MỤC LỤC
Mục lục . 1
Mở đầu . 3
Chương 1: Mô hình bộ biến đổi . 5
1.1 Giới thiệu các bộ biến đổi bán dẫn . 5
1.2. Phân loại các bộ biến đổi bán dẫn . 7
1.3 Các bộ biến đổi DC-DC . 8
1.3.1. Bộ biến đổi giảm áp (buck converter) . 9
1.3.2. Bộ biến đổi đảo áp ( buck-boost converter) .11
1.3.3. Bộ biến đổi tăng áp (boost converter) .12
1.3.3.1. Mô hình của bộ biến đổi .14
1.3.3.2. Mô hình dạng chuẩn .15
1.3.3.3. Điểm cân bằng và hàm truyền tĩnh .16
Chương 2: Nguyên lý điều khiển trượt .20
2.1. Giới thiệu.20
2.2. Các hệ thống cấu trúc biến .20
2.2.1. Điều khiển đối với các hệ thống điều chỉnh bằng chuyển mạch đơn .21
2.2.2. Các mặt trượt .24
2.2.3. Ký hiệu .25
2.2.4. Điều khiển tương đương và trượt động lý tưởng .26
2.2.5. Tính tiếp cận được của các mặt trượt .29
2.2.6. Các điều kiện bất biến cho các nhiễu loạn tìm được .34
Chương 3: Điều khiển trượt bộ biến đổi DC-DC tăng áp .36
3.1 Đặt vấn đề .36
3.2. Điều khiển trực tiếp .37
3.3. Điều khiển gián tiếp .39
Chương 4: Mô phỏng kiểm chứng trên nền Matlab& Simulink .42
4.1. Mạch lực bộ biến đổi .43
4.2. Xây dựng bộ điều khiển .45
4.2.1. Bộ điều chỉnh dòng điện .45
4.2.2. Bộ điều chỉnh điện áp .54
4.2.2.1. Thử nghiệm các thông số hệ thống .58
4.2.2.2. Thử nghiệm tính điều chỉnh được của hệ thống .64
Kết luận .69
Tài liệu tham khảo .70
76 trang |
Chia sẻ: lethao | Lượt xem: 3055 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đồ án Thiết kế bộ điều khiển trượt cho bộ biến đổi tăng áp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
tuyến và dễ bị ảnh hưởng của các tác động bên ngoài.
Mạch điện của bộ biến đổi tăng áp, còn được gọi là bộ biến đổi tăng như hình
1.3. Ta giả thiết rằng các thiết bị bán dẫn là lý tưởng, nghĩa là transistor Q phản ứng
nhanh khi diode D có giá trị ngưỡng bằng 0. Điều này cho phép trạng thái dẫn và trạng
thái khóa được kích hoạt tức thời không mất thời gian. Như đã biết, ta có: khi transistor
ở trạng thái mở, diode D sẽ bị phân cực ngược. Do đó, sẽ hở mạch giữa nguồn áp E và
tải R. Ta có thể thấy điều này trên hình 1.4(a). Mặt khác, khi transistor Q ở trạng thái
khóa, diode D phân cực thuận, tức là D dẫn. Nó cho phép dòng năng lượng truyền từ
nguồn E tới tải R, như hình 1.4(b).
Hình 1.3: Bộ biến đổi tăng áp đóng cắt bằng thiết bị bán dẫn
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 14 -
Hình 1.4: Sơ đồ thay thế của bộ biến đổi tăng áp
Hai sơ đồ mạch ghép nối với bộ biến đổi có thể được kết hợp thành một sơ đồ
mạch đơn bằng cách sử dụng ý tưởng của chuyển mạch lý tưởng như trên hình 1.5
Hình 1.5: Lý tưởng đóng cắt cho mạch tăng áp
1.3.3.1. Mô hình của bộ biến đổi
Để xác định được mô hình động học của bộ biến đổi, ta áp dụng luật Kirchoff
cho mỗi một sơ đồ mạch như là hệ quả của hai vị trí chuyển mạch. Sơ đồ mạch đầu tiên
nhận được khi chuyển mạch lấy giá trị u = 1, sơ đồ mạch thứ hai nhận được khi chuyển
mạch lấy giá trị u = 0, hai sơ đồ mạch này được biểu diễn trên hình 1.5.
Khi vị trí chuyển mạch đặt u = 1, ta áp dụng luật Kirchoff điện áp và Kirchoff
dòng điện, thu được hệ phương trình động lực học:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 15 -
di
L E
dt
dv v
C
dt R
(1.1)
Khi chuyển mạch đặt u = 0, ta có hệ:
di
L v E
dt
dv v
C i
dt R
(1.2)
Dạng động học của bộ biến đổi tăng áp được mô tả bởi hệ phương trình vi phân
(1.1),(1.2) với dạng tổng quát dưới đây:
Evu
dt
di
L )1(
(1.3)
R
v
iu
dt
dv
C )1(
( 1.4)
1.3.3.2. Mô hình dạng chuẩn
Dạng chuẩn hóa của hệ phương trình mô tả bộ biến đổi tăng áp đạt được bằng
cách định nghĩa lại các biến trạng thái và biến thời gian như dưới đây:
v
i
E
C
L
E
x
x
1
0
0
1
2
1 ,
LC
t
(1.5)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 16 -
1
1
2
2
1 1 1 1
1 1 1 1
dxL L di di
x i L
E C dt E C dt E dtLC
dx dv L dv
x v C
E dt E dt E C dtLC
.
dt
d dt LC d
LC
Từ phương trình (1.3) ta có:
1 1 1 1 1 1
(1 )
di
L u v E
E dt E ELC LC LC
1 2
1 1
1
dx
u x
dt LC LC
1 21 1
dx
u x
d
Từ phương trình (1.4) ta có:
1 1 1 1 1 1 1
(1 )
L dv L L
C u i v
E C dt E C E C RLC LC LC
2 1 2
1 1 1
1
dx L
u x x
dt R CLC LC
2 21 2 1
1
1 . 1
dx xL
u x x u x
d R C Q
Ta được mô hình chuẩn hóa trung bình của bộ biến đổi tăng áp
1)1( 2
1 xu
d
dx
av
(1.6)
2 2
1(1 )av
dx x
u x
d Q
(1.7)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 17 -
Đặt u=1-uav, ta có:
1
2
2 2
1
1
dx
ux
d
dx x
ux
d Q
(1.8)
Trong đó tham số Q là nghịch đảo của hệ số chất lượng mạch, tính theo công
thức Q=
LCR /
. Biến x1 là dòng điện cảm chuẩn hóa, còn x2 là điện áp ra chuẩn hóa.
1.3.3.3. Điểm cân bằng và hàm truyền tĩnh
Một trong các mục tiêu điều khiển mà ta mong muốn đạt được khi sử dụng
hoặc thiết kế bộ biến đổi công suất 1 chiều sang một chiều là điều chỉnh điện áp ra ổn
định tới một giá trị hằng hoặc để tiếp cận tới 1 tín hiệu tham chiếu cho trước. Trong
chế độ trạng thái ổn định, ứng với các giá trị cân bằng hằng, tất cả các đạo hàm theo
thời gian của các biến trạng thái mô tả hệ thống được cho bằng 0. Vì vậy, đầu vào điều
khiển cũng phải là hằng, nghĩa là uav=U=constant. Điều kiện này kéo theo một hệ
phương trình mà nghiệm của nó mô tả điểm cân bằng của hệ.
Từ phương trình(1.6),(1.7) ta có:
2
2
1
0 (1 ) 1
0 (1 )
av
av
u x
x
u x
Q
(1.9)
Mô hình trung bình chuẩn hóa của bộ biến đổi tăng áp ứng với giá trị hằng của
đầu vào điều khiển uav=U, đưa ra hệ phương trình dưới đây cho trạng thái cân bằng:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 18 -
0
1
1
)1(
)1(0
2
1
x
x
Q
U
U (1.10)
Giải ra ta được:
21 )1(
11
UQ
x
,
)1(
1
2
U
x
(1.11)
Dạng tham số hóa khác đạt được bằng cách biểu diễn giá trị cân bằng trong giới
hạn của điện áp ra mong muốn của bộ biến đổi , kí hiệu bởi
dVx 2
:
2
1
1
dV
Q
x
,
dVx 2
,
d
d
V
V
U
1
(1.12)
Theo cách này, từ hệ thức (1.10) ta được hàm truyền chuẩn hóa tĩnh của bộ biến
đổi tăng áp cho bởi:
H(U)=
)1(
1
2
U
x
(1.13)
Rõ ràng là hệ số khuếch đại của mạch bộ biến đổi luôn lớn hơn 1. Vì thế, bộ
biến đổi được gọi là bộ biến đổi tăng hay bộ biến đổi tăng áp. Đặc tuyến của hàm
truyền tĩnh của bộ biến đổi tăng áp đựợc minh họa như trên hình 1.6 . Dễ thấy thông
qua sự biến thiên của chu trình hoạt động hay đầu vào điều khiển trung bình U, ta có
thể đọc được giá trị của điện áp đầu ra ổn định của giá trị mong muốn
v
lớn hơn 1.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 19 -
Hình 1.6: Đặc tuyến hàm truyền bộ biến đổi tăng áp
Giá trị dòng điện và điện áp cân bằng của mạch là
E
v
R
i
21
,
)1( U
E
v
(1.14)
Trên đây là phương trình trạng thái của bộ biến đổi tăng áp. Điều khiển
bộ biến đổi tăng áp có thể có nhiều phương pháp. Bài luận văn này tác giả trình bày
phương pháp dùng bộ điều khiển trượt để điều khiển đối tượng.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 20 -
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 20 -
CHƢƠNG 2
NGUYÊN LÝ ĐIỀU KHIỂN TRƢỢT
2.1 Giới thiệu
Điều khiển trượt nổi tiếng với kỹ thuật phản hồi đã được đề cập đến trong rất
nhiều bài báo và các công trình nghiên cứu của nhiều tác giả. Bản chất kỹ thuật này
điều chỉnh các hệ thống thông qua điều khiển đóng ngắt như là các thiết bị điện tử công
suất nói chung và các bộ biến đổi DC-DC nói riêng. Điều khiển trượt được nghiên cứu
cơ bản bởi nền khoa học Nga xô viết được trình bày trong các cuốn sách của
Emelyanov, Utkin, và một số tác giả khác. Điều khiển phản hồi gián đoạn được áp
dụng cho các hệ thống vật lý cơ điện tử đã được thực nghiệm và đạt kết quả tốt. Trong
chương này chúng ta nghiên cứu điều khiển trượt cho hệ thống điều chỉnh đóng ngắt
phi tuyến. Ta quy ước và giải quyết các vấn đề trên cơ sở sử dụng ngôn ngữ biểu đạt
của hình học giải tích vi phân. Chúng ta cùng xem lại các hệ thống một khoá chuyển
mạch và hệ thống nhiều khoá chuyển mạch (hệ SISO và hệ MIMO). Chúng ta nghiên
cứu tính chất nổi bật của lý thuyết cơ sở của điều khiển trượt: mặt trượt, sự tồn tại mặt
trượt, định nghĩa mặt trượt , điều khiển tương đương, trượt động lý tưởng và cuối cùng
là sự ổn định của hệ thống vòng lặp điều khiển trượt với các điều kiện nhiễu.
2.2 Các hệ thống cấu trúc biến
Hệ thống cấu trúc biến là một hệ thống trong đó mô hình trạng thái động chịu
ảnh hưởng lớn trên miền của không gian trạng thái, trên đó các phép toán của hệ được
tìm thấy một cách tường tận. Bản chất không liên tục của mô hình chính là thông số
đặc tính, và những thay đổi đột ngột gây ra hoặc do sự tác động tự ý lên các thành phần
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 21 -
của toán tử, sự kích hoạt tự động của một hay nhiều bộ chuyển mạch trong hệ thống,
hoặc do sự thay đổi các giá trị tạm thời của từng tham số hệ thống xác định.
Lớp của các hệ thống cấu trúc biến tương đối rộng đối với các nghiên cứu chi
tiết, hơn nữa lại ít được quan tâm trong lĩnh vực Điện tử Công suất (Power
Electronics). Vì lý do này, ta sẽ chỉ nghiên cứu các hệ thống cấu trúc biến được điều
khiển bởi một hoặc nhiều chuyển mạch. Vị trí của các chuyển mạch này sẽ cấu thành
nên tập các đầu vào điều khiển.
Ngoài ra, ta giới hạn thêm đối với các nhóm hệ thống mà các mô tả hoặc cấu trúc
có điểm tương đồng về số chiều với hệ kết quả cũng như về bản chất của trạng thái mô
tả trong hệ.
2.2.1 Điều khiển đối với các hệ thống điều chỉnh bằng chuyển mạch đơn
Ta xét quá trình điều khiển các hệ thống được biểu diễn bởi các mô hình không gian
trạng thái phi tuyến theo dạng:
.
x f x g x u
,
y h x
(2.1)
trong đó
,nx R
[0,1]u
,
y R
Các hàm véctơ f(x) và g(x) biểu diễn các trường véctơ trơn, nghĩa là các trường
véctơ khả vi vô hạn, được định nghĩa trên không gian tiếp tuyến với nR . Hàm đầu ra
h(x) là một hàm vô hướng trơn với biến x lấy giá trị trên trục thực R. Ta coi x như là
trạng thái của hệ. Biến u được xác định như một đầu vào điều khiển hoặc dơn giản là
lượng điều khiển. Còn biến y chính là đầu ra của hệ. Ta cũng thường coi f(x) như một
trường véctơ sai lệch và g(x) như là trường đầu vào điều khiển.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 22 -
Đặc điểm chính của hệ mà ta quan tâm là bản chất giá trị nhị phân của biến đầu
vào điều khiển. Không làm mất tính tổng quát, ta giả sử đầu vào điều khiển này lấy giá
trị trên tập rời rạc [0, 1] Chú ý rằng nếu tập các giá trị có thể nhận được của biến đầu
vào vô hướng u là tập rời rạc [W1,W2] với
iW R
, i=1,2 thì theo phép biến đổi tọa độ
khả đảo dưới đây ta có:
2
1 2
( )
( )
u W
v
W W
,
và u=W2+v(W1`+W2) sẽ tạo ra biến đầu vào điều khiển mới v là một hàm đầu
vào điều khiển giá trị nhị phân lấy giá trị trên tập [0, 1].
Ví dụ 2.1: Mạch điện dưới đây biểu diễn bộ biến đổi công suất từ một chiều sang
một chiều (DC-to-DC Power Converter), còn gọi là Bộ biến đổi Boost (Boost
Converter), được điều khiển bởi một chuyển mạch đơn.
Hình 2.1: Bộ biến đổi Boost một chiều - một chiều
chuyển mạch bằng khóa bán dẫn
Lý tưởng hóa khóa đóng mở Q ta có sơ đồ được biểu thị trên hình 2.2
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 23 -
Hình 2.2: Bộ biến đổi Boost một chiều - một chiều với chuyển mạch lý tưởng
Phương trình vi phân điều khiển mô tả mạch là:
1
di
L uv E
dt
dv
C ui v
dt R
Trong đó: i là dòng điện vào cuộn cảm, v là điện áp ra, và u là hàm vị trí chuyển
mạch thỏa mãn
[0,1]u
Biểu diễn bằng ma trận, mô tả toán học của Bộ biến đổi Boost là:
0 0
1
0
0
v
E
i id L
u L
iv vdt
RC
C
Cho:
1 2
T T
x x x i v
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 24 -
Ta có:
2
0 0
1
0
0
E
E
L
f x x L
x
RC
RC
Và:
2
1
x
L
g x
x
C
2.2.2 Các mặt trƣợt
Theo thuộc tính của chuyển mạch đơn, hệ thống n chiều, mặt trượt, ký hiệu là S,
được biểu diễn bởi tập các véctơ trạng thái trong không gian véc tơ Rn, trong đó ràng
buộc đại số h(x) = 0 được thỏa mãn,
với h:
nR R
là một hàm đầu ra vô hướng trơn của hệ. Ta định nghĩa:
| 0nS x R h x
(2.2)
Tập S biểu diễn một đa dạng trượt n-1 chiều trên nR
Giả thiết chính là: Tồn tại một tác động điều khiển phản hồi u(x), có thể mang bản chất
gián đoạn, sao cho điều kiện h(x) = 0 được thỏa mãn cục bộ bởi quỹ đạo trạng thái x(t). Các
chuyển động của trạng thái hệ, x, trên mặt trượt S, một cách lý tưởng sẽ tạo ra toàn bộ các
thuộc tính cục bộ mong muốn cho trạng thái của hệ thống điều khiển. Giới hạn về sự tiến triển
các trạng thái đạt được do các tác động đầu vào điều khiển hợp lý, tức là giá trị của u thích
hợp
[0,1]u
.
Một trong các đặc tính căn bản trong thiết kế luật điều khiển phản hồi cho các hệ
thống điều chỉnh bởi các chuyển mạch trong thực tế là đặc tính của hàm vô hướng trơn
h(x) là một phần của vấn đề thiết kế. Việc lựa chọn hàm đầu ra h(x), và theo đó, là đa
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 25 -
dạng trượt S, phụ thuộc hoàn toàn vào mong muốn của ta đối với từng mục tiêu điều
khiển xác định trong hệ.
Ví dụ 2.2: Trong ví dụ trước về Bộ biến đổi Boost, một mặt trượt có thể được đề xuất
biểu diễn dưới dạng hàm đầu ra:
2 dh x v v x V
Với
dv V
là giá trị trung bình của điện áp cân bằng đầu ra mong muốn . Nếu ta
buộc h(x) bằng 0, dẫu chỉ là cục bộ, dọc theo quỹ đạo điều khiển của hệ thống, thì điện
áp đầu ra về lý tưởng sẽ đồng nhất với với điện áp mong muốn cũng mang tính cục
bộ, một mặt trượt khác ta cũng quan tâm đến trong trường hợp riêng, được cho bởi:
1 dh x i i x I
Với
2 /d di I V RE
biểu diễn giá trị trung bình của dòng điện đầu vào cân bằng
ứng với trung bình điện áp cân bằng đầu ra mong muốn Vd
Mặc dù 2 mặt trượt trên đều biểu diễn thuộc tính mong muốn của đầu ra, nhưng
chỉ một trong số đó có tính khả thi vì liên quan tới tính ổn định nội.
2.2.3 Ký hiệu
Cho f(x), g(x) là các trường véctơ trơn xác định cục bộ trên mặt phẳng tiếp tuyến
với Rn , đặt h(x) là một hàm vô hướng lấy giá trị trên R.
Ta định nghĩa đạo hàm có hướng của h(x) theo phương f(x) là lượng vô hướng
và ký hiệu bởi
( )
T
h
f x
x
.
Và ta định nghĩa gián tiếp Lfh(x) tương tự, ta ký hiệu Lgh(x) là đạo hàm có
hướng của h(x) theo phương g(x).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 26 -
Trong hệ tọa độ cục bộ ta có:
1 2
...
T
n
h h h h
x x x x
(2.3)
1
2
.
.
.
n
f x
f x
f x
f x
(2.4)
Và:
1
n
f i
i i
h
L h x f x
x
(2.5)
2.2.4 Điều khiển tƣơng đƣơng và trƣợt động lý tƣởng
Giả thiết rằng nhờ việc chọn luật chuyển mạch
[0,1]u
hợp lý, khiến trạng thái x
của hệ tiến triển cục bộ và được giới hạn trên đa dạng trượt S. Khi điều kiện
x S
được thoả mãn, ta giả thiết là điều đó đạt được với một đối tượng điều khiển xác
định. Nói cách khác, giả sử rằng ta có thể đạt được tính bất biến của S theo các quỹ đạo
của trạng thái hệ bằng cách cho các đảo mạch đầu vào điều khiển hợp lý u lấy giá trị
trên tập [0,1], mà không cần quan tâm tới độ nhanh chậm khi các đảo mạch này được
thực hiện như yêu cầu. Không quá khó để nhận ra rằng khi các quỹ đạo trạng thái cắt
xiên với các mặc trượt, thì các đảo mạch đầu vào điều khiển cần thiết phải có tần số vô
hạn, sở dĩ như vậy là vì các chuyển mạch tần số hữu hạn có thể khiến quỹ đạo bị lệch
tạm thời ra khỏi mặt trượt. Sự tiến triển của trạng thái dọc theo mặt S diến ra sau đó
như thể nó được tạo ra bời một đầu vào điều khiển trơn , thay vì đầu vào điều khiển
chuyển mạch. Sự tương đương giữa đầu vào điều khiển chuyển mạch tần số vô hạn và
điều khiển phản hồi trơn được biết đến như là ý tưởng điều khiển tương đương.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 27 -
Hình 2.3: Minh họa điều khiển tương đương ueq
Ta định nghĩa điều khiển tương đương như một luật điều khiển phản hồi trơn, ký
hiệu bởi ueq(x) mà duy trì cục bộ sự tiến triển của quỹ đạo trạng thái được giới hạn
một cách lý tưởng với đa dạng trơn S với trạng thái đầu của hệ x(t0)=x0 được xác định
riêng trên S, tức là khi h(x)=0.
Hàm tọa độ h(x) thỏa mãn điều kiện bất biến dưới đây:
.
0eq
h
h x f x g x u x
x
(2.6)
Nói cách khác:
0f g eqL h x L h x u x
Do vậy, điều khiển tương đương được biểu diễn dưới dạng duy nhất theo tỷ số:
f
eq
g
L h x
u x
L h x
(2.7)
Trường véctơ được điều khiển, f(x)+g(x)ueq(x) và sự tiến triển tương ứng của
quỹ đạo trạng thái của hệ trên đa dạng trơn S, được biểu diễn dưới dạng:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 28 -
.
f
g
L h x
f x g x
L h x
x
(2.8)
Chú ý rằng với bất kỳ điều kiện đầu nào, mà không vượt ra ngoài đa dạng trơn S,
dưới tác động của ueq(x), theo cách mà hàm h(x) bằng hằng từ đạo hàm của y là đồng
nhất và cục bộ bằng 0. Giá trị hằng của y = h(x) chỉ nhận giá trị 0 khi trạng thái đầu x0
được xác định trên S. Hệ vòng lặp kín được phản hồi bằng điều khiển tương đương có
thể được biểu diễn theo một cách khác như mô tả dưới đây:
. 1
1
g
h
g x f x M x f x
L h x x
x
(2.9)
Trong đó: ma trận vuông nxn chiều M(x), là một toán tử chiếu, qua không gian tiếp
tuyến với S, dọc theo miền g(x). Toán tử M(x) sẽ chiếu bất kỳ trường véctơ trơn nào
được định nghĩa trên không gian tiếp tuyến của Rn qua không gian tiếp tuyến con lên
đa dạng S theo dạng song song với miền g(x) hoặc theo hướng của trường điều khiển
đầu vào g(x).
Thực ra, đặt v là một trường véctơ trong không gian tiếp tuyến với Rn sao cho
v
miền g(x), tức là v(x) có thể biểu diễn dưới dạng
( ) ( ). ( )v x g x x ,
với
( )x
là một
hàm vô hướng trơn. Sau đó ta có:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 29 -
1
1
1
0
g
g
g
g
h
M x v x I g x g x x
L h x x
h
g x g x g x x
L h x x
g x g x L h x x
L h x
g x g x x
(2.10)
Thêm vào đó, véctơ hàng thứ n,
/ Th x
là trực giao với ảnh qua M(x) của các
trường véctơ nằm trong không gian tiếp tuyến Rn. Điều này đủ để chỉ ra rằng bất kỳ
dạng 1 trong miền của
/ Th x
sẽ triệt tiêu tất cả các véctơ cột của M(x).
Dạng một trong miền của
/ Th x
được viết lại dưới dạng:
T
h
x
x
với
x
là
một hàm vô hướng khác 0 tùy ý. Thực chất ra:
1
1
1
0
T T T
g
g gT T
T T
h h h
x M x x g x
x x L h x x
h h
x L h x L h x
x x
h h
x
x x
(2.11)
Ảnh qua M(x) của bất kỳ trường véctơ nào trong không gian tiếp tuyến với Rn sẽ
nằm trong không gian rỗng của
/ Th x
Nói cách khác, chúng nằm trong không gian
con tiếp tuyến với đa dạng S.
Rõ ràng là:M
2
(x)=M(x) kéo theo M(x)G(x) =0.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 30 -
2.2.5 Tính tiếp cận đƣợc của các mặt trƣợt
Cho x là một điểm đại diện trên quỹ đạo trạng thái, nằm trong một lân cận mở
của đa dạng S (lân cận này bắt buộc chứa các giao điểm với đa dạng trượt). Không làm
mất tính tổng quát, giả sử rằng tại điểm đó, hàm tọa độ mặt h(x) của đa dạng S là xác
định dương, nghĩa là h(x) > 0. ta có thể xác định được trên mặt S. Mục tiêu của ta là
đưa ra một tác động điều khiển hợp lý mà đảm bảo rằng quỹ đạo của hệ thống tới và
cắt qua đa dạng S. Đạo hàm theo thời gian h(x) tại điểm x được cho bởi:
f g
d h
h x f x g x u L h x L h x u
dt x
(2.12)
Nếu ta giả thiết Lgh(x)>0 trong một lân cận của S (chẳng hạn Lgh(x)> là xác
định dương, nằm “trên” và “dưới” S trong một lân cận với mặt này), tiếp đó ta cần
buộc đạo hàm theo thời gian h(x) phải xác định âm tại điểm x.
Vì có giả thiết rằng Lgh(x)>0 nên ta phải chọn một điều khiển làm triệt tiêu các
hiệu ứng gia tăng dương khi nó vượt qua đạo hàm của h. Do đó ta phải cho u = 0. Đạo
hàm theo thời gian của h(x) với đầu vào điều khiển này trùng hợp hoàn toàn với đạo
hàm theo hướng Lfh(x). Để kéo theo Lgh(x)>0 trong một lân cận mở của S, Lfh(x) cần
thiết phải xác định âm trong một lân cận của S.
Nếu bây giờ ta giả thiết điểm x nằm phía “dưới” mặt phẳng, nghĩa là h(x) < 0, thì
dễ thấy để quỹ đạo tới và cắt ngang qua đa dạng trượt S, đạo hàm thời gian của h(x)
phải xác định dương. Nói cách khác, Lfh(x)+[Lgh(x)]u>0. Từ Lg(x)>0 và Lfh(x) <0, ta
phải chọn u =1 tăng hiệu ứng gia tăng dương của Lgh(x) so với đạo hàm thời gian
h(x). Nhưng, bên cạnh đó, cần thiết các hạng tử dương là đại lượng có thể vượt qua
được các hiệu ứng gia tăng âm được biểu diễn bởi Lfh(x) theo đạo hàm thời gian.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 31 -
Ta kết luận rằng, giả thiết Lfh(x) >0 trong một lân cận mở của S, điều kiện cần
cho sự tồn tại của chế độ trượt trong S là Lgh(x)> -Lfh(x)>0. Nói cách khác, chia bất
phương trình trên cho lượng xác định dương Lgh(x), cần phải thỏa mãn:
1 0
f
g
L h x
L h x
Chú ý rằng bất phương trình này phải thỏa mãn trong một lân cận mở của Rn
chứa một giao không rỗng với S. Trường hợp riêng, nếu bất phương trình này thỏa mãn
với
x S
thì nó cũng thỏa trong một lân cận mở của S trong Rn, kéo theo các đặc tính
trơn của trường véctơ liên quan và của hàm tọa độ mặt h(x).
Theo giả thiết rằng Lgh(x)> 0 xung quanh S, dễ thấy rằng điều kiện cần vừa đưa
ra ở trên cũng chính là điều kiện đủ.
Thực chất ra, nếu điểm đại diện được xác định phía “trên” đa dạng trượt S, bất
phương trình chỉ ra rằng Lfh(x)< 0, và nó đủ để cho u = 0 tiếp đó . ( ) 0h x trong bất cứ
lân cận mở nào của S. Quỹ đạo trạng thái do vậy tiến tới, cắt ngang đa dạng S từ bất cứ
điểm lân cận nào nằm phía trên mặt S. Nếu điểm đại diện được định phía “dưới” S, bất
phương trình thiết lập được Lf(x)+Lgh(x)>0và vì thế, việc chọn u =1 buộc điều kiện
.
( ) 0h x
với bất kỳ điểm nào trong lân cận mở của S. Điều đó nói lên rằng quỹ đạo
trạng thái đã tiến tới đa dạng S.
Chú ý rằng nếu ta có Lgh(x)0 trong bất cứ
lân cận nào của S. Sự thay đổi trong biểu thức trước với tính chất tiếp cận mặt chỉ được
chiếu với lựa chọn u cho mỗi trường hợp. Trong trường hợp này, ta chọn u = 1 khi x
nằm trên S và chọn u = 0 nếu nằm phía dưới mặt trượt.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 32 -
Tuy nhiên, để tránh nhầm lẫn, ta chú ý nếu Lgh(x)<0 cục bộ, ta có thể định nghĩa
lại S như một hàm tọa độ mặt trượt –h(x) thay vì h(x), khi này tất cả các phân tích phía
trên đều hợp lệ.
Điều kiện Lgh(x)>0 đặc biệt quan trọng và nó quyết định các cơ chế chuyển
mạch nhằm đạt được một cách cục bộ lên chế độ trượt trên đa dạng trượt S. Ta coi điều
kiện này như là một điều kiện ngang của trường đầu vào điều khiển g(x) liên quan đến
đa dạng trượt S. Chú ý rằng: nếu Lgh(x)=0 trên một khoảng mở xung quanh đa dạng
trượt, hệ thống là không thể điều khiển được và lượng .
( )h x
không thể đổi dấu của nó
xung quanh lân cận của S. Vì thế, điều kiện ngang là một điều kiện cần cho việc tồn tại
cục bộ của một chế độ trượt.
Dựa trên thực tế lượng –Lfh(x)/Lgh(x) trùng hợp với điều khiển tương đương đã
nói đến, ta thấy rằng:
Điều kiện cần và đủ cho việc tồn tại cục bộ của một chế độ trượt trên một đa
dạng trượt S = {x |h(x) = 0} là điều khiển tương đương u thỏa mãn:
0 1equ x
,
x S
Điều kiện ngang Lgh(x)>0, hoặc tổng quát hơn,
( ) 0gL h x
chỉ ra rằng hàm tọa
độ mặt trượt h(x) được coi như một hàm đầu ra của hệ, y = h(x), thì hàm này phải thỏa
mãn bậc tương đối bằng một, xung quanh giá trị y = 0. Chú ý rằng, với y = 0 thì điểm
"không động" hoàn toàn trùng hợp với trượt động lý tưởng cho bởi:
.
f
eq
g
L h x
f x g x f x g x u x
L h x
x
(2.14)
Dưới giả thiết điều kiện ngang thỏa mãn theo: Lgh(x)>0
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 33 -
Trong một khoảng mở đủ rộng của mặt trượt S, luật điều khiển buộc các quỹ đạo
trạng thái tiến tới mặt trượt và có thể “cắt ngang” được mặt này, cho bởi:
1 khi 0
0 khi 0
h x
u
h x
hay
1
1
2
u sign h x
(2.15)
Hình 2.4: Minh họa điều khiển trượt
Một cách hiển nhiên là, bất cứ một xâm nhập ban đầu nào của quỹ đạo trạng thái
tới “hướng khác” của đa dạng trượt đều gây nên tác động điều khiển tức thời đòi hỏi
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 34 -
cái chuyển mạch phải thay đổi vị trí của nó đến duy nhất một giá trị phù hợp khác. Hệ
quả là, quỹ đạo bị buộc phải quay lại mặt và có thể cắt ngang nó một lần nữa kèm với
sự thay đổi tương ứng vị trí của cái chuyển mạch. kết quả của chuyển động này kết quả
nằm trong một lân cận nhỏ tùy ý của mặt trượt được đặc trưng bởi chuyển động “zig-
zag” mà tần số của nó, về mặt lý thuyết, lớn vô hạn và được gọi là chế độ trượt hoặc
chuyển động trượt. Hiện tượng đường đặc tính cắt qua mặt trượt được gọi là hiện tượng
Chattering hay bang-bang. .
2.2.6 Các điều kiện bất biến cho các nhiễu loạn tìm đƣợc
Một trong các đặc trưng chính của các chế độ trượt, hay điều khiển chế độ trượt,
là tính bền vững của chúng đối với các đầu vào nhiễu loạn bên ngoài tác động tới
thuộc tính của hệ thống. Trong phần này, chúng ta sẽ tìm hiểu các loại điều
Các file đính kèm theo tài liệu này:
- Thiét kế bộ điều khiển trượt cho bộ biến đổi tăng áp.pdf