Bài 2: Cho mạch điện trên Hình 2a, trong đó
nguồn áp vs(t) được cho trên Hình 2b. Cho áp ban
đầu qua tụ điện là vc(0_) = 0.
(a) Xác định Vc(s) trong miền s .
(b) Suy ra vc(t) khi t > 0 .
Bài 3:
(a) Chứng tỏ rằng hàm u(x,y) = x3 – 3xy2 + y + 2 là hàm điều hòa.
(b) Xác định hàm v(x,y) sao cho u(x,y) + i.v(x,y) là hàm giải tích .
Bài 4: Cho hàm f(z) 1
(z 5)(z 7)
=
− +
(a) Tìm chuổi Taylor của f(z) quanh điểm z0 = 3.
(b) Xác định bán kính hội tụ của chuổi.
1 trang |
Chia sẻ: trungkhoi17 | Lượt xem: 431 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi Cuối kỳ môn Toán kỹ thuật, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Khoa Điện-Điện tử ĐỀ THI CUỐI KỲ MÔN TOÁN KỸ THUẬT – CQ09
Bộ Môn CSKT Điện (Thời gian 90’ , không kể chép đề ) (Ngày 20 – 1 – 2011)
------------------------------------------------------------------------------
Bài 1: Dùng phép biến đổi Laplace để giải các phương trình vi phân sau:
(a) y’ + y = sin(t) ; y(0) = 1.
(b) y’’ – 5y’ + 6y = δ(t – 2) ; y(0) = – 1 và y’(0) = 1.
Bài 2: Cho mạch điện trên Hình 2a, trong đó
nguồn áp vs(t) được cho trên Hình 2b. Cho áp ban
đầu qua tụ điện là vc(0_) = 0.
(a) Xác định Vc(s) trong miền s .
(b) Suy ra vc(t) khi t > 0 .
Bài 3:
(a) Chứng tỏ rằng hàm u(x,y) = x3 – 3xy2 + y + 2 là hàm điều hòa.
(b) Xác định hàm v(x,y) sao cho u(x,y) + i.v(x,y) là hàm giải tích .
Bài 4: Cho hàm 1f(z)
(z 5)(z 7)
= − + .
(a) Tìm chuổi Taylor của f(z) quanh điểm z0 = 3.
(b) Xác định bán kính hội tụ của chuổi.
Bài 5: Tính: 3
1 dz
(z 2i)(z 2i)(z 2 2i)C + − − −∫> nếu C là đường tròn |z – 2i| = 1.
Bài 6: Cho hàm : 2 2
1f(z)
(z 4z 5)
= − + .
(a) Tìm thặng dư của f(z) tại z1 = 2 + i .
(b) Dùng phương pháp thặng dư để tính tích phân :
2 2
dx
(x 4x 5)
∞
−∞ − +∫ .
------------------------------------------------------- Hết -------------------------------------------------------------------------
+ Sinh viên không được tham khảo tài liệu. Bộ Môn duyệt
+ Cán bộ coi thi không giải thích đề thi.
+ Một số công thức cơ bản có thể tham khảo ở mặt sau của đề thi.
Các file đính kèm theo tài liệu này:
- de_thi_cuoi_ky_mon_toan_ky_thuat.pdf