Đề tài Tổng quan về mạng cảm biến WSN

Mục Lục Trang

Lời nói đầu. 2

Tổng quan về mạng cảm biến. .3

 A.Khái quát. .3

 B.Nội dung. .3

 I.Giới thiệu. .3

 II.Cấu trúc mạng WSN. .4

 1/Cấu trúc 1 node của mạng WSN. .4

 2/Cấu trúc của toàn mạng WSN. .6

 III.Kiến thức giao thức mạng. .17

 IV.Ứng dụng mạng cảm biến không dây. .21

 V.Những khó khăn gặp phải. .27

 C.Tổng kết. .30

Lời kết. .31

 

 

 

 

doc32 trang | Chia sẻ: maiphuongdc | Lượt xem: 4211 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Đề tài Tổng quan về mạng cảm biến WSN, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ì giao tiếp trực tiếp giữa hai nút sẽ có nhiều hạn chế do khoảng cách hay các vật cản.Đặc biệt là khi nút phát và nút thu cách xa nhau thì cần công suất phát lớn.Vì vậy cần các nút trung gian làm nút chuyển tiếp để giảm công suất tổng thể. Do vậy các mạng cảm biến không dây cần phải dùng giao tiếp multihop. Hoạt động hiệu quả năng lượng: để hỗ trợ kéo dài thời gian sống của toàn mạng,hoạt động hiệu quả năng lượng là kĩ thuật quan trọng mạng cảm biến không dây. Tự động cấu hình :Mạng cảm biến không dây cần phải cấu hình các thông số một cách tự động.Chẳng hạn như các nút có thể xác định vị trí địa lý của nó thông qua các nút khác (gọi là tự định vị). Cộng tác,xử lí trong mạng và tập trung dữ liệu:Trong một số ứng dụng một nút cảm biến không thu thập đủ dữ liệu mà cần phải có nhiều nút cùng cộng tác hoạt động thì mới thu thập đủ dữ liệu, khi đó mà từng nút thu dữ liệu gửi ngay đến sink thì sẽ rất tốn băng thông và năng lượng.Cần phải kết hợp các dữ liệu của nhiều nút trong một vùng rồi mới gửi tới sink thì sẽ tiết kiệm băng thông và năng lượng. Chẳng hạn như khi xác định nhiệt độ trung bình ,hay cao nhất của một vùng. Do vậy , cấu trúc mạng mới sẽ: Kết hợp vấn đề năng lượng và khả năng định tuyến. Tích hợp dữ liệu và giao thức mạng. Truyền năng lượng hiệu quả qua các phương tiện không dây. Chia sẻ nhiệm vụ giữa các nút lân cận Các nút cảm ứng được phân bố trong một sensor field như hình 1.3. Mỗi một nút cảm ứng có khả năng thu thập dữ liệu và định tuyến lại đến các sink. Dữ liệu được định tuyến lại đến các sink bởi một cấu trúc đa điểm như hình vẽ trên. Các sink có thể giao tiếp với các nút quản lý nhiệm vụ (task manager node) qua mạng Internet hoặc vệ tinh. Hình 1.3 Cấu trúc mạng cảm biến không dây .2.2 Hai cấu trúc đặc trưng của mạng cảm biến không dây. a. Cấu trúc phẳng (flat architecture) Hình 1.4 Cấu trúc phẳng Trong cấu trúc phẳng (flat architecture) (hình 1.4), tất cả các nút đều ngang hàng và đồng nhất trong hình dạng và chức năng. Các nút giao tiếp với sink qua multihop sử dụng các nút ngang hàng làm bộ tiếp sóng. Với phạm vi truyền cố định, các nút gần sink hơn sẽ đảm bảo vai trò của bộ tiếp sóng đối với một số lượng lớn nguồn. Giả thiết rằng tất cả các nguồn đều dùng cùng một tần số để truyền dữ liệu, vì vậy có thể chia sẻ thời gian. Tuy nhiên cách này chỉ có hiệu quả với điều kiện là có nguồn chia sẻ đơn lẻ, ví dụ như thời gian, tần số… b. Cấu trúc tầng (tiered architecture) Trong cấu trúc tầng (tiered architecture) (hình 1.5), các cụm được tạo ra giúp các tài nguyên trong cùng một cụm gửi dữ liệu single hop hay multihop tùy thuộc vào kích cỡ của cụm) đến một nút định sẵn, thường gọi là nút chủ (cluster head). Trong cấu trúc này các nút tạo thành một hệ thống cấp bậc mà ở đó mỗi nút ở một mức xác định thực hiện các nhiệm vụ đã định sẵn. Hình 1.5 Cấu trúc tầng Trong cấu trúc tầng thì chức năng cảm nhận, tính toán và phân phối dữ liệu không đồng đều giữa các nút. Những chức năng này có thể phân theo cấp, cấp thấp nhất thực hiện tất cả nhiệm vụ cảm nhận, cấp giữa thực hiện tính toán, và cấp trên cùng thực hiện phân phối dữ liệu (hình 1.6) Hình 1.6 Cấu trúc mạng phân cấp chức năng theo lớp Hoặc các nhiệm vụ xác định có thể được chia không đồng đều giữa các lớp, ví dụ mỗi lớp có thể thực hiện một nhiệm vụ xác định trong tính toán. Trong trường hợp này, các sensor ở cấp thấp nhất đóng vai trò một bộ lọc thông dải đơn giản để tách nhiễu ra khỏi dữ liệu, trong khi đó các nút ở cấp cao hơn ngừng việc lọc dữ liệu này. Sự phân tích chức năng của các mạng cảm ứng có thể phản ánh các đặc điểm tự nhiên của các nút, hoặc có thể gọi đơn giản là sự phân biệt theo logic. Ví dụ, một tập hợp con các nút với khả năng truyền thông ở phạm vi rộng có thể tạo nên cấu hình mạng kiểu phân lớp xếp chồng vật lý (hình 1.7). Hình 1.7 Cấu trúc mạng phân lớp xếp chồng vật lý. Nói cách khác, một tập hợp con các nút trong mạng có thể được phân biệt một cách logic khi chúng thực hiện một nhiệm vụ đại diện cho các nút khác. Những chức năng như vậy phải bao gồm sự tập trung dữ liệu, truyền thông qua mạng xương sống, hoặc kết hợp định tuyến giữa các nút. Những qui tắc logic này tạo nên mạng phân cấp logic (hình 1.8). Những quy tắc logic này có thể thay phiên nhau định kì để đảm bảo sự công bằng. Khi các nút với khả năng tính toán cao hơn hoạt động thì các nút ít khả năng hơn sẽ chuyển các nhiệm vụ tính toán sang các nút này. Nếu không có “computer servers” như vậy, một cụm các sensor cần thiết phải chọn ra một nút để thực hiện các nhiệm vụ như là tập trung dữ liệu. Tuy nhiên trong một số trường hợp chỉ có mỗi nút có tài nguyên vật lý thích hợp mới thích hợp để thực hiện các nhiệm vụ định sẵn. Ví dụ một nút với hệ thống định vị toàn cầu (global positioning system - GPS) có thể thực hiện vai trò chủ chốt trong việc định vị hoặc đồng bộ thời gian. Do vậy, không có gì là ngẫu nhiên khi rất nhiều các mạng cảm ứng hiện nay được thiết kế theo cấu trúc phân cấp. Hình 1.8 Cấu trúc mạng phân cấp logic Mạng cảm ứng xây dựng theo cấu trúc tầng hoạt động hiệu quả hơn cấu trúc phẳng, do các lý do sau: - Cấu trúc tầng có thể giảm chi phí chi mạng cảm ứng bằng việc định vị các tài nguyên ở vị trí mà chúng hoạt động hiệu quả nhất. Rõ ràng là nếu triển khai các phần cứng thống nhất, mỗi nút chỉ cần một lượng tài nguyên tối thiểu để thực hiện tất cả các nhiệm vụ. Vì số lượng các nút cần thiết phụ thuộc vào vùng phủ sóng xác định, chi phí của toàn mạng vì thế sẽ không cao. Thay vào đó, nếu một số lượng lớn các nút có chi phí thấp được chỉ định làm nhiệm vụ cảm nhận, một số lượng nhỏ hơn các nút có chi phí cao hơn được chỉ định để phân tích dữ liệu, định vị và đồng bộ thời gian, chi phí cho toàn mạng sẽ giảm đi. - Mạng cấu trúc tầng sẽ có tuổi thọ cao hơn mạng phẳng. Khi cần phải tính toán nhiều thì một bộ xử lý nhanh sẽ hiệu quả hơn, phụ thuộc vào thời gian yêu cầu thực hiện tính toán. Tuy nhiên, với các nhiệm vụ cảm nhận cần hoạt động trong khoảng thời gian dài, các nút tiêu thụ ít năng lượng phù hợp với yêu cầu xử lý tối thiểu sẽ hoạt động hiệu quả hơn. Do vậy với cấu trúc tầng mà các chức năng mạng phân chia giữa các phần cứng đã được thiết kế riêng cho từng chức năng sẽ làm tăng tuổi thọ của mạng. - Về độ tin cậy: mỗi mạng cảm ứng phải phù hợp với với số lượng các nút yêu cầu thỏa mãn điều kiện về băng thông và thời gian sống. Với mạng cấu trúc phẳng, qua phân tích người ta đã xác định thông lượng tối ưu của mỗi nút trong mạng có n nút là , trong đó W là độ rộng băng tần của kênh chia sẻ. Do đó khi kích cỡ mạng tăng lên thì thông lượng của mỗi nút sẽ giảm về 0. Việc nghiên cứu các mạng cấu trúc tầng đem lại nhiều triển vọng để khắc phục vấn đề này. Một cách tiếp cận là dùng một kênh đơn lẻ trong cấu trúc phân cấp, trong đó các nút ở cấp thấp hơn tạo thành một cụm xung quanh trạm gốc. Mỗi một trạm gốc đóng vai trò là cầu nối với cấp cao hơn, cấp này đảm bảo việc giao tiếp trong cụm thông qua các bộ phận hữu tuyến. Trong trường hợp này, dung lượng của mạng tăng tuyến tính với số lượng các cụm, với điều kiện là số lượng các cụm tăng ít nhất phải nhanh bằng . Các nghiên cứu khác đã thử cách dùng các kênh khác nhau ở các mức khác nhau của cấu trúc phân cấp. Trong trường hợp này, dung lượng của mỗi lớp trong cấu trúc tầng và dung lượng của mỗi cụm trong mỗi lớp xác định là độc lập với nhau. Tóm lại, việc tương thích giữa các chức năng trong mạng có thể đạt được khi dùng cấu trúc tầng. Đặc biệt người ta đang tập trung nghiên cứu về các tiện ích về tìm địa chỉ. Những chức năng như vậy có thể phân phối đến mọi nút, một phần phân bố đến tập con của các nút. Giả thiết rằng các nút đều không cố định và phải thay đổi địa chỉ một cách định kì, sự cân bằng giữa những lựa chọn này phụ thuộc vào tân số thích hợp của chức năng cập nhật và tìm kiếm. Hiện nay cũng đang có rất nhiều mô hình tìm kiếm địa chỉ trong mạng cấu trúc tầng. 2.3 Các yếu tố ảnh hưởng đến cấu trúc mạng cảm biến không dây. Thiết kế mạng cảm biến không dây chịu ảnh hưởng của nhiều nhân tố: năng chịu lỗi, khả năng mở rộng, chi phí sản xuất, môi trường hoạt động, những ràng buộc về phần cứng, cấu hình mạng cảm ứng, phương tiện truyền dẫn, sự tiêu thụ năng lượng.Những nhân tố này rất quan trọng vì chúng như là hướng dẫn để thiết kế cấu trúc mạng,kiến trúc giao thức và thuật toán định tuyến cho mạng cảm biến không dây.Các nhân tố đó cụ thể là như thế nào? Khả năng chịu lỗi (fault tolerance): Một số các nút cảm ứng có thể không hoạt động nữa do thiếu năng lượng, do những hư hỏng vật lý hoặc do ảnh hưởng của môi trường. Khả năng chịu lỗi thể hiện ở việc mạng vẫn hoạt động bình thường, duy trì những chức năng của nó ngay cả khi một số nút mạng không hoạt động. Ở đây ta dùng phân bố Poisson để xác định xác suất không có sai hỏng trong khoảng thời gian (0,t): Trong đó: : tỉ lệ lỗi của nút k t: khoảng thời gian khảo sát Rk(t): độ tin cậy hoặc khả năng chịu lỗi của các nút cảm ứng. Khả năng mở rộng (scability): Khi triển khai mạng cảm biến nghiên cứu một hiện tượng nào đó, số lượng các nút cảm ứng được triển khai có thể đến hàng trăm nghìn, phụ thuộc vào từng ứng dụng con số này có thể vượt quá hàng triệu. Những kiểu mạng mới phải có khả năng làm việc với số lượng các nút này và sử dụng được tính chất mật độ cao của mạng cảm ứng. Mật độ có thể tính toán theo công thức: Trong đó: N: số lượng các nút cảm ứng phân bố trong vùng A R: là phạm vi truyền sóng. Chi phí sản xuất (production costs): Vì các mạng cảm ứng bao gồm một số lượng lớn các nút cảm ứng nên chi phí của mỗi nút rất quan trọng trong việc điều chỉnh chi phí của toàn mạng. Nếu chi phí của toàn mạng đắt hơn việc triển khai sensor theo kiểu truyền thống, như vậy mạng không có giá thành hợp lý. Do vậy, chi phí của mỗi nút cảm ứng phải giữ ở mức thấp. Những ràng buộc về phần cứng (hardware constraints): Như đã trình bày ở phần 1.2.1 về cấu trúc một nút cảm biến, có nhiều ràng buộc về phần cứng : phải có kích thước nhỏ,càng nhỏ càng tốt. Ngoài kích cỡ ra các nút cảm ứng còn một số ràng buộc nghiêm ngặt khác, như là phải tiêu thụ rất ít năng lượng, hoạt động ở mật độ cao, có giá thành thấp, có thể tự hoạt động, và thích ứng với môi trường. Cấu hình mạng cảm ứng (network topology) Trong mạng cảm ứng, hàng trăm đến hàng nghìn nút được triển khai trên sensor field. Mật độ các nút có thể lên tới 20 nút/m3. Do số lượng các nút cảm ứng rất lớn nên cần phải thiết lâp một cấu hình ổn định. Chúng ta có thể kiểm tra các vấn đề liên quan đến việc duy trì và thay đổi cấu hình ở 3 pha sau: Pha tiền triển khai và triển khai: các nút cảm ứng có thể đặt lộn xộn hoặc xếp theo trật tự trên trường cảm biến. Chúng có thể được triển khai bằng cách thả từ máy bay xuống, tên lửa, hoặc có thể do con người hoặc robot đặt từng cái một. Pha hậu triển khai: sau khi triển khai, những sự thay đổi cấu hình phụ thuộc vào việc thay đổi vị trí các nút cảm ứng, khả năng đạt trạng thái không kết nối (phụ thuộc vào nhiễu, việc di chuyển các vật cản…), năng lượng thích hợp, những sự cố, và nhiệm vụ cụ thể. Pha triển khai lại: Sau khi triển khai cấu hình, ta vẫn có thể thêm vào các nút cảm ứng khác để thay thế các nút gặp sự cố hoặc tùy thuộc vào sự thay đổi chức năng. Môi trường hoạt động (Environment) Các nút cảm ứng được thiết lập dày đặc, rất gần hoặc trực tiếp bên trong các hiện tượng để quan sát. Vì thế, chúng thường làm việc mà không cần giám sát ở những vùng xa xôi. Chúng có thể làm việc ở bên trong các máy móc lớn, ở dưới đáy biển, hoặc trong những vùng ô nhiễm hóa học hoặc sinh học, ở gia đình hoặc những tòa nhà lớn. Phương tiện truyền dẫn (Transmission media) Ở những mạng cảm ứng multihop, các nút được kết nối bằng những phương tiện không dây. Các đường kết nối này có thể tạo nên bởi sóng vô tuyến, hồng ngoại hoặc những phương tiện quang học. Để thiết lập sự hoạt động thống nhất của những mạng này, các phương tiện truyền dẫn phải được chọn phải phù hợp trên toàn thế giới. Hiện tại nhiều phần cứng của các nút cảm ứng dựa vào thiết kế mạch RF. Những thiết bị cảm ứng năng lượng thấp dùng bộ thu phát vô tuyến 1 kênh RF hoạt động ở tần số 916MHz. Cấu trúc mạng Wireless Integrated Network Sensors (WINS) cũng sử dụng đường truyền vô tuyến để truyền dữ liệu. Một cách khác mà các nút trong mạng giao tiếp với nhau là bằng hồng ngoại. Thiết kế máy thu phát vô tuyến dùng hồng ngoại thì giá thành rẻ và dễ dàng hơn. Một thành quả thú vị nữa là hạt bụi Smart Dust, là một hệ thống tự cảm ứng, tính toán và giao tiếp dùng các phương tiện quang học để truyền. Cả hai loại hồng ngoại và quang đều yêu cầu bộ phát và thu nằm trong phạm vi nhìn thấy, tức là có thể truyền ánh sáng cho nhau được. Sự tiêu thụ năng lượng (power consumption): Các nút cảm ứng không dây, có thể coi là một thiết bị vi điện tử chỉ có thể được trang bị nguồn năng lượng giới hạn (<0,5Ah, 1.2V). Trong một số ứng dụng, việc bổ sung nguồn năng lượng không thể thực hiện được. Vì thế khoảng thời gian sống của các nút cảm ứng phụ thuộc mạnh vào thời gian sống của pin. Ở mạng cảm ứng multihop ad hoc, mỗi một nút đóng một vai trò kép vừa khởi tạo vừa định tuyến dữ liệu. Sự trục trặc của một vài nút cảm ứng có thể gây ra những thay đổi đáng kể trong cấu hình và yêu cầu định tuyến lại các gói và tổ chức lại mạng. Vì vậy, việc duy trì và quản lý nguồn năng lượng đóng một vai trò quan trọng. Đó là lý do vì sao mà hiện nay người ta đang tập trung nghiên cứu về các giải thuật và giao thức để tiết kiệm nguồn năng lượng như các phương pháp định tuyến nhận biết về năng lượng(Energy-Aware –Routing)….Đồng thời người ta cũng đang nghiên cứu và thiết kế nguồn cho mạng cảm ứng có dung lượng lớn, và thiết kế cho các thành phần của một nút cảm biến hoạt động hiệu quả về năng lượng để góp phần kéo dài thời gian sống của các nút nói riêng và cả toàn mạng. Nhiệm vụ chính của các nút cảm ứng trong sensor field là phát hiện ra các sự kiện, thực hiện xử lý dữ liệu cục bộ nhanh chóng, và sau đó truyền dữ liệu đi. Vì thế sự tiêu thụ năng lượng được chia ra làm 3 vùng: cảm nhận (sensing), giao tiếp (communication), và xử lý dữ liệu (data processing). III. Kiến trúc giao thức mạng. Trong mạng cảm ứng, dữ liệu sau khi được thu thập bởi các nút sẽ được định tuyến gửi đến sink. Sink sẽ gửi dữ liệu đến người dùng đầu cuối thông qua internet hay vệ tinh. Kiến trúc giao thức được sử dụng bởi nút gốc và các nút cảm biến được trình bày trong hình 1.9: Hình 1.9 Kiến trúc giao thức của mạng cảm biến. Kiến trúc giao thức này kết hợp giữa công suất và chọn đường, kết hợp số liệu với các giao thức mạng, sử dụng công suất hiệu quả với môi trường vô tuyến và sự tương tác giữa các nút cảm biến. Kiến trúc giao thức bao gồm lớp vật lý, lớp liên kết dữ liệu, lớp mạng, lớp truyền tải, lớp ứng dụng, phần quản lý công suất, phần quản lý di động và phần quản lý nhiệm vụ. - Lớp ứng dụng :Tùy vào từng nhiệm vụ của mạng cảm biến mà các phần mềm ứng dụng khác nhau được xây dựng và sử dụng trong lớp ứng dụng.Trong lớp ứng dụng có mốt số giao thức quan trọng như giao thúc quản lí mạng sensor (SMP), giao thức quảng bá dữ liệu và chỉ định nhiệm vụ cho từng sensor (TADAP),giao thức phân phối dữ liệu và truy vấn cảm biến (SQDDP). -Lớp vận chuyển: Lớp truyền tải giúp duy trì luồng số liệu nếu ứng dụng mạng cảm biến yêu cầu.Lớp truyền tải đặc biệt cần khi mạng cảm biến kết nối với mạng bên ngoài, hay kết nối với người dùng qua internet. Giao thức lớp vận chuyển giữa sink với người dùng (nút quản lý nhiệm vụ) thì có thể là giao thức UDP hay TCP thông qua internet hoặc vệ tinh. Còn giao tiếp giữa sink và các nút cảm biến cần các giao thức kiểu như UDP vì các nút cảm biến bị hạn chế về bộ nhớ. Hơn nữa các giao thức này còn phải tính đến sự tiêu thụ công suất, tính mở rông và định tuyến tập trung dữ liệu . - Lớp mạng: Lớp mạng quan tâm đến việc định tuyến dữ liệu được cung cấp bởi lớp truyền tải.Việc định tuyến trong mạng cảm biến phải đối mặt với rất nhiều thách thức như mật độ các nút dày đặc, hạn chế về năng lượng…Do vậy thiết kế lớp mạng trong mạng cảm biến phải theo các nguyên tắc sau: Tính hiệu quả về năng lượng luôn được xem là vấn đề quan trọng hàng đầu. Các mạng cảm biến gần như là tập trung dữ liệu Tích hợp dữ liệu và giao thức mạng. Phải có cơ chế địa chỉ theo thuộc tính và biết về vị trí Có rất nhiều giao thức định tuyến được thiết kế cho mạng cảm biến không dây. Nhìn tổng quan, chúng được chia thành ba loại dựa vào cấu trúc mạng, đó là định tuyến ngang hàng, định tuyến phân cấp, định tuyến dựa theo vị trí. Xet theo hoạt động thì chúng được chia thành định tuyến dựa trên đa đường (multipath-based), định tuyến theo truy vấn (query- based), định tuyến negotiation-based, định tuyến theo chất lượng dịch vụ (QoS-based), định tuyến kết hợp (coherent-based). -Lớp kết nối dữ liệu:Lớp kết nối dữ liệu chịu trách nhiệm cho việc ghép các luồng dữ liệu, dò khung dữ liệu, điều khiển lỗi và truy nhập môi trường. Nó đảm bảo cho giao tiếp điểm -điểm, điểm-đa điểm tin cậy.Vì môi trường có tạp âm và các nút cảm biến có thể di động, giao thức điều khiển truy nhập môi trường (MAC) phải xét đến vấn đề công suất và phải có khả năng tối thiểu hoá việc va chạm với thông tin quảng bá của các nút lân cận. -Lớp vật lý: Lớp vật lý chịu trách nhiệm lựa chọn tần số, phát tần số sóng mang, điều chế, lập mã và tách sóng. Ngoài ra, các phần quản lý công suất, quản lý di chuyển và quản lý nhiệm vụ sẽ giám sát việc sử dụng công suất, sự di chuyển và thực hiện nhiệm vụ giữa các nút cảm biến. Những phần này giúp các nút cảm biến phối hợp nhiệm vụ cảm biến và tiêu thụ công suất tổng thể thấp hơn. -Phần quản lý công suất điều khiển việc sử dụng công suất của nút cảm biến. Ví dụ, nút cảm biến có thể tắt khối thu của nó sau khi thu được một bản tin từ một nút lân cận. Điều này giúp tránh tạo ra các bản tin giống nhau. Cũng vậy, khi mức công suất của nút cảm biến thấp, nút cảm biến phát quảng bá tới các nút lân cận để thông báo nó có mức công suất thấp và không thể tham gia vào các bản tin chọn đường. Công suất còn lại sẽ được dành riêng cho nhiệm vụ cảm biến. - Phần quản lý di động phát hiện và ghi lại sự di chuyển của các nút cảm biến để duy trì tuyến tới người sử dụng và các nút cảm biến có thể lưu vết của các nút cảm biến lân cận. Nhờ xác định được các nút cảm biến lân cận, các nút cảm biến có thể cân bằng giữa công suất của nó và nhiệm vụ thực hiện. - Phần quản lý nhiệm vụ dùng để làm cân bằng và lên kế hoạch các nhiệm vụ cảm biến trong một vùng xác định. Không phải tất cả các nút cảm biến trong vùng đó điều phải thực hiện nhiệm vụ cảm biến tại cùng một thời điểm. Kết quả là một số nút cảm biến thực hiện nhiệm vụ nhiều hơn các nút khác tuỳ theo mức công suất của nó. Những phần quản lý này là cần thết để các nút cảm biến có thể làm việc cùng nhau theo một cách thức sử dụng hiệu quả công suất, chọn đường số liệu trong mạng cảm biến di động và phân chia tài nguyên giữa các nút cảm biến. Ngoài ra, còn có các giao thức đặc trưng hỗ trợ cho mạng WSN: giao thức định vị (Location protocol), giao thức đồng bộ thời gian (Time synchronization protocol), giao thức điều khiển cấu hình mạng (topology control).Trong nhiều trường hợp việc xác định vị trí trong thế giới tự nhiên của các nút cảm biến là rất cần thiết. Ví dụ các ứng dụng kiểm tra và phát hiện sự kiện sảy ra ở đâu, nếu không có thông tin vị trí thì không thể báo cáo chính xác. Vấn đề thời gian rất quan trọng trong nhiều ứng dụng và giao thức trong mạng cảm ứng.Giao thức đồng bộ thời gian đảm bảo cho mạng hoạt động đồng bộ, giảm các sai lệch về thời gian, hoạt động hiệu quả và báo cáo kết quả chính xác về thời gian.Còn việc điều khiển cấu hình mạng cũng rất quan trọng. Như đã trình bày trong các phần trên, mạng WSN có thể triển khai ngẫu nhiên, mật độ các nút rất dày dặc nếu không có cơ chế điều khiển topo tốt các nút sẽ cản trở nhau trong việc giao tiếp, giao tiếp trực tiếp giữa các nút sẽ làm giảm công suất truyền dẫn.Hơn nữa, khi các nút cảm biến mà di chuyển thì cần phải điều khiển lại cấu hình và định tuyến lại. IV. Ứng dụng của mạng cảm biến không dây. Mạng cảm ứng được ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau của cuộc sống: *Các ứng dụng về môi trường: Các mạng cảm biến không dây được dùng để theo dõi sự chuyển động của chim muông, động vật, côn trùng; theo dõi các điều kiện môi trường như nhiệt độ, độ ẩm; theo dõi và cảnh báo sớm các hiện tượng thiên tai như động đất,núi lửa phun trào, cháy rừng, lũ lụt…. Một số ứng dụng quan trọng như: Phát hiện sớm những thảm họa như cháy rừng: Bằng việc phân tán các nút cảm ứng trong rừng, một mạng ad hoc được tạo nên một cách tự phát. Mỗi nút cảm ứng có thê thu thập nhiều thông tin khác nhau liên quan đến cháy như nhiệt độ, khói …Các dữ liệu thu thập được truyền multihop tới nơi trung tâm điều khiển để giám sát, phân tích, phát hiện và cảnh báo cháy sớm. Ngay sau khi sự kiên liên quan đến cháy được phát hiện, trung tâm điều khiển sẽ đưa ra cảnh báo sớm. Điều này sẽ giúp phát hiện sớm và ngăn chặn được thảm họa cháy rừng. Hình 1.10 Mạng WSN cảnh báo cháy rừng Cảnh báo lũ lụt: Hệ thông này bao gồm các nút cảm biến về lượng mưa, mực nước.Các cảm biến này cung cấp thông tin cho hệ thống cơ sở dữ liệu trung tâm để phân tích và cảnh báo lụt sớm. Giám sát và cảnh báo các hiện tượng địa trấn: Các cảm biến về độ rung … được đặt rải rác ở mặt đất hay trong lòng đất những khu vực hay sảy ra động đất, hay gần các núi lửa để giám sát và cảnh báo sớm hiện tượng động đất và núi lửa phun trào. Hình 1.11 Cảnh báo và đo thông số động đất * Các ứng dụng trong y học: Giám sát trong y tế và chẩn đoán từ xa: Trong tương lai, các nút cảm ứng có thể được gắn vào cơ thể, ví dụ như ở dưới da và đo các thông số của máu để phát hiện sớm các bệnh như ung thư, nhờ đó việc chữa bệnh sẽ dễ dàng hơn. Hiện nay đã tồn tại những video sensor rất nhỏ có thể nuốt vào trong người, dùng một lần và được bọc vỏ hoàn toàn, nguồn nuôi của thiết bị này đủ để hoạt động trong 24h (hình 1.12). Trong thời gian đó, chúng gửi hình ảnh về bên trong con người sang một thiết bị khác mà không cần phải phẫu thuật. Các bác sĩ có thể dựa vào đó để chuẩn đoán và điều trị. Hình 1.12 Ứng dụng trong y tế * Ứng dụng trong gia đình: Trong lĩnh vực tự động hóa nhà ở, các nút cảm ứng được đặt ở các phòng để đo nhiệt độ. Không những thế, chúng còn được dùng để phát hiện những sự dịch chuyển trong phòng và thông báo lại thông tin này đến thiết bị báo động trong trường hợp không có ai ở nhà. Hình 1.13 Ứng dụng nhà thông minh * Trong công nghiệp Trong lĩnh vực quản lý kinh doanh, công việc bảo quản và lưu giữ hàng hóa sẽ được giải phóng. Các kiện hàng sẽ bao gồm các nút cảm ứng mà chỉ cần tồn tại trong thời kì lưu trữ và bảo quản. Trong mỗi lần kiểm kê, một query tới kho lưu trữ dưới dạng bản tin quảng bá. Tất cả các kiện hàng sẽ trả lời query đó để bộc lộ các đặc điểm của chúng. Ngay cả các bản tin có cường độ yếu từ những cảm biến đơn lẻ vẫn có thể được truyền tin cậy nếu chúng được chuyển tiếp qua từng nút. Cảm biến còn có thể được dùng để đo nhiệt độ và độ ẩm. Vào ban đêm chúng được đặt ở chế độ chống trộm. Nếu một ai đó cố dịch một kiện hàng, sensor sẽ hoạt động và ra hiệu cho thiết bị cảnh báo. Điều này đặc biệt hữu dụng trong việc bảo vệ hàng hóa trong những tòa nhà lớn Hình 1.14 Ứng dụng trong quản lý hàng hóa Những nút cảm ứng này cũng có thể ứng dụng trong việc quản lý các container ở cảng. Mỗi một container là một nút mạng trong mạng cảm ứng và có thể ghi nhớ thông tin của nó một cách xác thực. Việc liên lạc qua khoảng cách xa hơn có thể thực hiện theo kiểu điểm – điểm từ container này đến container khác. Tập hợp các container tự bản thân nó là một cơ sở dữ liệu và vì vậy luôn luôn nhất quán. Nhờ đó tàu có thể dễ dàng xác định được chính xác kiện hàng của nó và container thậm chí còn có thể thông báo lại nếu có container lân cận bị lỡ, mà không cần phải truy nhập vào dữ liệu toàn cầu (global database). Hình 1.15 Ứng dụng ở cảng Quản lí dây truyền sản xuất, theo dõi sản phẩm: * Trong nông nghiệp: Ứng dụng trong trồng trọt:Các cảm biến được dùng để đo nhiệt độ, độ ẩm, ánh sáng ở nhiều điểm trên thửa ruộng và truyền dữ liệu mà chúng thu được về trung tâm để người nông dân có thể giám sát và chăm sóc, điều chỉnh cho phù hợp. Hình 1.16 Ứng dụng trong trồng trọt Ứng dụng trong chăn nuôi: Trong chăn nuôi gia súc, gia cầm cũng trang bị các cảm biến để dễ dàng theo dõi và giám sát . Hình 1.17 Ứng dụng trong chăn nuôi * Trong quân sự: Các mạng cảm biến có vai trò quan trọng trong hệ thống C4ISRT (military command,control,communications,computing,intelligence, servaillence, reconnaissance and targeting systems ) vì nó có các đặc tính triển khai nhanh, tự cấu hình, và chịu lỗi.Các ứng dụng của mạng cảm biến trong quân sự như là giám sát quân đội, giám sát trang thiết bị,vũ khí, khảo sát chiến trường,quân địch, dò tấn công bằng vũ khí hạt nhân, sinh học, hóa học của quân địch. * Trong giao thông: Các cảm biến được đặt trong các ô tô để người dùng có thể điều khiển, hoặc được gắn ở vỏ của ô tô, các phương tiện giao thông để chúng tương tác với nhau và tươ

Các file đính kèm theo tài liệu này:

  • doc22617.doc