9.344247 có xác suất Prob= 0.002673 < α = 0.05
Nên PT là biến bị bỏ sót.
MÔ HÌNH HOÀN CHỈNH:
Yi = - 0.126090 + 0.053443GT + 0.896041SL – 0.013772CT – 0.015944MH + 0.104884VT + 1.223553SP + ei.
Ý nghĩa của các hệ số hồi quy
β1^: Khi các yếu tố GT, SL, PT, CT, MH, VT, SP bằng 0 thì nhu cầu đi siêu thị của sinh viên đạt giá trị lớn nhất là 0.126090.
β2^: Khi các yếu tố khác không đổi thì nhu cầu của nữ đi siêu thị nhiều hơn nam 0.053443 lần.
β3^: Khi các yếu tố khác không đổi, số lần đi siêu thị tăng giảm 1 lần thì nhu cầu đi siêu thị của sinh viên tăng giảm 0.896041 lần.
β4^: Khi các yếu tố khác không đổi, chi tiêu cho một tuần tăng giảm 1 mức độ thì nhu cầu giảm tăng 0.013772 lần.
β5^: Khi mặt hàng tăng giảm 1 mặt hàng và các yếu tố khác không đổi thì nhu cầu đi siêu thị của sinh viên giảm tăng 0.015944 lần.
β6^: Khi các yếu tố khác không đổi và vị trí của siêu thị thích hợp thì nhu cầu đi siêu thị của sinh viên lớn hơn 0.104884 lần so với vị trí không thích hợp.
β8^: Khi các yếu tố khác không đổi, sản phẩm trong siêu thị tăng giảm 1 sản phẩm thì nhu cầu đi siêu thị của sinh viên tăng giảm 1.223553 lần.
Khoảng tin cậy
Βj^ - tα/2(n-k)*Se(βj^)≤ βj ≤ βj^ + tα/2(n-k)*Se(βj)
(với tα/2(n-k) = t0.025(143) = 1.976692)
Khoảng tin cậy của β1:
Với β1^ = -0.126090.
Se(β1^) = 0.094579.
Thì khoảng tin cậy của β1:
-0.313044 ≤ β1 ≤ 0.060864.
Ý nghĩa: Với các yếu tố khác không đổi thì nhu cầu đi siêu thị của sinh viên chênh lệch trong khoảng từ -0.313044 đến 0.060864.
Khoảng tin cậy của β2:
Với β2^ = 0.053443.
Se(β2^) = 0.047645.
Thì khoảng tin cậy của β2 là:
-0.040736 ≤ β2 ≤ 0.147623
Ý nghĩa: Khi các yếu tố khác không thay đổi thì nhu cầu đi siêu thị của sinh viên nam nhận giá trị trong khoảng từ -0.040736 đến 0.147623.
Khoảng tin cậy của β3:
Với β3^ = 0.896041
Se(β3^) = 0.02615
Thì khoảng tin cậy của β3 là:
0.844351 ≤ β3 ≤ 0.947732
Ý nghĩa: Với các yếu tố khác không đổi và số lần đến siêu thị của sinh viên tăng giảm một mức độ thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ 0.844351 đến 0.947732.
Khoảng tin cậy của β4:
Với β4^ = -0.013772
Se(β4^ ) = 0.025267
Thì khoảng tin cậy của β4 là:
-0.063717 ≤ β4 ≤ 0.036173
Ý nghĩa:
Khi các nhân tố khác không đổi và sự ảnh hưởng của chi tiêu tăng giảm 1 mức độ thì nhu cầu đi siêu thị chênh lệch trong khoảng từ -0.063717 đến 0.036173.
Khoảng tin cậy của β5:
Với β5^ = -0.015944
Se(β5^) = 0.014552
Thì khoảng tin cậy của β5 là:
-0.044709 ≤ β5 ≤ 0.012821
Ý nghĩa:
Với các yếu tố khác không đổi và mặt hàng tăng giảm 1 mặt hàng thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ -0.044709 đến 0.012821.
Khoảng tin cậy của β6:
Với β6^ = 0.104885
Se(β6^) = 0.055598
Thì khoảng tin cậy của β6 là:
-0.005015 ≤ β6 ≤ 0.214785
Ý nghĩa:
Khi các yếu tố khác không đổi và khi vị trí của siêu thị thích hợp thì nhu cầu đi siêu thị của sinh viên nhận giá trị trong khoảng từ -0.005015 đến 0.214785.
Khoảng tin cậy của β7:
Với β7^ = 1.223553
Se(β7^) = 0.06274
Thì khoảng tin cậy của β7 là :
1.099535 ≤ β7 ≤ 1.347571
Ý nghĩa:
Với các yếu tố khác không đổi, khi sản phẩm của siêu thị đáp ứng được nhu cầu sinh viên thì nhu cầu đi siêu thị của sinh viên nhận giá trị chênh lệch trong khoảng từ 1.099535 đến 1.347571.
KIỂM ĐỊNH
Kiểm định sự ảnh hưởng của biến độc lập đối với biến phụ thuộc:
Prob(b2) = 0.2639 > = 0.05 à Giới tính không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b3) = 0.0000 < = 0.05 à số lần ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b4) = 0.5866 > = 0.05 à Chi tiêu không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b5) = 0.2751 > = 0.05 à Mặt hàng không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b6) = 0.0613 > = 0.05 à Vị trí không ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Prob(b7) = 0.0000 < = 0.05 à Sản phẩm ảnh hưởng đến nhu cầu đi siêu thị của sinh viên.
Kiểm định sự phù hợp của mô hình SRF so với số liệu của mẫu:
Prob(F-statistic) = 0.000000 < = 0.05
à Mô hình phù hợp.
THỐNG KÊ MÔ TẢ
BIẾN Y:
Tiêu chí
Mức độ
Giá trị
Trung bình
2.153333
Trung bình
Trung vị
2.000000
Lớn nhất
5.000000
Cao
Nhỏ nhất
1.000000
Thấp
BIẾN SL:
Tiêu chí
Số lần
Giá trị
Trung bình
1.286667
1-2
Trung vị
1.000000
Lớn nhất
4.000000
>6
Nhỏ nhất
1.000000
0
BIẾN PT:
Tiêu chí
Mức độ
Giá trị
Trung bình
2.900000
Trung bình
Trung vị
3.000000
Lớn nhất
4.000000
Nhiều
Nhỏ nhất
1.000000
Ít
BIẾN CT:
Tiêu chí
Mức độ
Giá trị
Trung bình
2.053333
Trung bình
Trung vị
2.000000
Lớn nhất
3.000000
Nhiều
Nhỏ nhất
1.000000
Ít
VIII. HẠN CHẾ
Vì nguồn lực của nhóm có hạn nên số lượng sinh viên được điều tra còn thấp nên tính chính xác chưa cao.
Vì hiểu biết của nhóm còn hạn chế nên trong quá trình làm nhóm chỉ đưa ra các yếu tố cơ bản ảnh hưởng đến nhu cầu đi siêu thị của sinh viên, nhưng vẫn còn các yếu tố khác mà nhóm vẫn chưa đề cập đến.
LỜI CẢM ƠN
Nhóm Sunflowers xin gửi lời cảm ơn chân thành nhất tới thầy Nguyễn Quang Cường, người đã nhiệt tình giúp đỡ nhóm trong quá trình làm tiểu luận cũng như đã giải đáp tất cả các thắc mắc của nhóm và cũng đã trang bị cho nhóm những kiến thức cần thiết cho nhóm trong môn kinh tế lượng.
Bên cạnh đó, giúp cho nhóm chúng em có thêm nhiều hiểu biết về việc thu thập, xử lí số liệu và cách sử dụng các phầm mềm như Eviews, Excel,…trong môn Kinh tế lượng nói riêng và các môn học sau này nói chung.
Bài tiểu luận này chắc chắn còn có nhiều hạn chế và thiếu sót nhưng nhóm Sunflowers hi vọng rằng sẽ nhận được nhiều ý kiến đóng góp của các bạn để bài tiểu luận này hoàn thiện hơn. Nhóm xin chân thành cảm ơn!...
Các file đính kèm theo tài liệu này:
- Ti_u lu_n.doc