Đồ án Thiết kế và điều khiển cửa tự động bằng remote

MỤC LỤC

CHƯƠNG 1: GIỚI THIỆU SƠ LƯỢC VỀ CỔNG TỰ ĐỘNG VÀ NHIỆM VỤ MÔN HỌC. 2

1.1 GIỚI THIỆU: 2

1.2 NHIỆM VỤ VÀ PHÂN TÍCH NHIỆM VỤ 2

CHƯƠNG 2: THIẾT KẾ TỔNG QUÁT PHẦN CỨNG 4

2.1. Sơ đồ khối

2.2. Sơ lược chức năng của từng khối

2.2.1. Vi điều khiển melga32

2.2.2. Khối thu hồng ngoại

2.2.3. Khối hiển thị

2.2.4. Khối công suất

2.3. Thiết kế chi tiết

2.3.1. Khối thu hồng ngoại

-Sơ đồ nguyên lý

2.3.2. Khối MCU

2.3.4. Khối công suất:

- Sơ đồ nguyên lý

2.3.3. Khối hiển thị:

CHƯƠNG 3: LÝ THUYẾT LIÊN QUAN 10

3.1. Điều khiển từ xa dùng tia hồng ngoại

3.2 Ngắt trong timer 0

3.3. Ngắt ngoài

3.4Mô hình cửa tự động bằng solidwoks.

CHƯƠNG 4: THIẾT KẾ CHƯƠNG TRÌNH 16

4.1. GIẢI THUẬT CHƯƠNG TRÌNH CHÍNH 16

4.1. Giải thuật chương trình chính

4.2 Chương trình điều khiển

CHƯƠNG5: KẾT LUẬN VÀ TÀI LIỆU THAM KHẢO 17

5.1 KẾT QUẢ VÀ THỰC NGHIỆM 17

5.2HƯỚNG PHÁT TRIỂN CỦA ĐỒ ÁN MÔN HỌC 17

5.3 TÀI LIỆU THAM KHẢO 17

 

 

doc44 trang | Chia sẻ: lethao | Lượt xem: 2496 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Đồ án Thiết kế và điều khiển cửa tự động bằng remote, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
o điện áp sau chỉnh lưu trở nên tương đối ổn định,ta dùng các tụ lọc. - Mạch nguyên lý của Atmelga32: Atmega 32 là vi điều khiển họ AVR, có 40 chân, trong đó có 4 PORT:A, B, C, D. Mỗi PORT có 8 chân, có thể khai báo là đầu vào hoặc đầu ra tùy người sử dụng. Các chân còn lại là chân nguồn, đất, reset(như hình), và có chân gắn thạch anh để tạo tần số dao động cho nó. PORTC chỉ là các chân vào ra bình thường. PORTA là kênh vào ADC, dùng để đọc tín hiệu điện áp, biến từ tín hiệu tương tự thành tín hiệu số. PORTB là nơi để kết nối LCD hiển thị ra bên ngoài. PORTD có 3 kênh PWM (2,3,4), 2 chân(Mas_RXD, Mas_TXD)kết nối giao tiếp với máy tính qua RS232. + PORTD.2 là chân ngắt ngoài được nối với đầu ra của mắt thu hồng ngoại. + PORTC.0, PORTC.1, PORTC.2, các chân để kích rơle điều khiển thiết bị bên ngoài. + PORTA điều khiển động cơ Để biết rõ hơn về vi điều khiển melga32 ta tìm hiểu thêm trong Datasheet của nó. 2.3.3. Khối hiển thị: - Gồm 8 led đơn mắt theo sơ đồ như hình bên: Cực dương của 8 led dược nối thông qua 8 con điện trở rồi nối dến nguồn 5V. Các chân âm của led được gắn vào một PORT của VĐK. 2.3.4. Khối công suất: - Sơ đồ nguyên lý: -Nguyên lý hoạt động: Tín hiệu điều khiển từ vi điều khiển (PORTC.0) đưa vào chân B đẻ kích transitor làm đóng ngắt Rowle. Khi Rơle đóng thì sẽ có điện áp AC 220V đi qua tải. - Tính toán và thiết kế: + Chọn Rơle có điện áp kích cuộn dây là 5VDC, điện trở 100Ω, điện áp chịu đựng của tiếp điểm là 220VAC. + Chọn Q13 là Transitor C1815 có dòng IC khoảng 400mA chọn dòng điện qua led là 10mA. + Tính R57: Vậy chọn trở ở đây là R57= 220Ω. + Dòng qua Rơle: I rơle= + Tổng dòng IC = 50mA +10mA =60mA. + Điêù kiện để Transitor bảo hòa : IB >= Chọn β =60. + Tính R58 : Để bảo hòa sâu ta chọn R58=1KΩ Vậy các thông số của mạch là: Q13 là C1815 có dòng IC khoảng 400mA. R57=220Ω, R58=1KΩ CHƯƠNG 3: LÝ THUYẾT LIÊN QUAN 3.1. Điều khiển từ xa dùng tia hồng ngoại Khái niệm về tia hồng ngoại: Ánh sáng hồng ngoại (tia hông ngoại) là ánh sáng không thể nhìn thấy bằng mắt thường, có bước sóng khoảng 0.8 µm đến 0.9 µm, tia hồng ngoại có vận tốc truyền bằng vận tốc ánh sáng. Tia hồng ngoại có thể truyền đi được nhiều kênh tín hiệu. Nó ứng dụng rộng rãi trong công nghiệp.Lượng thông tin có thể đạt được 3 Mbít/s…Trong kỹ thuật truyền tin bằng sợi quang dẫn không cần các trạm khuếch đại giữa chừng, người ta có thể truyền một lúc 15000 điện thoại hay 12 kênh truyền hình qua một sợi tơ quang với đường kính 0.13 mm với khoảng cách 10 km hay 20 km. Lượng thông tin được truyền đi bởi ánh sáng hồng ngoại lớn gấp nhiều lần so với sóng điện từ mà người ta vẫn dùng. Tia hồng ngoại dễ bị hấp thụ, khả năng xuyên thấu kém. Trong điều khiển từ xa, chùm tia hồng ngoại phát tia đi hẹp, có hướng do đó khi thu phải đúng hướng. 3.1.1. Sơ đồ khối hệ thống điều khiển từ xa dùng tia hồng ngoại Máy phát: Phát lệnh điều khiển Mã hóa Điều chế Khuếch đại Dao động tạo sóng mang Giải thích sơ đồ khối máy phát Máy phát có nhiệm vụ tạo ra lệnh điều khiển, mã hóa và tín hiệu đến máy thu, lệnh truyền đi đã được điều chế Khối phát lệnh điều khiển: Khối này có nhiệm vụ tạo ra lệnh điều khiển từ nút nhấn (phím điều khiển). Khi một phím được ấn tức là một lệnh đã được tạo ra. Các nút ấn này có thể là một nút (ở mạch điều khiển đơn giản), hay một ma trận nút (mạch điều khiển chức năng). Ma trận phím được bố trí theo cột và hàng. Lệnh điều khiển được đưa đến bộ mã hóa dưới dạng các bít nhị phân tương ứng với từng phím điều khiển Khối mã hóa: Để truyền các tín hiệu khác nhau đến máy thu mà chúng không lẫn lộn nhau, ta phải tiến hành mã hóa các tín hiệu. Khối mã hóa này có nhiệm vụ biến đổi các lệnh điều khiển thành các bit nhị phân, hiện tượng biến đổi này gọi là mã hóa. Có nhiều phương pháp mã hóa khác nhau. Điều chế biên độ xung Điều chế vị trí xung Điều chế độ rộng xung Điều chế mã xung Trong kỷ thuật điều khiển từ xa tia hồng ngoại, phương pháp điều chế mã xung thường được sử dụng nhiều hơn cả, vì phương pháp này tương đối đơn giản, dễ thực hiện Khối dao động tạo sóng mang Khối này có nhiệm vụ tạo sóng mang tần số ổn định, sóng mang này sẽ mang tìn hiệu điều khiển khi truyền ra môi trường Khối điều chế: Khối này có nhiệm vụ kết hợp tín hiệu điều khiển đã mã hóa sóng mang để đưa đến khối khuếch đại Khối khuếch đai: Khuếch đại tín hiệu đủ lớn để LED phát hồng ngoại tín hiệu ra môi trường Máy thu: Khuếch đại Tách sóng Giải mã Chốt Mạch chấp hành Khuếch đại Giải thích sơ đồ khối máy thu Chức năng của máy thu là thu được tín hiệu điều khiển từ máy phát, loại bỏ sóng mang, giải mã tín hiệu điều khiển thành các lệnh riêng biệt, từ đó mỗi lệnh sẽ đưa đến khối chấp hành cụ thể LED thu Thu tín hiệu hồng ngoại do máy phát truyền tới và biến đổi thành tín hiệu điều khiển Khối khuếch đại Có nhiệm vụ khuếch đại tín hiệu điều khiển lớn lên từ từ, LED thu hồng ngoại để quá trình xữ lí tín hiệu được dễ dàng Khối tách sóng mang Khối này có chức năng triệt tiêu sóng mang, chỉ giữ lại tín hiệu điều khiển như tín hiệu gửi đi từ máy phát Khối giải mã Nhiệm vụ của khối này là giải mã tín hiệu điều khiển thành các lệnh điều khiển dưới dạng các bit nhị phân hay các dạng khác để đưa đến khối chấp hành cụ thể Khối chốt Có nhiệm vụ giữ nguyên trạng thái tác động khi tín hiệu điều khiển không còn, điều này có nghĩa là khi phát lệnh điều khiển ta chỉ tác động vào phím ấn một lần, trạng thái mạch chỉ thay đổi khi ta chỉ tác động vào nút khác thực hiện điều khiển lệnh khác. Khối khuếch đại: Khuếch đại tín hiệu điều khiển đủ lớn để tác động được vào mạch chấp hành Khối chấp hành Có thể là role hay một linh kiên điều khiển nài đó, đây là khối cuối cùng tác động trực tiếp vào thiết bị thực hiện nhiệm vụ điều khiển mong muốn 3.2 Ngắt trong timer 0 Bộ ngắt timer0, 8 bít nếu được thiết lập thì nó sẽ hoạt động với 5 tần số chia của thạch anh ngoài đưa vào vi điều khiển. Khi bắt đầu hoạt động thì ta có thể thiết lập 2 chế độ ngắt là ngắt tràn và ngắt so sánh . Ngắt tràn là ngắt mà khi timer hoạt động nó sẽ đếm số xung cấp vào khi nào được 255 xung thì sẽ dừng chương trình chính và đi thực hiện chương trình phục vụ ngắt. Số lần ngắt trong 1s sẽ bằng số xung cấp vào chia cho 255. Ngắt so sánh là ngắt mà khi timer hoạt động nó sẽ đếm số xung cấp vào khi nào đến giá trị mà ta so sánh thì sẽ dừng chương trình chính và đi thực hiện chương trình phục vụ ngắt . 3.3. Ngắt ngoài Ngắt ngoài là chương trình con phục vụ ngắt ngoài sẽ được thực hiện khi có các sự kiện sau xảy ra: Khi phát hiện sườn lên của xung . Khi phát hiện sườn xuống của xung . Khi có bất kì sự thay đổi nào . Ở mức thấp (low level) . 3.4Mô hình cửa tự động bằng solidwoks. CHƯƠNG 4: THIẾT KẾ CHƯƠNG TRÌNH 4.1. Giải thuật chương trình chính Start Nạp giá trị khởi tạo thanh ghi ban đầu i =0 So sánh hai chuổi frame và frame_table[i]==0? i< num_frame Điều khiển thiết bị thứ i i++ 4.2 Chương trình CodeVisionAVR C Compiler V1.24.6 Standard ;(C) Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l. ; ;e-mail:office@hpinfotech.com ;Chip type : ATmega32 ;Program type : Application ;Clock frequency : 8,000000 MHz ;Memory model : Small ;Optimize for : Size ;(s)printf features : int, width ;(s)scanf features : int, width ;External SRAM size : 0 ;Data Stack size : 512 byte(s) ;Heap size : 0 byte(s) ;Promote char to int : No ;char is unsigned : Yes ;8 bit enums : Yes ;Word align FLASH struct: No ;Enhanced core instructions : On ;Automatic register allocation : On .EQU UDRE=0x5 .EQU RXC=0x7 .EQU USR=0xB .EQU UDR=0xC .EQU SPSR=0xE .EQU SPDR=0xF .EQU EERE=0x0 .EQU EEWE=0x1 .EQU EEMWE=0x2 .EQU EECR=0x1C .EQU EEDR=0x1D .EQU EEARL=0x1E .EQU EEARH=0x1F .EQU WDTCR=0x21 .EQU MCUCR=0x35 .EQU GICR=0x3B .EQU SPL=0x3D .EQU SPH=0x3E .EQU SREG=0x3F .DEF R0X0=R0 .DEF R0X1=R1 .DEF R0X2=R2 .DEF R0X3=R3 .DEF R0X4=R4 .DEF R0X5=R5 .DEF R0X6=R6 .DEF R0X7=R7 .DEF R0X8=R8 .DEF R0X9=R9 .DEF R0XA=R10 .DEF R0XB=R11 .DEF R0XC=R12 .DEF R0XD=R13 .DEF R0XE=R14 .DEF R0XF=R15 .DEF R0X10=R16 .DEF R0X11=R17 .DEF R0X12=R18 .DEF R0X13=R19 .DEF R0X14=R20 .DEF R0X15=R21 .DEF R0X16=R22 .DEF R0X17=R23 .DEF R0X18=R24 .DEF R0X19=R25 .DEF R0X1A=R26 .DEF R0X1B=R27 .DEF R0X1C=R28 .DEF R0X1D=R29 .DEF R0X1E=R30 .DEF R0X1F=R31 .EQU __se_bit=0x80 .EQU __sm_mask=0x70 .EQU __sm_adc_noise_red=0x10 .EQU __sm_powerdown=0x20 .EQU __sm_powersave=0x30 .EQU __sm_standby=0x60 .EQU __sm_ext_standby=0x70 .MACRO __CPD1N CPI R30,LOW(@0) LDI R26,HIGH(@0) CPC R31,R26 LDI R26,BYTE3(@0) CPC R22,R26 LDI R26,BYTE4(@0) CPC R23,R26 .ENDM .MACRO __CPD2N CPI R26,LOW(@0) LDI R30,HIGH(@0) CPC R27,R30 LDI R30,BYTE3(@0) CPC R24,R30 LDI R30,BYTE4(@0) CPC R25,R30 .ENDM .MACRO __CPWRR CP R@0,R@2 CPC R@1,R@3 .ENDM .MACRO __CPWRN CPI R@0,LOW(@2) LDI R30,HIGH(@2) CPC R@1,R30 .ENDM .MACRO __ADDD1N SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) SBCI R22,BYTE3(-@0) SBCI R23,BYTE4(-@0) .ENDM .MACRO __ADDD2N SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) SBCI R24,BYTE3(-@0) SBCI R25,BYTE4(-@0) .ENDM .MACRO __SUBD1N SUBI R30,LOW(@0) SBCI R31,HIGH(@0) SBCI R22,BYTE3(@0) SBCI R23,BYTE4(@0) .ENDM .MACRO __SUBD2N SUBI R26,LOW(@0) SBCI R27,HIGH(@0) SBCI R24,BYTE3(@0) SBCI R25,BYTE4(@0) .ENDM .MACRO __ANDD1N ANDI R30,LOW(@0) ANDI R31,HIGH(@0) ANDI R22,BYTE3(@0) ANDI R23,BYTE4(@0) .ENDM .MACRO __ORD1N ORI R30,LOW(@0) ORI R31,HIGH(@0) ORI R22,BYTE3(@0) ORI R23,BYTE4(@0) .ENDM .MACRO __DELAY_USB LDI R24,LOW(@0) __DELAY_USB_LOOP: DEC R24 BRNE __DELAY_USB_LOOP .ENDM .MACRO __DELAY_USW LDI R24,LOW(@0) LDI R25,HIGH(@0) __DELAY_USW_LOOP: SBIW R24,1 BRNE __DELAY_USW_LOOP .ENDM .MACRO __CLRD1S LDI R30,0 STD Y+@0,R30 STD Y+@0+1,R30 STD Y+@0+2,R30 STD Y+@0+3,R30 .ENDM .MACRO __GETD1S LDD R30,Y+@0 LDD R31,Y+@0+1 LDD R22,Y+@0+2 LDD R23,Y+@0+3 .ENDM .MACRO __PUTD1S STD Y+@0,R30 STD Y+@0+1,R31 STD Y+@0+2,R22 STD Y+@0+3,R23 .ENDM .MACRO __POINTB1MN LDI R30,LOW(@0+@1) .ENDM .MACRO __POINTW1MN LDI R30,LOW(@0+@1) LDI R31,HIGH(@0+@1) .ENDM .MACRO __POINTW1FN LDI R30,LOW(2*@0+@1) LDI R31,HIGH(2*@0+@1) .ENDM .MACRO __POINTB2MN LDI R26,LOW(@0+@1) .ENDM .MACRO __POINTW2MN LDI R26,LOW(@0+@1) LDI R27,HIGH(@0+@1) .ENDM .MACRO __POINTBRM LDI R@0,LOW(@1) .ENDM .MACRO __POINTWRM LDI R@0,LOW(@2) LDI R@1,HIGH(@2) .ENDM .MACRO __POINTBRMN LDI R@0,LOW(@1+@2) .ENDM .MACRO __POINTWRMN LDI R@0,LOW(@2+@3) LDI R@1,HIGH(@2+@3) .ENDM .MACRO __GETD1N LDI R30,LOW(@0) LDI R31,HIGH(@0) LDI R22,BYTE3(@0) LDI R23,BYTE4(@0) .ENDM .MACRO __GETD2N LDI R26,LOW(@0) LDI R27,HIGH(@0) LDI R24,BYTE3(@0) LDI R25,BYTE4(@0) .ENDM .MACRO __GETD2S LDD R26,Y+@0 LDD R27,Y+@0+1 LDD R24,Y+@0+2 LDD R25,Y+@0+3 .ENDM .MACRO __GETB1MN LDS R30,@0+@1 .ENDM .MACRO __GETW1MN LDS R30,@0+@1 LDS R31,@0+@1+1 .ENDM .MACRO __GETD1MN LDS R30,@0+@1 LDS R31,@0+@1+1 LDS R22,@0+@1+2 LDS R23,@0+@1+3 .ENDM .MACRO __GETBRMN LDS R@0,@1+@2 .ENDM .MACRO __GETWRMN LDS R@0,@2+@3 LDS R@1,@2+@3+1 .ENDM .MACRO __GETWRZ LDD R@0,Z+@2 LDD R@1,Z+@2+1 .ENDM .MACRO __GETD2Z LDD R26,Z+@0 LDD R27,Z+@0+1 LDD R24,Z+@0+2 LDD R25,Z+@0+3 .ENDM .MACRO __GETB2MN LDS R26,@0+@1 .ENDM .MACRO __GETW2MN LDS R26,@0+@1 LDS R27,@0+@1+1 .ENDM .MACRO __GETD2MN LDS R26,@0+@1 LDS R27,@0+@1+1 LDS R24,@0+@1+2 LDS R25,@0+@1+3 .ENDM .MACRO __PUTB1MN STS @0+@1,R30 .ENDM .MACRO __PUTW1MN STS @0+@1,R30 STS @0+@1+1,R31 .ENDM .MACRO __PUTD1MN STS @0+@1,R30 STS @0+@1+1,R31 STS @0+@1+2,R22 STS @0+@1+3,R23 .ENDM .MACRO __PUTDZ2 STD Z+@0,R26 STD Z+@0+1,R27 STD Z+@0+2,R24 STD Z+@0+3,R25 .ENDM .MACRO __PUTBMRN STS @0+@1,R@2 .ENDM .MACRO __PUTWMRN STS @0+@1,R@2 STS @0+@1+1,R@3 .ENDM .MACRO __PUTBZR STD Z+@1,R@0 .ENDM .MACRO __PUTWZR STD Z+@2,R@0 STD Z+@2+1,R@1 .ENDM .MACRO __GETW1R MOV R30,R@0 MOV R31,R@1 .ENDM .MACRO __GETW2R MOV R26,R@0 MOV R27,R@1 .ENDM .MACRO __GETWRN LDI R@0,LOW(@2) LDI R@1,HIGH(@2) .ENDM .MACRO __PUTW1R MOV R@0,R30 MOV R@1,R31 .ENDM .MACRO __PUTW2R MOV R@0,R26 MOV R@1,R27 .ENDM .MACRO __ADDWRN SUBI R@0,LOW(-@2) SBCI R@1,HIGH(-@2) .ENDM .MACRO __ADDWRR ADD R@0,R@2 ADC R@1,R@3 .ENDM .MACRO __SUBWRN SUBI R@0,LOW(@2) SBCI R@1,HIGH(@2) .ENDM .MACRO __SUBWRR SUB R@0,R@2 SBC R@1,R@3 .ENDM .MACRO __ANDWRN ANDI R@0,LOW(@2) ANDI R@1,HIGH(@2) .ENDM .MACRO __ANDWRR AND R@0,R@2 AND R@1,R@3 .ENDM .MACRO __ORWRN ORI R@0,LOW(@2) ORI R@1,HIGH(@2) .ENDM .MACRO __ORWRR OR R@0,R@2 OR R@1,R@3 .ENDM .MACRO __EORWRR EOR R@0,R@2 EOR R@1,R@3 .ENDM .MACRO __GETWRS LDD R@0,Y+@2 LDD R@1,Y+@2+1 .ENDM .MACRO __PUTWSR STD Y+@2,R@0 STD Y+@2+1,R@1 .ENDM .MACRO __MOVEWRR MOV R@0,R@2 MOV R@1,R@3 .ENDM .MACRO __INWR IN R@0,@2 IN R@1,@2+1 .ENDM .MACRO __OUTWR OUT @2+1,R@1 OUT @2,R@0 .ENDM .MACRO __CALL1MN LDS R30,@0+@1 LDS R31,@0+@1+1 ICALL .ENDM .MACRO __CALL1FN LDI R30,LOW(2*@0+@1) LDI R31,HIGH(2*@0+@1) CALL __GETW1PF ICALL .ENDM .MACRO __CALL2EN LDI R26,LOW(@0+@1) LDI R27,HIGH(@0+@1) CALL __EEPROMRDW ICALL .ENDM .MACRO __GETW1STACK IN R26,SPL IN R27,SPH ADIW R26,@0+1 LD R30,X+ LD R31,X .ENDM .MACRO __NBST BST R@0,@1 IN R30,SREG LDI R31,0x40 EOR R30,R31 OUT SREG,R30 .ENDM .MACRO __PUTB1SN LDD R26,Y+@0 LDD R27,Y+@0+1 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X,R30 .ENDM .MACRO __PUTW1SN LDD R26,Y+@0 LDD R27,Y+@0+1 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1SN LDD R26,Y+@0 LDD R27,Y+@0+1 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) CALL __PUTDP1 .ENDM .MACRO __PUTB1SNS LDD R26,Y+@0 LDD R27,Y+@0+1 ADIW R26,@1 ST X,R30 .ENDM .MACRO __PUTW1SNS LDD R26,Y+@0 LDD R27,Y+@0+1 ADIW R26,@1 ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1SNS LDD R26,Y+@0 LDD R27,Y+@0+1 ADIW R26,@1 CALL __PUTDP1 .ENDM .MACRO __PUTB1PMN LDS R26,@0 LDS R27,@0+1 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X,R30 .ENDM .MACRO __PUTW1PMN LDS R26,@0 LDS R27,@0+1 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1PMN LDS R26,@0 LDS R27,@0+1 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) CALL __PUTDP1 .ENDM .MACRO __PUTB1PMNS LDS R26,@0 LDS R27,@0+1 ADIW R26,@1 ST X,R30 .ENDM .MACRO __PUTW1PMNS LDS R26,@0 LDS R27,@0+1 ADIW R26,@1 ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1PMNS LDS R26,@0 LDS R27,@0+1 ADIW R26,@1 CALL __PUTDP1 .ENDM .MACRO __PUTB1RN MOVW R26,R@0 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X,R30 .ENDM .MACRO __PUTW1RN MOVW R26,R@0 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1RN MOVW R26,R@0 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) CALL __PUTDP1 .ENDM .MACRO __PUTB1RNS MOVW R26,R@0 ADIW R26,@1 ST X,R30 .ENDM .MACRO __PUTW1RNS MOVW R26,R@0 ADIW R26,@1 ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1RNS MOVW R26,R@0 ADIW R26,@1 CALL __PUTDP1 .ENDM .MACRO __PUTB1RON MOV R26,R@0 MOV R27,R@1 SUBI R26,LOW(-@2) SBCI R27,HIGH(-@2) ST X,R30 .ENDM .MACRO __PUTW1RON MOV R26,R@0 MOV R27,R@1 SUBI R26,LOW(-@2) SBCI R27,HIGH(-@2) ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1RON MOV R26,R@0 MOV R27,R@1 SUBI R26,LOW(-@2) SBCI R27,HIGH(-@2) CALL __PUTDP1 .ENDM .MACRO __PUTB1RONS MOV R26,R@0 MOV R27,R@1 ADIW R26,@2 ST X,R30 .ENDM .MACRO __PUTW1RONS MOV R26,R@0 MOV R27,R@1 ADIW R26,@2 ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1RONS MOV R26,R@0 MOV R27,R@1 ADIW R26,@2 CALL __PUTDP1 .ENDM .MACRO __GETB1SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) LD R30,Z .ENDM .MACRO __GETW1SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) LD R0,Z+ LD R31,Z MOV R30,R0 .ENDM .MACRO __GETD1SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) LD R0,Z+ LD R1,Z+ LD R22,Z+ LD R23,Z MOVW R30,R0 .ENDM .MACRO __GETB2SX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) LD R26,X .ENDM .MACRO __GETW2SX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) LD R0,X+ LD R27,X MOV R26,R0 .ENDM .MACRO __GETD2SX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) LD R0,X+ LD R1,X+ LD R24,X+ LD R25,X MOVW R26,R0 .ENDM .MACRO __GETBRSX MOVW R30,R28 SUBI R30,LOW(-@1) SBCI R31,HIGH(-@1) LD R@0,Z .ENDM .MACRO __GETWRSX MOVW R30,R28 SUBI R30,LOW(-@2) SBCI R31,HIGH(-@2) LD R@0,Z+ LD R@1,Z .ENDM .MACRO __LSLW8SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) LD R31,Z CLR R30 .ENDM .MACRO __PUTB1SX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) ST X,R30 .ENDM .MACRO __PUTW1SX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1SX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) ST X+,R30 ST X+,R31 ST X+,R22 ST X,R23 .ENDM .MACRO __CLRW1SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) CLR R0 ST Z+,R0 ST Z,R0 .ENDM .MACRO __CLRD1SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) CLR R0 ST Z+,R0 ST Z+,R0 ST Z+,R0 ST Z,R0 .ENDM .MACRO __PUTB2SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) ST Z,R26 .ENDM .MACRO __PUTW2SX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) ST Z+,R26 ST Z,R27 .ENDM .MACRO __PUTBSRX MOVW R30,R28 SUBI R30,LOW(-@0) SBCI R31,HIGH(-@0) ST Z,R@1 .ENDM .MACRO __PUTWSRX MOVW R30,R28 SUBI R30,LOW(-@2) SBCI R31,HIGH(-@2) ST Z+,R@0 ST Z,R@1 .ENDM .MACRO __PUTB1SNX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) LD R0,X+ LD R27,X MOV R26,R0 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X,R30 .ENDM .MACRO __PUTW1SNX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) LD R0,X+ LD R27,X MOV R26,R0 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X+,R30 ST X,R31 .ENDM .MACRO __PUTD1SNX MOVW R26,R28 SUBI R26,LOW(-@0) SBCI R27,HIGH(-@0) LD R0,X+ LD R27,X MOV R26,R0 SUBI R26,LOW(-@1) SBCI R27,HIGH(-@1) ST X+,R30 ST X+,R31 ST X+,R22 ST X,R23 .ENDM .MACRO __MULBRR MULS R@0,R@1 MOV R30,R0 .ENDM .MACRO __MULBRRU MUL R@0,R@1 MOV R30,R0 .ENDM .CSEG .ORG 0 .INCLUDE "remote.vec" .INCLUDE "remote.inc" __RESET: CLI CLR R30 OUT EECR,R30 ;INTERRUPT VECTORS ARE PLACED ;AT THE START OF FLASH LDI R31,1 OUT GICR,R31 OUT GICR,R30 OUT MCUCR,R30 ;DISABLE WATCHDOG LDI R31,0x18 OUT WDTCR,R31 OUT WDTCR,R30 ;CLEAR R2-R14 LDI R24,13 LDI R26,2 CLR R27 __CLEAR_REG: ST X+,R30 DEC R24 BRNE __CLEAR_REG ;CLEAR SRAM LDI R24,LOW(0x800) LDI R25,HIGH(0x800) LDI R26,0x60 __CLEAR_SRAM: ST X+,R30 SBIW R24,1 BRNE __CLEAR_SRAM ;GLOBAL VARIABLES INITIALIZATION LDI R30,LOW(__GLOBAL_INI_TBL*2) LDI R31,HIGH(__GLOBAL_INI_TBL*2) __GLOBAL_INI_NEXT: LPM R24,Z+ LPM R25,Z+ SBIW R24,0 BREQ __GLOBAL_INI_END LPM R26,Z+ LPM R27,Z+ LPM R0,Z+ LPM R1,Z+ MOVW R22,R30 MOVW R30,R0 __GLOBAL_INI_LOOP: LPM R0,Z+ ST X+,R0 SBIW R24,1 BRNE __GLOBAL_INI_LOOP MOVW R30,R22 RJMP __GLOBAL_INI_NEXT __GLOBAL_INI_END: ;STACK POINTER INITIALIZATION LDI R30,LOW(0x85F) OUT SPL,R30 LDI R30,HIGH(0x85F) OUT SPH,R30 ;DATA STACK POINTER INITIALIZATION LDI R28,LOW(0x260) LDI R29,HIGH(0x260) JMP _main .ESEG .ORG 0 .DSEG .ORG 0x260 ;___ 1 /***************************************************** ;___ 2 This program was produced by the ;___ 3 CodeWizardAVR V2.03.4 Standard ;___ 4 Automatic Program Generator ;___ 5 © Copyright 1998-2008 Pavel Haiduc, HP InfoTech s.r.l. ;___ 6 ;___ 7 ;___ 8 Project : ;___ 9 Version : ;___ 10 Date : 6/4/2010 ;___ 11 Author : ;___ 12 Company : ;___ 13 Comments: ;___ 14 ;___ 15 ;___ 16 Chip type : ATmega16L ;___ 17 Program type : Application ;___ 18 Clock frequency : 8.000000 MHz ;___ 19 Memory model : Small ;___ 20 External RAM size : 0 ;___ 21 Data Stack size : 512 ;___ 22 *****************************************************/ ;___ 23 ;___ 24 #include ;___ 25 #include ;___ 26 ;___ 27 //---------------------------------------- ;___ 28 bit start; ;___ 29 char i,pwm,dem; ;___ 30 ;___ 31 int data,tg,tg_truoc; ;___ 32 ;___ 33 //---------------------------------------- ;___ 34 ;___ 35 // Alphanumeric LCD Module functions ;___ 36 ;___ 37 ;___ 38 // External Interrupt 0 service routine ;___ 39 interrupt [EXT_INT0] void ext_int0_isr(void) ;___ 40 { .CSEG _ext_int0_isr: RCALL SUBOPT_0x0 ;___ 41 ;___ 42 start=1; SET BLD R2,0 ;___ 43 i++; INC R4 ;___ 44 if(i==13) //ket thuc frame LDI R30,LOW(13) CP R30,R4 BRNE _0x3 ;___ 45 { ;___ 46 i=0; CLR R4 ;___ 47 start=0; CLT BLD R2,0 ;___ 48 ;___ 49 } ;___ 50 ;___ 51 if(tg>75) //xd bit start _0x3: LDI R30,LOW(75) LDI R31,HIGH(75) CP R30,R9 CPC R31,R10 BRGE _0x4 ;___ 52 { ;___ 53 i=2; LDI R30,LOW(2) MOV R4,R30 ;___ 54 data=0; CLR R7 CLR R8 ;___ 55 } ;___ 56 if(tg<45) //xd bit 1 _0x4: LDI R30,LOW(45) LDI R31,HIGH(45) CP R9,R30 CPC R10,R31 BRGE _0x5 ;___ 57 { ;___ 58 data<<=1; LSL R7 ROL R8 ;___ 59 data=data|0x01; LDI R30,LOW(1) OR R7,R30 ;___ 60 } ;___ 61 else if(tg<75) //xd bit 0 RJMP _0x6 _0x5: LDI R30,LOW(75) LDI R31,HIGH(75) CP R9,R30 CPC R10,R31 BRGE _0x7 ;___ 62 data<<=1; LSL R7 ROL R8 ;___ 63 ;___ 64 ;___ 65 ;___ 66 tg=0; _0x7: _0x6: CLR R9 CLR R10 ;___ 67 } RCALL SUBOPT_0x1 RETI ;___ 68 ;___ 69 // Timer 0 overflow interrupt service routine ;___ 70 interrupt [TIM0_OVF] void timer0_ovf_isr(void) ;___ 71 { _timer0_ovf_isr: RCALL SUBOPT_0x0 ;___ 72 ;___ 73 dem++; //DK toc do INC R6 ;___ 74 if(dem<pwm) CP R6,R5 BRSH _0x8 ;___ 75 PORTA.1=0; CBI 0x1B,1 ;___ 76 else PORTA.1=1; RJMP _0x9 _0x8: SBI 0x1B,1 ;___ 77 ;___ 78 //---------------- ;___ 79 if(start) //tg giua 2 xung remote _0x9: SBRS R2,0 RJMP _0xA ;___ 80 tg++; LDI R30,LOW(1) LDI R31,HIGH(1) __ADDWRR 9,10,30,31 ;___ 81 ;___ 82 } _0xA: RCALL SUBOPT_0x1 RETI ;___ 83 ;___ 84 ;___ 85 ;___ 86 // Declare your global variables here ;___ 87 ;___ 88 void main(void) ;___ 89 { _main: ;___ 90 // Declare your local variables here ;___ 91 ;___ 92 // Input/Output Ports initialization ;___ 93 // Port A initialization ;___ 94 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In ;___ 95 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T ;___ 96 PORTA=0xFF; LDI R30,LOW(255) OUT 0x1B,R30 ;___ 97 DDRA=0xFF; OUT 0x1A,R30 ;___ 98 ;___ 99 // Port B initialization ;___ 100 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In ;___ 101 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T ;___ 102 PORTB=0x00; LDI R30,LOW(0) OUT 0x18,R30 ;___ 103 DDRB=0x00; OUT 0x17,R30 ;___ 104 ;___ 105 // Port C initialization ;___ 106 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In ;___ 107 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T ;___ 108 PORTC=0x00; OUT 0x15,R30 ;___ 109 DDRC=0xFF; LDI R30,LOW(255) OUT 0x14,R30 ;___ 110 ;___ 111 // Port D initialization ;___ 112 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In ;___ 113 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T ;___ 114 PORTD=0x00; LDI R30,LOW(0) OUT 0x12,R30 ;___ 115 DDRD=0x00; OUT 0x11,R30 ;___ 116 ;___ 117 // Timer/Counter 0 initialization ;___ 118 // Clock source: System Clock ;___ 119 // Clock value: 1000.000 kHz ;___ 120 // Mode: Normal top=FFh ;___ 121 // OC0 output: Disconnected ;___ 122 TCCR0=0x01; LDI R30,LOW(1) OUT 0x33,R30 ;___ 123 TCNT0=0x00; LDI R30,LOW(0) OUT 0x32,R30 ;___ 124 OCR0=0x00; OUT 0x3C,R30 ;___ 125 ;___ 126 // Timer/Counter 1 initialization ;___ 127 // Clock source: System Clock ;___ 128 // Clock value: Timer 1 Stopped ;___ 129 // Mode: Normal top=FFFFh ;___ 130 // OC1A output: Discon. ;___ 131 // OC1B output: Discon. ;___ 132 // Noise Canceler: Off ;___ 133 // Input Capture on Falling Edge ;___ 134 // Timer 1 Overflow Interrupt: Off ;___ 135 // Input Capture Interrupt: Off ;___ 136 // Compare A Match Interrupt: Off ;___ 137 // Compare B Match Interrupt: Off ;___ 138 TCCR1A=0x00; OUT 0x2F,R30 ;___ 139 TCCR1B=0x00; OUT 0x2E,R30 ;___ 140 TCNT1H=0x00; OUT 0x2D,R30 ;___ 141 TCNT1L=0x00; OUT 0x2C,R30 ;___ 142

Các file đính kèm theo tài liệu này:

  • docThiết kế và điều khiển cửa tự động bằng remote.doc
Tài liệu liên quan