Đề tài Xác định điểm đặt tương đương của lực từ

MỤC LỤC

MỞ ĐẦU. Trang 1

I. Lý do chọn đềtài. Trang 1

II. Mục đích nghiên cứu. . Trang 1

III Đối tượng nghiên cứu. Trang 1

I\/. Nhiệm vụnghiên cứu. Trang 1

\/. Phạmvi nghiên cứu. Trang 1

\/I. Giảthiết khoa học. Trang 2

\/II. Phương pháp nghiên cứu. Trang 2

NỘI DUNG NGHIÊN CỨU. . Trang 3

I. Cơsởlý thuyết. . Trang 3

1. Trường vectơ. . Trang 3

2. Từtrường. Trang 3

3. Tác dụng của từtrường lên dòng điện. Trang 4

II. Nội dung . Trang 5

1. Điểm đặt của lực từtác dụng lên một đoạn dây dẫn

mang dòng điện. . Trang 5

1.1. Đoạn dây dẫn thẳng. Trang 5

1.1.1. Tổng quát. Trang 5

1.1.2. Các trường hợp riêng. Trang 7

1.1.2.1. Brkhông đổi theo toạ độ. Trang 7

1.1.2.2. Brbiến đổi theo một phương. Trang 8

1.2. Đoạn dây dẫn cong phẳng . Trang 10

1.2.1. Lực từtác dụng lên các bậc thang vuông góc

với Ox. Trang 11

1.2.2. Lực từtác dụng lên các bậc thang song song với

Ox . Trang 11

1.2.3. Hợp lực tác dụng lên dây AB . Trang 11

2. Điểm đặt của lực từtác dụng lên các vòng dây dẫn mang

dòng điện . Trang 12

2.1. Từtrường tác dụng lên toàn bộkhung dây . Trang 12

2.1.1. Khung dây hình chữnhật . Trang 12

2.1.2. Khung dây phẳng . Trang 13

2.1.3. Khung dây gồm nhiều sợi dây mảnh phân bố đều

trên đường tròn . Trang 15

2.1.3.1. Điểm đặt tương đương của lực từ. Trang 15

2.1.3.2. Chuyển động trong từtrường . Trang 18

2.2. Từtrường tác dụng lên một phần của khung dây. Trang 19

2.2.1. Khung dây hình chữnhật . Trang 19

2.2.2. Khung dây là đường tròn có đường kính AB . Trang 21

3. Điểm đặt của lực từtác dụng lên đĩa. Trang 23

3.1. Đĩa quay trong từtrường không đổi. Trang 23

3.2. Đĩa đặt một phần trong từtrường biến thiên . Trang 24

3.2.1. Điểm đặt tương đương của lực từ. Trang 25

3.2.1.1. Điểm đặt tương đương của lực từdo từtrường ) (2t Brtác dụng lên dòng cảm ứng 1Jr. 3.2.1.2. Điểm đặt tương đương của lực từdo từtrường ) (1t Brtácdụng lên dòng cảm ứng 2Jr. Trang 3.2.2. Chuyển động trong từtrường . Trang 28

III. Ứng dụng. Trang 29

1. Một số ứng dụng vềtác dụng hãmchuyển động của vật

dẫn đặt trong từtrường. Trang 29

1.1. Hãmchuyển động tịnh tiến . Trang 29

1.2. Hãmchuyển động quay. Trang 31

2. Một số ứng dụng vềchuyển động quay của khung dây

dẫn mang dòng điện . Trang 32

2.1. Hệthống cửa tự động . Trang 32

2.2. Động cơ điện . Trang 33

3. Một số ứng dụng của lực từlàmquay đĩa khi đặt đĩa

trong từtrường biến thiên. Trang 36

3.1. Côngtơ điện . Trang 36

3.2. Rơle kiểu cảm ứng . Trang 39

KẾT LUẬN . Trang 41

1. Đềtài bổsung vềmặt lý thuyết tương tác từvà dòng điện . Trang 41

2. Đềtài mang ý nghĩa thực tiễn trong ứng dụng kỹthuật

của hiện tượng cảm ứng điện từ ởcác động cơ điện. Trang 41

3. Xác định điểm đặt tương đương của lực từtạo thuận lợi cho việc xác định momen trong một sốbài toán cũng nhưcơcấu kỹthuật sửdụng hiện tượng cảm ứng điện từ. Trang 42

TÀI LIỆU THAM KHẢO. Trang 43

pdf47 trang | Chia sẻ: maiphuongdc | Lượt xem: 2241 | Lượt tải: 4download
Bạn đang xem trước 20 trang tài liệu Đề tài Xác định điểm đặt tương đương của lực từ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
l Bdx xBdx 0 0 = ∫ ∫ l l dx xdx 0 0 = 2 l Vậy lực từ tác dụng lên đoạn dây dẫn thẳng AB đặt trong từ trường đều B = const có điểm đặt tương đương tại trung điểm của AB. 1.1.2.2. B biến đổi theo một phương: B = B (x) * Đoạn dây dẫn thẳng AB đặt trong từ trường do dây dẫn thẳng dài vô hạn (L) mang dòng điện I1 gây ra. AB mang dòng điện I nằm trong mặt phẳng chứa (L) và có đầu A cách (L) một khoảng h. )(xBB rr = lc C α B A h lId r Fd r (L) 11 ldI r O cx x y Hình 2.6 Chọn hệ trục tọa độ Oxy có Oy trùng với (L) như hình vẽ. * Xét từ trường của (L) gây ra tại M cách dây dẫn một khoảng r. Chọn L’ là đường tròn tâm I đi qua điểm M, I∈(L). 1 M B r I dl (L’) Hình 2.7 Trang 8 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI  Định lý Ampere: ∫ 'L dlB = µ 0I1 Vì ( dlB, ) = 2 π và ∀M ∈L’ đều có B = const nên : ∫ 'L Bdl =µ 0I1 B2⇔ π r = µ 0I1 B = ⇔ r2 1 0 πµ I = 2.10-7. r I1 = r K với K = 2.10-7I1 *Lực từ tác dụng lên AB. Gọi α là góc tạo bởi AB và Ox. Theo phương AB từ trường do dòng điện thẳng dài vô hạn gây ra có cảm ứng từ biến đổi theo quy luật: Tại điểm C bất kỳ trên AB ta có: B = cx K = αcosclh K + Với lC là khoảng cách từ A đến C. Gọi d là khoảng cách từ A đến hợp lực F . d = ∫ ∫ AB AB Bdl Bldl = ∫ ∫ + + AB AB dl lh K ldl lh K α α cos cos = ∫ ∫ + + AB AB lh dl lh ldl α α cos cos  ∫ +AB lh ldl αcos = dllh h AB ) cos 1( cos 1 ∫ +− αα = ⎥⎦ ⎤⎢⎣ ⎡ + +− ∫∫ ABAB lh lhdhdl α α αα cos )cos( coscos 1 = ⎥⎦ ⎤⎢⎣ ⎡ − + ααα cosln 00 coscos1 lhl ll h = ⎥⎦ ⎤⎢⎣ ⎡ +− h lhhl ααα cosln coscos 1  ∫ +AB lh dl αcos = ∫ ++AB lh lhd α α α cos )cos( cos 1 = αα cosln 0cos1 lh l+ = h lh α α cosln cos 1 + Trang 9 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Suy ra :d = h lh h lhhl α α α cosln cosln cos + +− = αα coscosln h h lh l −+ 1.2. Đoạn dây dẫn cong, phẳng. *Tìm lực Laplace tác dụng lên đoạn dây dẫn AB mang dòng điện I , có chiều dài l đặt trong từ trường B = const. B vuông góc với mặt phẳng chứa AB. Hình 2.8 constB =r lId r x y O B A Chọn hệ trục tọa độ Oxy như hình vẽ có trục Ox song song với đường thẳng nối AB. Ta chia đoạn dây AB thành một dãy các “ bậc thang” song song và vuông góc với Ox. O y h a A r Trang 10 x r B b Fd r Fd r Fd r Fd r Fd r Fd r B C Hình 2.9 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI 1.2.1. Lực từ tác dụng lên các bậc thang vuông góc với Ox. Các “bậc thang” vuông góc với Ox trên đoạn Aa và Bb tương đương với đoạn dây dẫn thẳng (L1) chiều dài h mang dòng điện I chạy dọc theo chiều dương trục Oy. Lực từ tác dụng lên (L1) có độ lớn: F1 = ( )∫h BdlIBdl 0 ,sin = = (do (∫h IBdl 0 IBh Bdl, ) = 2 π ) F 1 hướng theo chiều âm trục Ox : F 1 ↑↓ Ox Các bậc vuông góc với Ox trên đoạn ab tương đương với đoạn dây dẫn thẳng (L2) chiều dài h mang dòng điện I chạy theo chiều âm trục Oy. Lực từ tác dụng lên (L2) có độ lớn: F2 = IBh , F 2 ↑↑ Ox Theo bài toán 1 F 1 và F 2 có điểm đặt tại trung điểm (L1) và (L2) nên có đường tác dụng trùng nhau. Mà F 1 = F 2 suy ra F 1 và F 2 là hai lực trực đối. F x = F 1+ F 2 = 0 và 02112 =+= mmm rrr 1.2.2. Lực từ tác dụng lên các bậc thang song song với Ox. Các “bậc thang” này tương đương với đoạn dây dẫn thẳng nối AB mang dòng điện I có chiều hướng theo chiều dương trục Ox. Vì B = const nên đường tác dụng hợp lực yF = Σ Fd // đi qua trung điểm C của đoạn AB. Suy ra điểm đặt tương đương của lực từ tác dụng lên AB là điểm C trên hình vẽ. Vậy lực từ yF có:  Độ lớn: F = = ∫ AB IBdl ∫ AB IBdx = IBr r = AB là đoạn thẳng nối AB  Hướng: yF ↑↑ Oy  Điểm đặt: tại C. 1.2.3. Hợp lực tác dụng lên dây AB. *Lực: yyx FFFF rrrr =+=  IBrF =r  OyF ↑↑r Trang 11 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Điểm đặt tại C *Momen lực: )()( yFmFm rrrr ∆∆ = 2. Điểm đặt của lực từ tác dụng lên các vòng dây dẫn mang dòng điện. 2.1. Từ trường tác dụng lên toàn bộ khung dây. 2.1.1. Khung dây hình chữ nhật. *Tìm lực Laplace của từ trường đều B = const tác dụng lên một khung dây hình chữ nhật có các cạnh a, b và có dòng điện I chạy qua. B vuông góc với các cạnh b. Góc giữa vectơ pháp tuyến n của khung và vectơ cảm ứng từ B là α. d mP r AB α nr 2F r B α r CD α nr B r I b a D C B A 1F r Hình 2.11 Hình 2.10 *Áp dụng công thức Ampere ta thấy: Lực tác dụng lên các cạnh a vuông góc với chúng và với từ trường chỉ có tác dụng kéo dãn khung. Lực tác dụng lên các cạnh b có độ lớn F=IbB. Các lực này vuông góc với các cạnh b và hướng ngược chiều nhau. Chúng tạo thành ngẫu lực và có tác dụng quay khung sao cho pháp tuyến dương của khung trùng với phương của cảm ứng từ B , tức là mặt phẳng của khung vuông góc với vectơ B. Ngẫu lực này có momen: M = IbBasinα= ISBsinα mà Pm = IS là độ lớn của vectơ momen từ P m của khung nên: M = PmBsinα hay dưới dạng vectơ M = [ P m. B]. Trang 12 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Vectơ momen ngẫu lực M có phương vuông góc với P m và B, có chiều trùng với chiều tiến của đinh ốc khi xoay nó từ P m đến B. Điểm đặt và 1F r 2F r lần lượt tại trung điểm của AB và CD. Do các lực F 1 và F 2 có điểm đặt tại trung điểm của đoạn AB và CD nên mặt phẳng chứa ngẫu lực ( F 1, F 2) là mặt phẳng vuông góc và qua trung điểm AB, CD . Mặt khác khung quay quanh trục ∆ nên momen ngẫu lực có phương trùng với . ∆ Vậy lực từ tác dụng lên ABCD là một ngẫu lực với momen ngẫu lực M có:  Độ lớn : M = PmBsinα  Chiều là chiều tiến đinh ốc khi quay nó từ P m đến B theo góc α. 2.1.2.Khung dây phẳng. Tìm lực Laplace của từ trường đều B = const tác dụng lên vòng dây kín diện tích S có hình dạng bất kỳ, mang dòng điện I, nằm trong mặt phẳng tạo với B một góc α. B r I nr α Hình 2.12 Ta chia vòng dây ra thành các khung dây nhỏ hình chữ nhật, trong đó có dòng điện chạy cùng chiều với vòng dây. Trang 13 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI I Hình 2.13 Các dòng điện của các khung dây ở phía trong sẽ triệt tiêu nhau vì từng đôi một trái chiều nhau. Trên mỗi khung hình chữ nhật đó có tác dụng của momen ngẫu lực tương đương với lực Laplace: MK = IBSKsinα Trong đó SK là diện tích của khung thứ K. Do các khung dây nằm trong cùng một mặt phẳng nên hướng của momen ngẫu lực MK của các khung đều trùng nhau. Vì thế, momen toàn phần tác dụng lên vòng dây là: M = ΣMK = IBsinα ΣSK = ISBsinα = PmBsinα Với S = ΣSK là diện tích toàn phần của vòng dây. Chọn hệ trục tọa độ Oxy có BOx ↑↑ , nOy ⊥ như hình vẽ y α n B O x Hình 2.14 Theo phương Oy các momen MK ∈ SK mà SK phụ thuộc vào hình dạng vòng dây nên ta chỉ có thể tìm được mặt phẳng song song với mặt phẳng tác dụng chính của momen M . Đó là mặt phẳng chứa n và B ( hay mặt phẳng vuông góc với Oy ) với n là pháp vectơ của vòng dây. Trang 14 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Vậy lực từ tác dụng lên vòng dây tương đương với ngẫu lực M có:  Độ lớn: M = ISBsinα.  Chiều quay: chiều tiến của đinh ốc khi quay nó từ n đến B .  Mặt phẳng tác dụng: mặt phẳng chứa n và B . 2.1.3. Khung dây gồm nhiều sợi dây mảnh phân bố đều trên đường tròn. *Tìm lực Laplace tác dụng lên hệ thống gồm hai đĩa kim loại bán kính a, đặt song song và có tâm nằm trên trục (Oz), cách nhau một khoảng d, được nối với nhau bằng N sợi dây mảnh song song với (Oz), phân bố đều trên chu vi và mỗi sợi có điện trở R. Hệ có thể quay quanh trục Oz với vận tốc ω và momen quán tính J và được đặt trong từ trường đều B r = eBr x. Bỏ qua điện trở của các đĩa. B r ω Oa z y x d Hình 2.15 2.1.3.1. Điểm đặt tương đương của lực từ. Trước tiên ta xét một đoạn dây dẫn chuyển động trong từ trường đều. Giả sử đoạn dây dẫn AB trượt với vận tốc vr = evrr y không đổi trên hai ray dẫn điện nằm ngang. AB vuông góc với ray và chịu tác dụng của một trường không đổi và thẳng đứng B r = eBr z đều. Nguồn điện E và điện trở của các dây dẫn được tập trung bằng điện trở R. Trang 15 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI E R B A vr B r Hình 2.16 Giả thiết thanh dẫn chuyển động tương đương với một máy phát suất điện động (ecư). Ta định hướng chiều của dòng điện cảm ứng như hình vẽ: B A icư E R B r • LaplaceFr vr Hình 2.17 Theo định luật Ohm, ta có: E + eL = Ri (1) Lực từ tác dụng lên thanh AB có độ lớn. F = = iBa ∫ AB iBdl Công suất của lực Laplace là: PLaplace = Biav (2) Sự cân bằng năng lượng toàn phần phải có dạng: Pcung cấp = Pmáy phát + Pngoài = PJoule Do lực Laplace ngược hướng với lực tác dụng bên ngoài để giữ vận tốc không đổi nên: Pngoài = -PLaplace Trang 16 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Từ đó ta có: Pmáy phát – PLaplace = PJoule Hay Ei - Bavi = Ri2 Nghĩa là: E - Bav = Ri (3) Từ (1) và (3) suy ra: eL = -Bav (4) Từ (2) và (4) ta có: PLaplace + eLi = 0 Ta thấy tác dụng của một từ trường ngoài không đổi lên một mạch điện đang chuyển động thì tương đương với tác dụng của một máy phát điện áp mà sức điện động eL được gọi là sức điện động Lorentz hay sức điện động dịch chuyển. Công suất của sức điện động Lorentz được bù trừ bởi công suất của lực Laplace tác dụng lên mạch điện. PLaplace + eLi = 0 Trở lại bài toán, ta xét một sợi dây thứ p có dòng điện chạy qua (theo quy ước hướng lên cao) mà vị trí được xác định bởi các góc cực θp. LaplaceF r pθ B r i z y x O Hình 2.18 Lực laplace tác dụng lên sợi dây thứ p là : F = = iBd (do (∫ day iBdl ldB rr , ) = 2 π ) Theo quy tắc bàn tay trái suy ra: F r = iBd er y Công suất của lực từ có giá trị: P = eiBd r y(ωa er θ) Trang 17 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI x y vr θe rye r pθ Hình 2.19 Vì er ry. e θ = │e y│.│er θ│cos (er y, er θ)= cos(er y, er θ) = cosθp r Nên P = iBdωacosθp Ta có: PLaplace + iep = 0 Suy ra: ep = - i PLaplace = - iBdωacosθp Mặt khác: ip = R e p = - R aBdω cosθp Vậy lực Laplace: pF r = - R adB 22 ω cosθp yer Hay: = - pF r R adB 22 ω θe r pF r có điểm đặt tại trung điểm của đoạn dây dẫn thứ p. 2.1.3.2. Chuyển động trong từ trường. Do F ↑↓ vp r r và Fp r có điểm đặt tại trung điểm của đoạn dây dẫn thứ p nên có tác dụng cản trở chuyển động của dây dẫn. pF r Momen lực cản này đối với (Oz) có giá trị: Mp = - R dB 222 ωa pθ2cos Vì vậy hệ chịu tác dụng của Momen: M = - R dB 222 ωa ∑ = N p p 1 2cos θ N rất lớn và các θp được phân bố đều nên ta có thể coi rằng tổng bằng N lần giá trị trung bình của cos∑ = N p p 1 2cos θ 2θp, nghĩa là bằng 2 N . Trang 18 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Do đó: M = - 2R dNB 222 ωa Phương trình cơ bản của chuyển động quay khi chiếu lên trục (Oz) sẽ cho: J dt dω = M ≈ - 2R dNB 222 ωa Suy ra: ω = ω0 R T t e − với TR = 222 2 adNB RJ Ta thấy dưới tác dụng của momen cản M vận tốc của hệ thống sẽ giảm dần theo quy luật hàm số mũ. 2.2. Từ trường tác dụng lên một phần của khung dây. 2.2.1. Khung dây hình chữ nhật. *Tìm lực Laplace tác dụng lên khung dây hình chữ nhật MNPQ di động qua vùng có từ trường đều chiều dài d. Khung có các cạnh a, b (a,b < d) và chuyển động với vận tốc v0 = const, khung có điện trở R. Chọn hệ trục tọa độ Oxy như hình vẽ. x P a Q ~ B = const X N M vo b y O d Hình 2.20 Giả sử B = B e z là đều ở mọi phía của biên giới và thừa nhận trường bằng 0 ở ngoài miền đó mà không quan tâm đến vấn đề gắn với tính bất liên tục của B . Ta cũng bỏ qua mọi lực khác với lực từ (điều này có thể được thực hiện một cách gần đúng bằng cách treo vật dẫn vào một sợi dây rất dài). X(t) biểu diễn hoành độ của cạnh MN. ” Khi 0 < X < b : Trang 19 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI M N F B ~ Q P Hình 2.21 Khung dây chuyển động tịnh tiến với vận tốc v0 thì từ thông gửi qua khung biến thiên nên trong khung xuất hiện suất điện động cảm ứng εcư. Bản chất lực lạ gây nên εcư chính là lực Lorenxơ F = e[ Bv. ] tác dụng lên các electron tự do trong khung khi chúng cùng với khung chuyển động với vận tốc v 0 . Chọn chiều dương trong mạch theo ngược chiều kim đồng hồ và vectơ pháp tuyến n của diện tích giới hạn bởi mạch có chiều hướng ra mặt giấy. Theo định luật Faraday: εcư = - dt dΦ = - B dt dS = - Ba dt dx = - Bav Ta thấy εcư <0, điều đó cho biết rằng dòng điện cảm ứng xuất hiện có chiều ngược chiều với chiều dương của mạch phù hợp với định luật Lenz với icư = - R Bav . Lực từ tác dụng lên các cạnh PN và QM là hai lực trực đối nên chúng triệt tiêu nhau, chỉ còn lực từ tác dụng lên cạnh MN có độ lớn: F = = ∫ MN dF ∫ MN i cư[ dl . B ] = ∫ MN i cưBdl , ( B , dl ) = 2 π F = B2 R av ∫ MN dl = R vBa2 = Bai F hướng ngược chiều với chiều tịnh tiến : F Ox↑↓ . Điểm đặt F tại trung điểm MN nên lực Laplace có tác dụng cản trở chuyển động tịnh tiến của khung. ” Khi d < X < d+b : Trang 20 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Trang 21 Q N M B ~ F r P Hình 2.22 Tương tự dòng điện cảm ứng xuất hiện trong khung là: i = R Bav Lực từ tác dụng lên cạnh PQ cũng có độ lớn: F= R vBa2 = Bai Và đặt tại trung điểm của MN. Do F Ox↑↓ nên F cũng có tác dụng cản trở chuyển động tịnh tiến của khung. ” Khi X ≤ 0 v X ≥ b + d v b ≤ X ≤ d : Nghĩa là khi toàn bộ khung MNPQ nằm ngoài từ trường hoặc trong từ trường thì từ thông qua khung dây không biến thiên. Do đó không xuất hiện dòng điện cảm ứng nên cũng không có lực từ. Khung chuyển động tịnh tiến trong các khoảng này thì vận tốc không đổi . 2.2.2. Khung dây là đường tròn có đường kính AB. Tìm lực Laplace tác dụng lên hệ thống gồm: bánh xe có đường chu vi và đường kính là các vật dẫn điện có cùng điện trở R như nhau. Bán kính bánh xe là a. Bánh xe chuyển động quanh trục (Oz)với vận tốc góc ω. Một từ trường không đổi ezBB = được áp đặt lên nửa y<0 của bánh xe và từ trường bằng 0 đối với y>0. O x B O B r ω A y Hình 2.23 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Theo định luật Lenz, các hiệu ứng từ của sự cảm ứng đều được định hướng theo cách chống lại các nguyên nhân đã gây ra chúng. Do đó ta định hướng được dòng điện cảm ứng trên bán kính OA sao cho từ trường B cư mà nó sinh ra chống lại sự biến thiên từ thông qua hệ thống . b a θe r B O x y i2 i1 icư O A B r LaplaceF r Hình 2.24 Xét một yếu tố vi phân chiều dài dr của bán kính được nhúng vào trường, ta có: d F Laplace = -Bicưdr θe Tích phân dr theo bán kính ta được lực F Laplace F Laplace = -Bicưa θe Do lực F Laplace = -Bicưa θe và vận tốc bán kính V = ω a θe nên F Laplace↑↓ V .Lực Laplace có tác dụng hãm chuyển động quay của bánh xe. Theo bài toán 1,điểm đặt của lực F Laplace là trung điểm của bán kính OA. Do đó momen của F Laplace đối với O là: M = -Bicư 2 2a Công suất của F Laplace : PLaplace = -Bicưω 2 2a Mà PLaplace + eOAicư =0 Suy ra:eOA = Bω 2 2a Mặt khác dòng icư này chạy dọc theo hai cung AaB và AbB nên tại mọi yếu tố vi phân dòng điện Id l trên hai cung này, lực F Laplace đều Trang 22 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI hướng dọc theo phương bán kính tại yếu tố vi phân đó. Do đó momen của các lực này đối với Oz bằng 0. Suy ra trên bánh xe chỉ còn sức điện động định xứ trên OA. Tại nút A của mạch ta có: icư =i1 + i2 = 2i = R aB RR eCU 5 2 4 2ω= + Vậy momen của lực Laplace: M= - R aB 5 42ω Momen này có tác dụng hãm chuyển động của bánh xe. 3. Điểm đặt của lực từ tác dụng lên đĩa. 3.1. Đĩa quay trong từ trường không đổi. *Tìm lực Laplace tác dụng lên đĩa kim loại bán kính R quay xung quanh trục O của nó trong một từ trường không đổi. Đĩa được nối vào một mạch kín nhờ hai tiếp điểm trượt đặt ở tâm O và điểm a’ trên vành đĩa. B vuông góc với mặt đĩa và vận tốc góc ω đều. B r ω I r O a’ a c b Hình 2.25 Nguyên nhân gây nên suất điện động cảm ứng trong trường hợp này là phần mạch bán kính của đĩa nằm giữa hai tiếp điểm a và a’ dịch chuyển trong từ trường. Trên phần này, các điện tích chuyển động trong từ trường nên chúng chịu tác dụng của tác dụng của lực từ. Lực này đóng vai trò lực lạ. Vectơ cường độ trường lực lạ E * chính là : E * = q F = [v . B ] E * hướng từ a đến a’ ( tức từ tâm đĩa ra vành đĩa). Suất điện động xuất hiện trong mạch là: Trang 23 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI εc = ∫[R 0 v (r). B ] rd = ∫R 0 v(r).Bdr Vì v(r) = ω.r nên: εc = =ωB = ∫R Brdr 0 ω ∫R rdr 0 2 1 ωR2B B r F r O ω aa’ Hình 2.26 Suất điện động này tạo trong mạch kín dòng điện cảm ứng (dòng Foucault). Dòng điện đặt trong từ trường sẽ chịu tác dụng của lực từ. Lực từ F r có độ lớn F = 2 1 ' 22 R BRω với R’ là điện trở của đĩa. Đường tác dụng của F r vuông góc và qua trung điểm aa’. Chiều của F r như hình vẽ. Do đó momen của lực F r đối với điểm O có tác dụng cản trở chuyển động quay của vật dẫn (đĩa quay). 3.2. Đĩa đặt một phần trong từ trường biến thiên. *Tìm lực Laplace tác dụng lên đĩa kim loại mỏng chiều dày e, độ dẫn điện γ , có thể chuyển động chung quanh trục thẳng đứng (Oz), được đặt trong hai miền tiết diện tròn bán kính a, có từ trường biến thiên 1B r = B1(t) ze r được tạo ra bởi 2 nam châm điện. Các tâm O1 và O2 của hai miền đều ở cách trục quay một khoảng b và góc hợp bởi tâm O của đĩa với O1, O2 là 2α. Bỏ qua trường cảm ứng bởi các dòng điện Foucault và sự quay là đủ chậm để có thể bỏ qua trường phát động điện Lorenzt. Trang 24 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI z e O O1 O2 b α2 )(1 tB r )(2 tB r aa Hình 2.27 3.2.1. Điểm đặt tương đương của lực từ. Trước tiên ta xét dòng điện cảm ứng sinh ra trên một đĩa dẫn điện mỏng, bán kính b, chiều dày e, có thể quay quanh trục (Oz), được nhúng vào trong một từ trường đều 1B r = B(t) ze r định sứ trong một hình trụ bán kính a và bằng 0 ở các nơi khác (bỏ qua trường cuB r tạo nên bởi dòng cảm ứng). B b a eθer e Hình 2.28 B r Độ biến thiên của trong vật dẫn gây cảm ứng các dòng điện thể tích và chính các dòng điện này lại tạo ra một trường cảm ứng cuB r . Theo định luật Lenz thì cuB r được định hướng sao cho nó chống lại nguyên nhân gây ra cảm ứng, nghĩa là chống lại phần biến thiên của trường B r . Vì đĩa dẫn điện mỏng và độ dẫn điện γ của đĩa lớn nên sự dẫn điện được thực hiện trên các bề mặt rất mỏng. Các dòng điện có thể mô hình hóa được bằng các dòng điện bề mặt. Từ trường ở đây phụ thuộc vào thời gian và các biến thiên theo thời gian của nó gây cảm ứng một thành phần điện trường mà lưu thông Trang 25 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI của nó dọc theo một đường cong kín khác 0. Hiện tượng này được thể hiện bởi phương trình Maxell – Faraday: Erot r = - t B ∂ ∂ r . Do sự đối xứng của từ trường và đĩa nên ta có thể tìm được dạng của mE r : mE r = E . θe r Trên một đường dòng bán kính r của dòng cảm ứng ta có: ∫ ldEm rr = 2πrE = - dtdφ + Nếu r < a: Φ = πr2B Suy ra: 2πrE = - πr2 dt dB Do đó: E = - 2 r dt dB Ta tìm được mật độ dòng cảm ứng là: J r = γE r = - θ γ e dt dBr r 2 +Nếu a<r<b: =Φ πa2B Suy ra: 2πrE = - πa2 dt dB Nên E= - dt dB r a 2 2 Từ đó,mật độ dòng của dòng cảm ứng là: J r = γE r = - θ γ e dt dB r a r2 2 Trở lại bài toán ta sẽ tính lưu thông của điện trường cảm ứng (trục xuyên tâm, có tâm ở O1) E r 1= E1 θe r bởi từ trường 1B r trên vòng tròn tâm O1 và bán kính r1 (r1>a) thì ta thu được: 2π1E1 = - πa2 dt dB1 Suy ra: = γ1J r 1E r = - 11 1 2 2 θ γ e dt dB r a r với r1>a ở ngoài miền 1. Tương tự mật độ dòng cảm ứng do 2B r tạo ra là: 2J r = - 22 2 2 2 θ γ e dt dB r a r với r2>a ở ngoài miền 2. Trang 26 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Theo phép đối xứng ta có thể khẳng định rằng vectơ I r song song và cùng chiều với vectơ 21OO . 3.2.1.1. Điểm đặt tương đương của lực từ do từ trường )(2 tB r tác dụng lên dòng cảm ứng 1J r . y x z O O1 O2 A α2 1re r 1θe r Miền1 Miền2 Hình 2.29 Trên một phần tử đĩa, diện tích dS, tác dụng của lên là : 2B r r 1J 12→Fd r = edS1J r ∧ 2B r = - 112 1 2 2 r eedS dt dBB r a rγ )( 11 rz eee rrr =∧θ Ta có: dS r e miên r∫∫ 2 1 1 r = I r Do OxOO nên ↑↑21 xeII r r = Tích phân trên miền 2 ta có: 12→F r = = -∫∫ → 2 12 mien Fd r 2 γ a2eB2 dt dB1 I r = xeIdt dBeBa r1222 γ− Lực 12→F r có điểm đặt tại tâm O2. Trang 27 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI 3.2.1.2. Điểm đặt tương đương của lực từ do từ trường )(1 tB r tác dụng lên dòng cảm ứng 2J r . Miền1 y x z O1 O2 A α2 2θe r 2re r Miền2 O Hình 2.30 Tương tự trên một phần tử đĩa, diện tích dS tác dụng của 1B r lên là: 2J r 21→Fd r = edS2J r ∧ 1B r = - 221 2 2 2 r eedS dt dBB r a rγ ( )22 rz eee rrr =∧θ Tích phân trên miền 1 ta có: 21→F r = = -∫∫ → 1 21 mien Fd r ∫∫ 1mien 2 2 1 2 2 2 r eedS dt dBB r a rγ mà ∫∫ 1mien dS r er 2 2 r = - I r = xeI r− nên 21→F r = 2 γ a2eB1 dt dB2 I r xeIdt dBeBa r2122 γ= 21→F r có điểm đặt tại O1. 3.2.2. Chuyển động trong từ trường. Trang 28 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Do đường tác dụng của 12→F r qua O1O2 nên momen của 12→F r đối với O là: AOFM ∧= →→ 1212 rr )(cos 2 1 2 2 yx eeIbdt dBeBa rr ∧−= αγ zeIdt dBbeBa r122 cos2 α γ−= ( )zyx eee rrr =∧ Đường tác dụng của 21→F r cũng qua O1O2 nên momen của 21→F r đối với O là: AOFM ∧= →→ 2121 rr )(cos 2 2 1 2 yx eeIbdt dBeBa rr ∧= αγ zeIdt dBbeBa r212 cos2 α γ= )( zyx eee rrr =∧ Do đó momen tổng của hai lực 21→F r và 12→F r đối với O là: zedt dBB dt dBBeIbaM r r )(cos 2 1 2 2 1 2 −= αγ Tùy theo độ biến thiên của )(1 tB r và )(2 tB r mà ta xác định được momen M r . III-Ứng dụng: 1. Một số ứng dụng về tác dụng hãm chuyển động của vật dẫn đặt trong từ trường: 1.1. Hãm chuyển động tịnh tiến: Trong bài toán 5, lực Laplace tác dụng lên vật dẫn chuyển động tịnh tiến qua miền có từ trường đều chỉ có tác dụng hãm chuyển động tịnh tiến của vật mà không có tác dụng làm quay vật. Do đó hiệu ứng này được ứng dụng để làm giảm dao động của giá cân quanh vị trí cân bằng. Hình 3.1 B r S N Trang 29 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Để cản dịu dao động của giá cân ta nối giá cân với một tấm kim loại (như tấm đồng).Do dao động bé nên có thể xem tấm đồng dao động tịnh tiến qua miền có từ trường đều B r giữa hai nam châm vĩnh cửu. Vì thế chúng ta chỉ xem như lực Laplace không làm quay tấm đồng nên không uốn cong giá cân. Xét tấm đồng mỏng hình vuông, chiều dày h, cạnh a. Theo bài toán 5, ta có thể đồng nhất vật dẫn này với một ”sợi dây lớn”, chiều dài l=4 2 a =2a, chiều rộng 2 a và chiều dày h. Với mô hình này ta có điện trở: R= S l γ 1 = hγ 4 ( :γ độ dẫn điện) Lực Laplace tác dụng lên tấm đồng khi tấm đồng tịnh tiến qua vùng từ trường mà có từ thông biến đổi có độ lớn: F= R vB a22 Độ giảm vận tốc khi khung chuyển động tịnh tiến qua miền có từ trường. Chọn hệ trục tọa độ Oxy như hình vẽ. a a ~ Bv dOX x y Hình 3.2 Trên đoạn 0<X<a: F dt dvm −=Phương trình cơ học: Hay R vaB dt dvm 22 −= Suy ra: dXmR aBdv 22 −= Tích phân hai vế: dX mR aBdv v v b∫ ∫ −=1 2 0 22 Trang 30 Xác định điểm đặt tương đương của lực từ NGUYỄN TẤN TÀI Suy ra: v1 - v0 = - mR baB 22 mR baBvv 22 10 =−⇔ Tương tự trên đoạn d<X<d+a =− 21 vv mR baB 22 Vậy khi tấm đồng tịnh tiến qua vùng có từ trường thì vận tốc sẽ giảm một lượng: mR baBvvv 22 20 2=−=∆ Nếu vận tốc dao động giá cân v0> v∆ thì sau mỗi chu kỳ vận tốc giá cân giảm một lượng 2 v∆ (bỏ qua sức cản của môi trường) 1.2. Hãm chuyển động quay: Trong phần II.2.2.1., khi đĩa kim loại quay trong miền có từ trường đều B r thì sẽ chịu momen cản của lực Laplace. Hiện tượng cảm ứng này được ứng dụng làm các bộ giảm tốc trên các trọng lượng nặng. S B r ω N Hình 3.3 Khi đĩa kim loại (gắn với bánh xe) chuyển động quay với vận tốc góc ω thì trong đĩa xuất hiện dòng Faucault. Chính dòng điện này làm xuất hiện lực t

Các file đính kèm theo tài liệu này:

  • pdfxacdinhdiemdatcualuctu.4299.pdf
Tài liệu liên quan