MỤC LỤC
MỞ ĐẦU
Chương 1: TỔNG QUAN
1.1 Giới thiệu về chấm lượng tử bán dẫn.
1.1.1 Vài nét về chất bán dẫn
1.1.2 Các hệ bán dẫn thấp chiều.
1.1.3 Các chấm lượng tử bán dẫn (hay nano tinh thể bán dẫn).
1.1.4 Các mức năng lượng của điện tử trong chấm lượng tử bán dẫn.
1.1.5 Các chế độ giam giữ trong chấm lượng tử
1.1.5.1 Chế độ giam giữ yếu.
1.1.5.2 Chế độ giam giữ mạnh.
1.1.5.3 Chế độ giam giữ trung gian.
1.2 Một số phương pháp chế tạo chấm lượng tử bán dẫn.
1.2.1 Phương pháp sol – gel
1.2.2 Nano tinh thể trong zeolite
1.2.3 Màng thuỷ tinh, bán dẫn composite
1.2.4 Các nano tinh thể chế tạo trong dung dịch hữu cơ và polyme
(hay các nano tinh thể chế tạo bằng phương pháp hoá ướt).
1.2.4.1 Phương pháp phân huỷ các hợp chất cơ-kim.
1.2.4.2 Phương pháp micelle đảo chế tạo các nano tinh thể. .
Chương 2 THỰC NGHIỆM
2.1 Phương pháp Micelle đảo chế tạo chấm lượng tử CdS và CdS/ZnS.
2.2 Các phương pháp quang phổ
2.2.1 Phép đo phổ hấp thụ
2.2.2 Phép đo phổ huỳnh quang
Chương 3 KẾT QUẢ VÀ THẢO LUẬN
3.1 Phổ hấp thụ của các chấm lượng tử CdS.
3.2 Phổ huỳnh quang của các tinh thể nano CdS và CdS/ZnS.
KẾT LUẬN
TÀI LIỆU THAM KHẢO
Các công trình công bố liên quan đến khoá luận
47 trang |
Chia sẻ: netpro | Lượt xem: 3162 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đề tài Phổ hấp thụ và huỳnh quang của các nano tinh thể bán dẫn CdS và CdS/ZnS chế tạo trong AOT, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
diễn dưới dạng [9]:
(1.17)
E1s1s = Eg + - 1,786 (1.22)
trong đó số hạng tỉ lệ với biểu diễn tương tác Coulomb hiệu dụng của điện tử - lỗ trống.
So sánh số hạng này với năng lượng Ryberg của exciton Ry* = và chú ý đến giới hạn giam giữ mạnh (R < aB), ta thấy tương tác Coulomb không bị triệt tiêu trong chấm lượng tử nhỏ, mà đóng góp của số hạng này vào năng lượng trạng thái cơ bản thậm chí còn lớn hơn trong tinh thể khối. Đây là sự khác nhau cơ bản của chấm lượng tử với tinh thể khối, giếng lượng tử và dây lượng tử, ở các hệ đó năng lượng Coulomb của cặp điện tử - trống tự do bằng không.
Khi coi thế Coulomb là một nhiễu loạn, người ta tìm thấy năng lượng trạng thái thấp nhất của cặp điện tử - lỗ trống là [16]:
E10 = Eg +- 1,786 (1.23)
Khi khai triển độ lệch giữa năng lượng của cặp điện tử - lỗ trống và độ rộng vùng cấm của bán dẫn Eg dưới dạng chuỗi, Schmit và Weller và Kaynuma (1986) đã tìm ra biểu thức năng lượng của của đỉnh hấp thụ thứ nhất là [16]:
(1.24)
Biểu thức trên còn được viết dưới dạng khác (Effors, Brus, Kayanuma) như sau [16]:
(1.25)
với R là bán kính của chấm lượng tử.
Số hạng thứ hai là động năng chứa khối lượng hiệu dụng me và mh của điện tử và lỗ trống. Số hạng thứ ba thể hiện tương tác Coulomb giữa điện tử và lỗ trống. Số hạng thứ tư liên quan đến không gian giữa điện tử và lỗ trống, và thường nhỏ hơn nhiều so với số hạng thứ hai và thứ ba.
1.1.5.3. Chế độ giam giữ trung gian.
ChÕ ®é giam gi÷ trung gian øng víi trêng hîp b¸n kÝnh chÊm lîng tö n»m trong kho¶ng aB < R < 4aB. Trong trêng hîp nµy ta cã năng lượng của điện tử lớn hơn rất nhiều so với tương tác Coulomb giữa điện tử và lỗ trống, nhưng năng lượng của lỗ trống lại nhỏ hơn nhiều so với tương tác này. Trong trường hợp này khèi lîng cña ®iÖn tö lµ nhá h¬n nhiÒu so víi khèi lîng cña lç trèng (me/mh << 1), cho nên điÖn tö bÞ lîng tö ho¸ bëi thÕ giam gi÷ vµ lç trèng cã thÓ coi nh kh«ng dÞch chuyÓn mµ ®Þnh xø t¹i t©m cña chÊm lîng tö.
Víi chÕ ®é giam gi÷ trung gian, c¸c tr¹ng th¸i n¨ng lîng vµ phæ hÊp thô cña chÊm ®îc x¸c ®Þnh chñ yÕu bëi sù lîng tö ho¸ chuyÓn ®éng cña ®iÖn tö. Tuy nhiªn do t¬ng t¸c Coulomb gi÷a ®iÖn tö vµ lç trèng, mçi møc ®iÖn tö bÞ t¸ch thµnh vµi møc con. VÞ trÝ cùc ®¹i hÊp thô ®Çu tiªn cña chÊm cã thÓ ®îc m« t¶ bëi biÓu thøc [11]:
(1.36)
Các công thức (1.17) và (1.25) và (1.26) cho thấy sự giam giữ lượng tử làm cho ®é réng vïng cÊm hiÖu dông E1s1s cña chÊm lîng tö b¸n dÉn ®îc më réng so víi ®é réng vïng cÊm Eg cña b¸n dÉn khèi. Do đó sự hÊp thô hay ph¸t x¹ vïng – vïng trong chÊm lîng tö b¸n dÉn bÞ lÖch vÒ phÝa sãng ng¾n (vÒ phÝa n¨ng lîng cao) so víi b¸n dÉn khèi. Các công thức này sẽ được dùng để tính kích thước của các chấm lượng tử từ phổ hấp thụ.
1.2. Một số phương pháp chế tạo chấm lượng tử bán dẫn.
Các nano tinh thể bán dẫn hay các chấm lượng tử bán dẫn có thể được chế tạo bằng nhiều phương pháp khác nhau. Tuỳ thuộc vào kỹ thuật chế tạo, môi trường nuôi cấy, điều kiện mọc mà ta có các nano tinh thể với các kích thước, độ bền hoá học và vật lý khác nhau. Có thể nuôi cấy các nano tinh thể trong các dung dịch lỏng và polyme, trong các thuỷ tinh vô cơ hoặc các tinh thể rắn khác, … Sau đây là một số phương pháp phổ biến.
1.2.1. Phương pháp sol – gel.
Quá trình sol-gel là quá trình chế tạo vật liệu vô cơ bằng cách hình thành các hạt keo (sol) ổn định từ chất dạng hạt đã chọn và thông qua việc gel hoá, sol này biến tướng thành tổ chức mạng ba chiều (gel) [4]. Phương pháp sol-gel là quá trình keo hoá (quá trình colloide) tổng hợp làm ngưng tụ các hạt keo thu được, có khả năng thu được vật liệu có trạng thái mong muốn như khối đặc màng phôi, sợi và bột có độ lớn đồng nhất.
Quá trình này gồm 2 phản ứng cơ bản. Đầu tiên là các phản ứng thuỷ phân, sau đó là các phản ứng polymer hoá đa ngưng tụ cùng với sự tiếp tục thuỷ phân. Sự polymer hoá làm cho độ nhớt của dung dịch tăng lên cho đến khi thành gel rắn.
Người ta thường sử dụng phương pháp này để chế tạo các nano tinh thể trong thuỷ tinh xốp. Thuỷ tinh xốp chế tạo theo cách này không cần xử lý ở nhiệt độ cao và có các lỗ xốp kích thước nanomet, sau đó các nano tinh thể được đưa vào các lỗ xốp này. So với thuỷ tinh chế tạo theo lối cổ truyền, thuỷ tinh xốp có thể chứa vật liệu bán dẫn với mật độ rất cao [1]. Các nano tinh thể chế tạo theo phương pháp này có ít các sai hỏng do kết tủa ở nhiệt độ thấp. Tuy nhiên, kỹ thuật sol-gel trong giai đoạn hiện nay đang gặp phải một số vấn đề bất cập trong việc khống chế kích thước và tạo phân bố kích thước hẹp. Phổ quang học của các nano tinh thể trong thuỷ tinh xốp thường bị mở rộng, trước tiên là do phân bố kích thước rộng. Do đó việc nghiên cứu để tìm ra sự khống chế kích thước của các chấm lượng tử là rất quan trọng [1].
1.2.2. Nano tinh thể trong zeolite.[1]
Zeolite là vật liệu Al-O-Si kết tinh với các khung được sắp xếp đều đặn có kích thước cỡ 1 nm. Việc tổng hợp các đám nano tinh thể bán dẫn bên trong khung này cung cấp một chuỗi các chấm lượng tử với phân bố kích thước hẹp và do đó thể hiện độ mở rộng bất đồng nhất rất nhỏ của phổ quang học. Một số nano tinh thể đã được chế tạo trong zeolite như CdS, PbI2. Tuy nhiên mạng nền zeolite không cung cấp bất kỳ một khả năng nào để thay đổi kích thước của các nano tinh thể. Kích thước của các nano tinh thể được quy định bởi kích thước của khung. Đối với phương pháp này, kích thước của mẫu là rất nhỏ (với kích thước cả ba chiều không lớn hơn 100 mm) nên việc ứng dụng các nano tinh thể chế tạo theo phương pháp này là không được rộng rãi.
1.2.3. Màng thuỷ tinh, bán dẫn composite. [1]
Màng thuỷ tinh, bán dẫn composite dùng để đưa các tinh thể nano Si và Ge phân tán vào trong nền SiO2. Phương pháp được dựa trên tần số vô tuyến của manheton phẳng khi thổi Si hoặc Ge trong khí hydro hoặc khí argon vào đế silic với màng mỏng oxyde silic tự nhiên. Màng mỏng oxyde silic lại được giữ trên một điện cực trong khi điện cực khác bị che bởi nam châm vĩnh cửu để che tấm S hoặc Ge. Kích thước của các nano tinh thể phân tán trong màng SiO2 có thể được khống chế bởi nhiệt độ của đế, công suất của tần số vô tuyến và áp suất của khí ở môi trường xung quanh. Các mẫu thu được phù hợp cho nghiên cứu quang học truyền qua và phát xạ cũng như nghiên cứu bởi tia X và kính hiển vi điện tử truyền qua (TEM). Màng thuỷ tinh, bán dẫn composite có mật độ nano tinh thể cỡ 10 đến 30 %, độ dày của màng cỡ vài mm. Người ta đã thu được các nano tinh thể Si và Ge nhờ kỹ thuật này và chúng đã được nghiên cứu. Đế được nung nóng trong quá trình phun thổi lắng đọng để khống chế kích thước. Kích thước trung bình tuân theo sự phụ thuộc t1/3.
1.2.4. Các nano tinh thể chế tạo trong dung dịch hữu cơ và polyme (hay các nano tinh thể chế tạo bằng phương pháp hoá ướt)
Ph¬ng ph¸p chung ®Ó chÕ t¹o c¸c nano tinh thÓ b¸n dÉn II – VI dùa trªn c¸c ph¶n øng thÕ gi÷a c¸c hîp chÊt chøa c¸c ion kim lo¹i (nh Cd2+, Zn2+…) vµ c¸c hîp chÊt chøa c¸c ion cña c¸c nguyªn tè nhãm VI (S2-, Se2-,…) [1]
§èi víi CdS, ph¶n øng kÕt hîp cho ra c¸c ph©n tö CdS lµ:
N(Cd2+ + S2-) ® (CdS)N
ViÖc tæng hîp thêng ®îc tiÕn hµnh qua hai bíc [1]. Thø nhÊt, muèi Cadimi hoÆc c¸c chÊt t¬ng tù (CdCl2, Cd(OCOCH3, Cd(NO3)2) ®îc hoµ tan vµo c¸c dung m«i h÷u c¬. Thø hai, c¸c ion mang ®iÖn tÝch ©m nh S2-, Se2- sÏ ®îc thªm vµo nhê c¸c hîp chÊt H2S, H2Se, Na2S,…
§èi víi c¸c h¹t t¶i lµ c¸c ion nhãm VI, t¸c nh©n ph¶n øng c¬ kim cho thÊy rÊt h÷u Ých [1]. §èi víi c¸c hîp chÊt hydro, chÊt ph¶n øng c¬ kim lµ æn ®Þnh h¬n vµ hoµ tan ®îc trong c¸c dung m«i h÷u c¬. H¬n n÷a chóng còng cã thÓ ®ãng gãp c¸c nhãm ph©n tö bÉy vµ cã thÓ giíi h¹n ®îc qu¸ tr×nh lín lªn cña tinh thÓ. Hîp chÊt Si(CH3)3, [Trimethylsilyl (TMS)] lµ mét trong nh÷ng nhãm c¬ kim tån t¹i ë c¸c thÓ S(TMS)2, Se(TMS)2 và Te(TMS)2. Ở ®©y, lùc ®iÒu khiÓn ph¶n øng ho¸ häc lµ c¸c liªn kÕt ho¸ trÞ.
Các nano tinh thể bán dẫn loại II-VI có thể được hình thành trong môi trường hữu cơ nhờ những kỹ thuật khác nhau dựa trên hoá học cơ kim và polyme [5]. Đặc trưng cơ bản của các cấu trúc nano được chế tạo theo phương pháp này có thể được tóm tắt như sau: ở nhiệt độ kết tủa thấp (thường không quá 300oC) có thể giảm tối thiểu các sai hỏng mạng. Việc phủ lên bề mặt các nano tinh thể các nhóm hữu cơ sẽ tạo ra cách để khống chế trạng thái bề mặt. Có thể thu được các đám cô lập hay phân tán chúng vào các màng polyme rất mỏng với phân bố kích thước hẹp.
Một trong các phương pháp này là sử dụng dung dịch keo (phương pháp tổng hợp huyền phù các nano tinh thể - colloidal method) [5]. Vấn đề chính cần giải quyết trong kỹ thuật này là ngăn chặn sự kết tụ nhanh chóng của các hạt tinh thể. Muốn vậy, người ta thường thêm vào dung dịch lỏng chứa muối kim loại và phức halogel một tác nhân ổn định (hay còn gọi là chất bẫy bề mặt – surfactant- surface acting agent). Kích thước của các nano tinh thể thu được được khống chế bởi nhiệt độ, tốc độ hỗn hợp của các chất tham gia phản ứng, và quan trọng được quyết định bởi nồng độ của tác nhân ổn định trong dung dịch [5].
Phương pháp tổng hợp huyền phù các nano tinh thể hiện nay là phương pháp phổ biến. Bằng phương pháp này, người ta có thể thay đổi các liên kết xung quanh nano tinh thể, đưa chúng vào các môi trường khác nhau (như tế bào, các bộ cộng hưởng quang học…), hoặc có thể pha loãng để quan sát từng nano tinh thể riêng biệt [5].
Có hai phương pháp phổ biến để tổng hợp huyền phù các nano tinh thể trong môi trường hữu cơ. Phương pháp đầu tiên là phương pháp micelle đảo. Bằng phương pháp này có thể chế tạo các loại nano tinh thể khác nhau như nano tinh thể của kim loại (Cu, Ni, Au), của các hợp kim giả bền (CdyZn1-yS, CdyMn1-yS), các chất bán dẫn (CdS, CdTe, Ag2S) hoặc các chất có từ tính (Co, CoFe2O4) [5]. Phương pháp thứ hai là phương pháp phân huỷ các hợp chất cơ - kim, nó cho phép tổng hợp các nano tinh thể nhóm II-VI như là CdSe, CdS, CdTe được bao quanh bởi một lớp vỏ bảo vệ vô cơ khác như ZnS, ZnSe, hoặc CdS [5]. Phương pháp tổng hợp này là phương pháp được dùng phổ biến nhất hiện nay để chế tạo các nano tinh thể bán dẫn có kích thước và hình dạng giống nhau và có hiệu suất lượng tử cao.
1.2.4.1. Phương pháp phân huỷ các hợp chất cơ-kim
Phương pháp phân huỷ các tiền chất hữu cơ – kim loại đã được phát triển đầu tiên bởi các nhóm nghiên cứu của M. Bawendi, P. Alivisatos và P. Guyot-Sionnest [5], sau đó được hoàn thiện dần và hiện nay có thể chế tạo các chấm lượng tử dạng cầu với độ phân tán kích thước nhỏ hơn 5 % bằng phương pháp này. Ví dụ, để chế tạo các chấm lượng tử CdSe, các tiền chất, như là dimethylcadmium và TOP-Se, được tiêm nhanh vào hỗn hợp nóng (~ 260 0C) của TOPO và HDA [5]. Khi đó các mầm tinh thể CdSe hình thành rất nhanh, và hình thành các nano tinh thể CdSe trong dung dịch. Để loại bỏ một cách hiệu quả và bền vững các tâm tái hợp không bức xạ tại trạng thái bề mặt, người ta tiến hành bọc 1 hoặc 2 đơn lớp các chất bán dẫn với hằng số mạng tương tự và độ rộng vùng cấm lớn hơn (thường là CdS, ZnS hoặc ZnSe) bằng phương pháp tương tự như phương pháp đã dùng để chế tạo lõi. Lớp vỏ bọc được chế tạo như vậy sẽ thụ động hoá tất cả các liên kết treo tại bề mặt của lõi và tạo thành một hàng rào thế giữa các hạt tải (các điện tử và các lỗ trống) của lõi và bề mặt bên ngoài của vỏ, làm giảm ảnh hưởng của môi trường bên ngoài tới các hạt tải trong lõi tinh thể. Bên ngoài của lớp vỏ này được thụ động hoá một cách tự nhiên bởi các chất tổng hợp bị hấp thụ (TOPO). Khi đó dung dịch của các nano tinh thể loại CdSe/ZnS có hiệu suất lượng tử có thể đạt tới 85 % và có thể bảo quản được trong nhiều năm [5].
1.2.4.2. Phương pháp micelle đảo chế tạo các nano tinh thể.
Để không chế quá trình lớn lên của các chấm lượng tử, người ta dùng môi trường vi thể không đồng nhất (microteherogeneous) như là môi trường Micelle đảo [1]. Môi trường Micelle đảo là môi trường trong đó có một lượng nước nhỏ ở trong dung dịch hydrocacbon được bao quanh bởi các chất bẫy bề mặt (ở đây lµ c¸c ph©n tö cã hai nhãm chøc: kþ níc vµ a níc).
Trong môi trường Micelle đảo kích cỡ cuối cùng của các hạt bị chi phối bởi tỉ lệ mol nước và chất bẫy bề mặt. Các chấm lượng tử bán dẫn trong giọt Micelle được bảo vệ khỏi sự kết đám nhờ chất bẫy bề mặt. Sau khi các chấm lượng tử hình thành, ta đưa chúng vào mạng nền đã chế tạo trước đó.
CdSe
CdSee
PhSe TMS
H×nh 1.1. Sù bÉy C¸c nano tinh thÓ CdSe nhê nhãm phenyl.
(Ph – phenyl, Se – selen, TMS – trimethylsilyl) [10].
M«i trêng micelle ®¶o quen thuéc lµ hçn hîp AOT(0,2M)/ níc (0,98M) [AOT = bis(2-ethylhexy) sulfosuccinate, muèi disodium]. Trong m«i trêng micelle ®¶o nµy, kÝch thíc cuèi cïng cña c¸c h¹t bÞ chi phèi bëi tû lÖ mol cña níc víi chÊt bÉy bÒ mÆt. C¸c nano tinh thÓ b¸n dÉn trong giät micelle ®îc b¶o vÖ khái sù kÕt ®¸m nhê chÊt bÒ mÆt.
Hình 1.2. Các hình dạng của các giọt micelle từ đó quy định dạng của các nano tinh thể
H×nh 1.1. lµ mét vÝ dô m« t¶ sù tæng hîp c¸c nano tinh thÓ CdSe b»ng ph¬ng ph¸p micelle ®¶o víi nhãm phenyl liªn kÕt t¹i bÒ mÆt. C¸c nguyªn tö selen cã thÓ ®îc thªm vµo c¸c nano tinh thÓ giµu Cd nhê t¸c nh©n PhSe (TMS) hoÆc Se(TMS)2.
Micelle là sự kết tập của các phân tử đóng vai trò làm tác nhân bề mặt phân tán trong một dung dịch keo. Các micelle thường có dạng hình cầu nhưng cũng có thể có các dạng khác như ellip hoặc trụ, lưỡng lớp (bilayers) hay dạng lỗ hổng (vesicle, liposome) (hình 1.2).
Hình dạng của các micelle phụ thuộc vào dạng hình học của các phân tử đóng vai trò làm tác nhân bề mặt hoặc cũng có thể phụ thuộc vào điều kiện nhiệt độ hoặc độ pH của dung dịch. Một giọt micelle điển hình trong nước có đầu ưa nước ở ngoài còn các đuôi kỵ nước ở bên trong. Trong một giọt micelle, các đuôi kỵ nước của các phân tử tác nhân bề mặt tập hợp thành lõi trong môi trường dầu ngăn cách với môi trường nước xung quanh (dầu trong nước – oil in water). Ngược lại, nếu các phân tử tác nhân bề mặt có đầu ưa nước chụm vào trong tạo thành một buồng giam nước và các đuôi kỵ nước nối với các liên kết hydro bên ngoài thì chúng ta có môi trường micelle đảo (nước trong dầu – water in oil). Kích thước của các nano tinh thể bán dẫn được tạo thành trong giọt micelle phụ thuộc vào nồng độ của các chất đóng vai trò làm tác nhân bề mặt.
Trong phương pháp micelle đảo, có 3 thành phần để cấu thành giọt micelle, đó là các phân tử chất bẫy bề mặt, nước và dung môi hữu cơ không phân cực. Các đầu cực của chất bẫy bề mặt được nối thẳng tới bên trong quả cầu chứa nước, trái lại, các đuôi béo của nó thì định hướng tới môi trường hữu cơ không phân cực.
Trong luận văn này, các tinh thể nano bán dẫn CdS và CdS/ZnS được chế tạo bằng phương pháp micelle đảo trong dung môi heptane, sử dụng chất bẫy AOT (2ethylhexy - sulfosuccinate, muối disodium).
Chương 2
THỰC NGHIỆM
2.1. Phương pháp Micelle đảo chế tạo chấm lượng tử CdS và CdS/ZnS.
Do điều kiện thực nghiệm của phòng thí nghiệm Quang học - Quang phổ tại khoa Vật Lý – Đại học Sư phạm - Đại học Thái Nguyên, chúng tôi đã chế tạo chấm lượng tử bán dẫn CdS bằng phương pháp Micelle đảo sử dụng chất bẫy bề mặt là AOT.
Các chấm lượng tử chế tạo theo phương pháp này sẽ được khảo sát với các nồng độ chất bẫy bề mặt khác nhau, từ đó rút ra được những điều kiện thực nghiệm ảnh hưởng lên kích thước của các nano tinh thể.
Như đã trình bày trong chương 1, Micelle đảo là quá trình tạo giọt Micelle trong môi trường dầu bởi chất hoạt động bề mặt có nhân là pha nước chứa các hạt vô cơ. Lúc này các giọt pha phân tán (pha nước) khuếch tán trong dung môi hữu cơ ưa dầu là pha liên tục. Các giọt Micelle đảo có cấu tạo hình cầu đường kính từ vài nm đến 100 nm, trong đó tâm là hạt tinh thể nano là các hạt vô cơ cần chế tạo. Ở đây chúng tôi xét đối với tâm là hạt CdS. Phía ngoài lớp phủ là chất hoạt động bề mặt có phần đầu (phần ưa nước) hấp thụ trên bề mặt kim loại theo lực hút tĩnh điện, phần đuôi (phần kỵ nước) khuếch tán ra phía ngoài thành hình cầu. Khi nồng độ chất hoạt động bề mặt đạt tới mức tới hạn thì giọt Micelle đảo hình thành. Do lực Vander Wall các chất hữu cơ kết hợp với phần đuôi của dầu của chất hoạt động bề mặt tạo thành lớp màng khuếch tán bảo vệ các giọt Micelle [8]. Các nano tinh thể được hình thành trong các giọt Micelle.
Các hoá chất được sử dụng để chế tạo các nano tinh thể CdS gồm có: Các muối Cd(CH3COO)2. 2H2O, Na2S.9H2O, dung môi heptane (C7H16), và chất bẫy AOT (2-ethylhexy sulfosuccinate, muèi disodium). Quy trình chế tạo các tinh thể nano bán dẫn CdS được thực hiện như sau:
Đầu tiên, hoà tan các muối Cd(CH3COO)2.2H2O và Na2S.9H2O vào nước tạo thành hai dung dịch nước chứa các ion Cd2+ và S2-. Sau đó hai dung dịch này được cho vào hai phần dung môi heptane đã được thêm AOT để tạo thành hai dung dịch có các vi giọt (ở đây là các giọt nước) chứa các ion Cd2+ và S2- được bao bọc bởi các phân tử bẫy AOT. Sau đó, hai dung dịch này cũng được đổ vào nhau trong điều kiện khuấy trộn mạnh để tạo thành các nano tinh thể CdS (sơ đồ hình 2.1). Kích thước của các nano tinh thể phụ thuộc vào tỷ lệ w = [H2O]/[AOT] . Ở đây chúng tôi chế tạo các mẫu chấm lượng tử CdS với các tỷ lệ là w = 2,5; w = 5; w = 7,5 và w = 10.
Dung dịch chứa các chấm lượng tử CdS
AOT/Heptane
AOT/Heptane
Khuấy trộn
Dung dịch nước chứa các ion S2-
Dung dịch nước chứa các ion Cd2+
Hình 2.1. Sơ đồ chế tạo các nano tinh thể CdS bằng phương pháp Micelle đảo
Sau khi đã có các tinh thể nano CdS, chúng tôi bọc thêm một lớp vỏ ZnS bên ngoài các tinh thể nano này để bảo toàn tính chất phát xạ nội tại của chúng. Các hóa chất được sử dụng để chế tạo lớp vỏ bọc là Zn(CH3COOH)2.2H2O và Na2S.9H2O. Các muối này cũng được hoà tan vào nước tạo thành hai dung dịch chứa các ion Zn2+ và S2-. Hai dung dịch này được cho vào hai phần dung môi heptanne đã được thêm AOT, sau đó được cùng cho vào dung dịch đã có chứa các tinh thể nano CdS trong điều kiện khuấy trộn mạnh tạo thành lớp vỏ ZnS bám bên ngoài các lõi tinh thể CdS, hình thành nên các tinh thể nano CdS/ZnS cấu trúc lõi /vỏ. Sơ đồ chế tạo các tinh thể nano CdS/ZnS được trình bày trên hình 2.2.
Dung dịch chứa các chấm lượng tử CdS/ZnS
Khuấy trộn
Dung dịch chứa các chấm lượng tử CdS
AOT/Heptane
AOT/Heptane
Dung dịch nước chứa các ion S2-
Dung dịch nước chứa các ion Cd2+
Hình 2.2. Sơ đồ chế tạo các nano tinh thể CdS/ZnS bằng phương pháp Micelle đảo
2.2. Các phương pháp quang phổ.
2.2.1. Phép đo phổ hấp thụ.
Khi có nguồn năng lượng từ bên ngoài tới kích thích môi trường thì sẽ xảy ra quá trình hấp thụ của môi trường đó. Nguồn năng lượng kích thích có nhiều dạng khác nhau, ở đây ta xét nguồn năng lượng kích thích là ánh sáng.
Phổ hấp thụ quang học có vai trò đặc biệt quan trọng trong nghiên cứu các hạt nano. Hiệu ứng giam giữ lượng tử được thể hiện một cách rõ ràng qua sự dịch chuyển về phía xanh da trời (blue shift) của bờ hấp thụ theo sự giảm kích thước của chấm lượng tử. Đối với các chất bán dẫn, các phép đo phổ hấp thụ cho phép ta xác định được nhiều thông số của vật liệu như : độ rộng vùng cấm, các liên kết hoá học của tinh thể, các mức năng lượng nằm trong vùng cấm của bán dẫn. Ngoài ra phổ hấp thụ quang học là cách nhanh nhất để xác định sự hình thành các chấm lượng tử vì độ rộng vùng cấm của các chấm lượng tử lớn hơn nhiều so với vật liệu khối.
Mối liên hệ giữa cường độ tương đối của ánh sáng truyền qua (I) với cường độ ánh sáng tới (I0) được biểu diễn qua công thức:
trong đó, a là hệ số hấp thụ, d là độ dày của mẫu.
Nếu bỏ qua sự phản xạ, tán xạ, cường hấp thụ tương đối của môi trường được tính như sau:
hay
Đây là công thức tính đường cong thực nghiệm diễn tả sự phụ thuộc của hệ số bức xạ theo bước sóng. Tại mỗi bước sóng, ta xác định I và I0 sau đó tính Iht tại bước sóng đó. Đường Iht xác định phổ hấp thụ tương đối của môi trường.
Phổ hấp thụ của các mẫu chấm lượng tử CdS được đo bằng thiết bị quang phổ nhãn hiệu JascoV- 670 của Nhật Bản tại phòng Thí nghiệm Quang học và Quang phổ – khoa Vật Lý – Đại học Sư phạm - Đại học Thái Nguyên. Bước sóng đo được điều khiển trong một dải rộng từ 190 ÷ 2700nm được phát ra từ hai đèn, một đèn đơtơri dùng để tạo chùm sóng ngắn, và đèn halogen để tạo chùm sóng dài. Phổ hấp thụ của mẫu được khảo sát trong vùng bước sóng từ 300 ÷ 750nm
Hình 2.3. Sơ đồ nguyên lý hệ đo hấp thụ Jasco V – 670
Trong đó:
WI: Đèn halogen
D2 là đèn đơtơri
F: Bộ lọc
G1, G2: Những cách tử
S1: Khe vào, S3: Khe ra
S2: Khe trung gian
Ref: Mẫu so sánh
PbS: Tế bào PbS
W1, W2: Tấm cửa sổ đường kính 30 mm
W3, W4: Tấm cửa sổ đường kính 40 mm
M1 – M13:Hệ thống gương
M11: Gương ngắt tín hiệu đến detector
Sơ đồ nguyên lý của hệ đo được biểu diễn như hình 2.3. Năng lượng từ nguồn sáng thích hợp qua khe và được tán sắc bởi máy đơn sắc kép. Một dải rất hẹp của ánh sáng đơn sắc sẽ đi qua khe ra và được điều biến thay thế nhau giữa kênh reference và kênh mẫu. Các tín hiệu quang của hai chùm tia được biến đổi thành tín hiệu điện nhờ ống nhân quang điện. Các tín hiệu đó được khuếch đại bằng hệ điện tử của phổ kế và tỷ số tín hiệu mẫu – reference được ghi lại trên máy tính. Tín hiệu được thể hiện dưới thang độ truyền qua I/I0 hoặc độ hấp thụ log(I/I0).
2.2.2. Phép đo phổ huỳnh quang.
Hiện tượng huỳnh quang có nguồn gốc từ các chuyển dời bức xạ giữa các mức năng lượng của điện tử khi vật liệu bị kích thích. Trong trường hợp vật liệu bị kích thích bằng ánh sáng ta có phổ quang huỳnh quang. Phổ quang huỳnh quang biểu diễn sự phụ thuộc của cường độ huỳnh quang vào bước sóng phát xạ dưới kích thích bằng ánh sáng với bước sóng nhất định nào đó.
Nguyên tắc của phép đo phổ huỳnh quang là dùng nguồn sáng kích thích, với năng lượng nhất định phát ra từ đèn làm phổ kích thích phát xạ huỳnh quang của mẫu. Tín hiệu phát xạ huỳnh quang đưa vào hệ đo để xử lý rồi phân tích thành bước sóng của phổ và được vẽ ra trên máy vi tính.
Phổ huỳnh quang của các mẫu chấm lượng tử CdS được ghi bởi hệ đo huỳnh quang nhãn hiệu FS 920 (Edinburgh - Anh) có tại phòng Thí nghiệm Quang học và Quang phổ - Khoa Vật lý - Đại học Sư phạm - Đại học Thái Nguyên. Hệ đo huỳnh quang này gồm hai máy đơn sắc có cách tử kép, sơ đồ khối được mô tả trong hình 2.4. Máy đơn sắc thứ nhất tạo nguồn đơn sắc kích thích cho phép thay đổi bước sóng kích thích vào mẫu, máy đơn sắc thứ hai để phân tích tín hiệu phát ra từ mẫu. Nguồn sáng kích thích là một đèn xenon Xe – 900 được nuôi bằng nguồn và đặt trong hộp bảo vệ cùng với quạt làm nguội. Sơ đồ nguyên lý hoạt động của hệ đo phổ huỳnh quang được mô tả như hình. Ánh sáng từ đèn xenon công suất 450W được chiếu qua máy đơn sắc thứ nhất sau đó tới mẫu. Tín hiệu huỳnh quang từ mẫu phát ra được phân tích qua máy đơn sắc thứ hai và được thu bởi bộ nhân quang điện, sau đó qua bộ tách sóng tín hiệu chuẩn và cuối cùng là được đưa vào bộ xử lý. Bộ xử lý vừa có chức năng phân tích tín hiệu thu được, vừa có chức năng điều khiển hệ máy đơn sắc. Tín hiệu thu được từ mẫu sẽ được ghép nối với máy tính.
Để đo được tín hiệu huỳnh quang, ta cố định giá trị bước sóng kích thích của máy đơn sắc thứ nhất và quét bước sóng của máy đơn sắc thứ hai. Phổ huỳnh quang thu được cho biết sự phụ thuộc của tín hiệu huỳnh quang phát ra từ mẫu vào bước sóng.
Hình 2.4. Sơ khối của hệ đo phổ huỳnh quang
Ảnh chụp hệ đo FS 920 (tại phòng thí nghiệm Quang học và Quang phổ- Khoa Vật lý - Đại học Sư phạm - Đại học Thái Nguyên) được trình bày trên hình 2.5.
Hình 2.5. Ảnh chụp hệ đo huỳnh quang nhãn hiệu FS 920
Chương3
KẾT QUẢ VÀ THẢO LUẬN
Các tinh thể nano CdS và CdS/ZnS được chế tạo bằng phương pháp Micelle đảo với các tỷ lệ mol [H2O]/ [AOT] (ký hiệu là w) thay đổi là 2,5; 5; 7,5 và 10. Các mẫu chứa các tinh thể nano CdS ở dạng dung dịch trong suốt màu vàng nhạt, còn các mẫu chứa các tinh thể nano CdS/ZnS có cấu trúc lõi/vỏ ở dạng dung dịch màu trắng.
Trong chương này, các kết quả về chấm lượng tử CdS, CdS/ZnS với các tính chất hấp thụ và huỳnh quang sẽ được trình bày với các nội dung nghiên cứu sau:
(a) Khảo sát ảnh hưởng của điều kiện chế tạo (thời gian chế tạo tinh thể và nồng độ chất bẫy) đến kích thước của các chấm lượng tử CdS
(b) Khảo sát vai trò của lớp vỏ ZnS đến phát xạ của các chấm lượng tử.
3.1. Phổ hấp thụ của các chấm lượng tử CdS.
Các tinh thể nano CdS chế tạo được phân tán trong dung môi heptane và được bảo quản ở nhiệt độ phòng. Như chúng ta đã biết, sự giam giữ lượng tử dẫn đến sự mở rộng độ rộng vùng cấm của các chấm lượng tử bán dẫn so với bán dẫn khối, và độ rộng vùng cấm này phụ thuộc vào kích thước của các chấm lượng tử. Do đó, thông qua phổ hấp thụ, chúng ta sẽ ước tính một cách gián tiếp kích thước của các chấm lượng tử. Để có thông tin về hiệu ứng kích thước lượng tử trong các tinh thể nano CdS và CdS/ZnS chế tạo được, qua việc xác định độ rộng vùng cấm hiệu dụng của các tinh thể nano. Chúng tôi tiến hành đo phổ hấp thụ của các chúng trong vùng bước sóng 300-750nm.
Hình 3.1 trình bày phổ hấp thụ của các chấm lượng tử CdS với các kích thước phụ thuộc vào tỷ lệ w khác nhau.Trên phổ hấp thụ xuất hiện các đỉnh hấp thụ tại các bước sóng ~ 320nm (tương ứng với tỷ lệ w =2,5), ~ 346 nm (tương ứng với tỷ lệ w =5), ~ 378nm (tương ứng với tỷ lệ w=7.5), và ~ 410nm (tương ứng với tỷ lệ w = 10). Các
Các file đính kèm theo tài liệu này:
- KHOA LUAN TOT NGHIEP HOAN CHINH.doc