Hệ thống FH/ DS sử dụng tín hiệu điều chế DS với tần số trung tâm được chuyển nhảy một cách định kỳ. Phổ tần số của bộ điều chế được minh họa trên hình (19). Một tín hiệu DS xuất hiện một cách tức thời với độ rộng băng là một phần trong độ rộng băng của rất nhiều các tín hiệu trải phổ chồng lấn và tín hiệu toàn bộ xuất hiện như là sự chuyển động của tín hiệu DS tới độ rộng băng khác nhờ các mẫu tín hiệu FH. Hệ thống tổng hợp FH/ DS được sử dụng vì các lý do sau đây:
1. Dung lượng trải phổ
2. Đa truy nhập và thiết lập địa chỉ phân tán.
3. Ghép kênh.
43 trang |
Chia sẻ: lethao | Lượt xem: 2217 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Đồ án Tìm hiểu kỹ thuật CDMA, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
trên kênh tần số mới. Điều này làm tăng thêm hiệu quả sử dụng tần số của hệ thống so với hệ thống FDMA.
TDMA là một hệ thống phức tạp hơn FDMA, bởi vì tiếng nói phải được số hoá hoặc mã hoá, sau đó được lưu trữ vào một bộ nhớ đệm để gán cho một khe thời gian trống và khi đó mới phát đi. Do đó việc truyền dẫn tín hiệu là không liên tục và tốc độ truyền dẫn phải lớn hơn vài lần tốc độ mã hoá. Ngoài ra, do có nhiều thông tin hơn chứa trong cùng một dải thông nên thiết bị TDMA được sử dụng có kỹ thuật phức tạp hơn để cân bằng tín hiệu thu nhằm duy trì chất lượng tín hiệu.
Nhiều người sử dụng trên một kênh tần số được ấn định khe thời gian khác nhau. Mỗi người chỉ có thể thu phát tín hiệu trong khe thời gian của mình. Mỗi kênh tần số cùng với một khe thời gian tạo thành một kênh truyền bên trong hệ thống.
Trong TDMA, vì mỗi người sử dụng không truyền liên tục mà chỉ truyền trên khe thời gian nên hệ thống phải sử dụng tín hiệu số và điều chế số. Có hai dạng song công bên trong TDMA: song công theo tần số (FDD) và song công theo thời gian (TDD). FDD sử dụng các kênh có tần số khác nhau cho truyền và nhận. Ngược lại, trong TDD, một nửa thời gian được dành cho thu và một nửa còn lại dành cho việc phát tín hiệu.
Đặc điểm chính của hệ thống TDMA:
- TDMA cho phép nhiều người sử dụng chung một tần số, bằng cách chia khoảng thời gian sử dụng tần số thành nhiều khe thời gian không chồng lấp nhau, và mỗi người sử dụng một khe thời gian. Số lượng khe tùy thuộc vào kỹ thuật điều chế, băng thông …
- Việc truyền tín hiệu trong TDMA diễn ra không liên tục mà thành từng cụm nhỏ. Vì vây, máy di động có thể giảm bớt năng lượng tiêu hao cho việc thu phát tín hiệu, dẫn đến thời gian sử dụng acquy tăng lên.
- Trong các khe thời gian rỗi, máy di động đo đạc mức công suất của các trạm phát khác.
- TDMA cần nhiều thông tin cho quá trình đồng bộ ban đầu hơn FDMA do chế độ truyền không liên tục và chia khe thời gian.
- Có thể cấp phát băng tần theo yêu cầu thông qua việc ấn định nhiều kênh cho một người sử dụng để tăng tốc độ của dịch vụ. Vì vậy, tốc độ dịch vụ có thể được cải thiện.
Đa truy cập phân chia theo mã CDMA (Code Division Multiple Access):
Đa truy nhập phân chia theo mã CDMA hoạt động theo nguyên lý trải phổ. Nó không tìm cách phân bố các tiềm năng tần số và thời gian rời rạc cho mỗi thuê bao. Ngược lại, giải pháp này cung cấp tất cả các tiềm năng đồng thời cho mọi thuê bao, khống chế mức công suất phát từ mỗi thuê bao ở mức tối thiểu đủ để duy trì một tỷ số tín hiệu/tạp âm theo mức chất lượng yêu cầu. Mỗi thuê bao sử dụng một tín hiệu băng rộng như tạp âm chiếm toàn bộ dải tần phân bố. Theo cách như vậy mỗi thuê bao tham gia vào tạp âm nền tác động tới tất cả các thuê bao khác, nhưng ở phạm vi ít nhất có thể. Can nhiễu bổ xung này làm hạn chế dung lượng, nhưng vì phân bố tiềm năng thời gian và dải thông không bị hạn chế cho nên dung lượng cũng lớn hơn đáng kể so với các hệ thống TDMA và FDMA
Kỹ thuật đa truy nhập phân chia theo mã – CDMA (code division multiple access) không phân chia nhỏ phổ tần, cũng không chia thời gian thành các khe, mà tất cả những người sử dụng khác nhau đều được phép sử dụng toàn bộ băng tần trong cùng một thời gian.
Hệ thống trải phổ có khả năng chống lại nhiễu đa đường và tăng dung lượng đa truy nhập. Hiệu quả sử dụng băng tần rất cao khi có nhiều người cùng sử dụng hệ thống.
Các đặc điểm chính của CDMA:
- Cho phép mỗi người dùng sử dụng toàn bộ băng tần của hệ thống trong cùng một thời gian.
- Mỗi người sử dụng sẽ có một mã khác nhau để phân biệt. Mã được sử dụng để mã hóa và điều chế.
- Sử dụng hiệu quả phổ tần hơn các hệ thống FDMA và TDMA.
- Hệ thống có tính bảo mật cao.
- Cho phép cấp phát tài nguyên mềm dẻo. Hỗ trợ nhiều loại dịch vụ có tốc độ khác nhau.
Phần 2 : Kỹ Thuật trãi phổ CDMA trong thông tin di động
Nguyên lý trãi phổ :
Nguyên lý chung:
Nguyên lý trải phổ là cung cấp tất cả các tiềm năng tần số và thời gian đồng thời cho mọi thuê bao, khống chế mức công suất phát từ mỗi thuê bao đủ để duy trì một tỷ số tín hiệu/tạp âm theo mức chất lượng yêu cầu. Mỗi thuê bao sử dụng một tín hiệu băng rộng như tạp âm chiếm toàn bộ dải tần phân bố. Theo cách đó mỗi thuê bao tham gia vào tạp âm nền tác động tới tất cả các thuê bao khác, nhưng ở phạm vi ít nhất có thể bằng cách khống chế công suất phát. Như vậy một hệ thống được coi là trải phổ nếu:
Tín hiệu trải phổ (tín hiệu phát) phải có độ rộng phổ lớn hơn nhiều lần độ rộng phổ của thông tin gốc cần truyền.
Trải phổ được thực hiện bằng một mã độc lập với dữ liệu gốc.
Có 3 kỹ thuật trải phổ cơ bản:
• Trải phổ chuỗi trực tiếp (DS/SS – Direct Sequence Spread Spectrum)
• Trải phổ nhảy tần (FH/SS – Frequence Hopping Spread Spectrum)
• Trải phổ dịch thời gian (TH/SS – Time Hopping Spread Spectrum)
Kỹ thuật trải phổ chuỗi trực tiếp (DS-CDMA)
Hệ thống DS/SS được trải phổ bằng cách cộng module 2 dữ liệu gốc với mã giả ngẫu nhiên. Tín hiệu sau khi trộn sẽ điều chế một sóng mang theo BPSK, QPSK… Máy thu dùng mã giả ngẫu nhiên được tạo ra giống như bên phát cộng module 2 với tín hiệu thu được, thực hiện giải trải phổ để lấy tín hiệu mong muốn. Đây là hệ thống được biết đến nhiều nhất trong các hệ thống thông tin trải phổ. Là hệ thống tương đối đơn giản vì nó không yêu cầu tốc độ tổng hợp tần số cao.
Kỹ thuật DS/SS – BPSK
Quá trình trải phổ tín hiệu tin được minh hoạ như hình vẽ sau:
Bản tin nhị phân cần phát có tốc độ bit Rb = 1/Tb được mã hoá theo NZR sao cho b(t)= ±1. Ta có thể biểu diễn b(t) như sau:
b(t) = Σb∞∞=kk ΠT(t-kT)
Trong đó, bk = ±1 là bit số liệu thứ k và T là độ rộng xung của một bit số liệu. Tín hiệu b(t) được trải phổ bằng cách nhân với tín hiệu p(t), p(t) = ±1 là tín hiệu giả ngẫu nhiên có tốc độ Rc= 1/Tc lớn hơn nhiều lần so với Rb. Phần tử nhị phân của chuỗi p(t) được gọi là một chip để phân biệt nó với phần tử nhị phân (bit) của bản tin. Tín hiệu b(t)p(t) nhận được sẽ được điều chế một sóng mang theo phương pháp điều chế BPSK. Tín hiệu phát DS/SS – BPSK là:
s(t) = Ab(t)p(t) cos(2πfct + θ(t))
Trong đó: A là biên độ sóng mang
fc là tần số sóng mang
θ(t) là pha của sóng mang được điều chế
Sơ đồ khối quá trình giải trải phổ như sau:
Tại máy thu, tín hiệu thu được m(t) bao gồm tín hiệu phát bị trễ một khoảng thời gian τ là s(t- τ) và tạp âm trên đường truyền n(t). Do đó tín hiệu thu được là:
m(t) = s(t- τ) + n(t) = Ab(t- τ)p(t- τ) cos{2πfc(t- τ) + θ(t))} + n(t)
Để đơn giản quá trình giải trải phổ ta bỏ qua tạp âm. Tín hiệu r(t) tại đầu vào bộ lọc thông dải (BPF) là:
r(t) = Ab(t- τ)p(t- τ) cos{2πfc(t- τ) + θ(t))} 2cos{2πfc(t- τ) + θ(t))}
= Ab(t- τ)p(t- τ) + Ab(t- τ)p(t- τ) cos{2πfc(t- τ) + θ(t))}
Bộ lọc thông dải của bộ tách sóng loại bỏ các thành phần tần số cao và chỉ giữ lại thành phần tần số thấp u(t) = b(t)p(t). Sau đó, thành phần này được nhân với mã nội tại p(t- τ) được tạo ra ở máy thu đã được đồng bộ.
Do p(t- τ) = ±1 nên p2(t- τ) =1.Tại đầu ra của bộ nhân sẽ có:
x(t) = b(t- τ)p(t- τ)p(t- τ) = b(t- τ)p2(t- τ) = b(t- τ)
Sau đó, tín hiệu này được tích hợp trên một chu kỳ bit để lọc tạp âm. Bản tin phát được khôi phục tại đầu ra bộ tích hợp, giống như tín hiệu băng gốc nhưng trễ về mặt thời gian là τ.
Thực tế quá trình nén phổ, bên thu sẽ nhận đồng thời tín hiệu s(t) xếp chồng cùng với các tín hiệu sóng mang si(t) (i=1,2 ... N-1) không mong muốn của (N-1) người dùng khác ở cùng một tần số. Do đó tín hiệu thu được sẽ là:
Kỹ thuật DS/SS – QPSK
Kỹ thuật này cho phép giới hạn băng tần cao khi tốc độ mã cho trước. QPSK là phương pháp điều chế tổ hợp hai bit dữ liệu thành một ký hiệu điều chế. Do vậy mà phương pháp này làm tăng tốc độ truyền dữ liệu lên hai lần với băng cao tần RF cho trước (hay làm giảm băng RF yêu cầu tới một nửa khi tốc độ mã cho trước). Nhưng độ lợi xử lý giảm đi nhiều tương ứng với tỉ lệ lỗi bit cao hơn.
Quá trình trải phổ DS/SS – QPSK :
Tín hiệu DS/SS – QPSK có dạng:
s(t) = sI(t) + sQ(t)
sI(t) = Ab(t)pI(t) cos[2πfct + θ(t)]
sQ(t) = Ab(t)pQ(t) sin[2πfct + θ(t)]
Khi đó :
s(t) = Ab(t)pI(t) cos[2πfct + θ(t)] + Ab(t)pQ(t) sin[2πfct + θ(t)]
Trong đó:
θ(t) = π/4 nếu sI(t) = 1, sQ(t) = 1
θ(t) = 3π/4 nếu sI(t) = 0, sQ(t) = 1
θ(t) = 5π/4 nếu sI(t) = 0, sQ(t) = 0
θ(t) = 7π/4 nếu sI(t) = 1, sQ(t) = 0
Như vậy, tín hiệu s(t) có thể nhận 4 trạng thái pha khác nhau là: π/4, 3π/4, 5π/4, 7π/4. Nó được tổ hợp từ hai thành phần sóng mang lệch pha nhau π/2. Do đó, nó được trải phổ bằng hai mã giả ngẫu nhiên khác nhau là pI(t) và pQ(t). Tương ứng là hai quá trình trải phổ độc lập với nhau.
Kỹ thuật trải phổ nhảy tần (FH - CDMA)
Nguyên lý chung:
Kỹ thuật trải phổ nhảy tần FH/SS là sự chuyển dịch sóng mang có tần số được chọn theo mã trong một tập hợp các tần số. Độ rộng toàn bộ băng tần được chia nhỏ thành các khe tần số không lấn lên nhau. Chuỗi mã PN sẽ xác định khe tần số nào được dùng để truyền tin trong một khoảng thời gian nhất định.
Khác với trải phổ chuỗi trực tiếp, ở trải phổ nhảy tần mã trải phổ không trực tiếp điều chế tín hiệu mà được dùng để điều khiển bộ tổ hợp tần số tạo ra các tần số khác nhau.
Tốc độ nhảy tần có thể nhanh hơn hay chậm hơn tốc độ số liệu. Tương ứng có hai trường hợp là: nhảy tần nhanh và nhảy tần chậm.
Sơ đồ khối của máy thu và máy phát của hệ thống nhảy tần như sau:
Bản tin nhị phân b(t) cần phát có tốc độ Rb= 1/Tb , được mã hoá NZR. Sau đó được điều chế một sóng mang mà tần số của nó fc(t) được điều khiển bởi một bộ tạo mã. Bộ tổng hợp tần số sẽ tạo ra các chip có tốc độ bit Rc. Do đó, tần số sóng mang được xác định theo một tập hợp của log2N chip ( N là số lượng các tần số sóng mang có thể có). Mỗi lần nó thay đổi là mã đã tạo ra log2N chip liên tiếp. Như vậy, tần số sóng thay đổi theo các bước. Bước của tần số là RH=Rc/log2N.
Tại máy thu, sóng mang được nhân với một sóng mang chưa điều chế được tạo ra giống hệt bên phát. Sóng mang này được tạo ra nhờ bộ tạo mã PN giống như bên phát điều khiển bộ tổ hợp tần số để tạo ra tần một tần số thích hợp. Như vậy, Sự chuyển dịch tần số giả ngẫu nhiên ở bên phát sẽ được loại bỏ tại nơi thu.
Điều chế FSK thường sử dụng cho các hệ thống này. Giải điều chế là không kết hợp do tần số sóng mang luôn thay đổi trong quá trình truyền tin.
Hệ thống FH/SS nhanh
Ở hệ thống FH/SS nhanh, có ít nhất một lần nhảy với một bít số liệu. Với T là chu kỳ của tín hiệu, Th là thời gian của một đoạn nhảy tần thì T/Th ≥ 1. Trong khoảng thời gian Th giây của mỗi lần nhảy tần, một trong số j tần số { f0, f0+Δf , f0+2Δf , … ,f0+(j-1)Δf } được phát. Trong đó Δf là khoảng cách giữa các tần số lân cận, thường được chọn bằng 1/Th .
Hệ thống FH/SS chậm
Khi tốc độ nhảy tần số của sóng mang trải phổ nhỏ hơn tốc độ dữ liệu ta có hệ thống trải phổ nhảy tần chậm (T/TH < 1) . Về cơ bản thì hai hệ thống trải phổ nhảy tần chậm và nhảy tần nhanh tương tự nhau. Dưới đây là biểu đồ tần số của hệ thống trải phổ nhảy tần chậm với T/TH= 1/2 :
Kỹ thuật trải phổ nhảy thời gian TH/SS
Nhảy thời gian tương tự như điều chế xung. Nghĩa là, dãy mã đóng/mở bộ phát, thời gian đóng/ mở bộ phát được chuyển đổi thành dạng tín hiệu giả ngẫu nhiên theo mã và đạt được 50 % yếu tố tác động truyền dẫn trung bình. Sự khác nhau nhỏ so với hệ thống FH/SS đơn giản là trong khi tần số truyền dẫn biến đổi theo mỗi thời gian chip mã trong hệ thống FH/SS thì sự nhảy tần số chỉ xảy ra trong trạng thái dịch chuyển dãy mã trong hệ thống TH/ SS. Hình (18) là sơ đồ khối của hệ thống TH/SS. Ta thấy rằng bộ điều chế rất đơn giản và bất kỳ một dạng sóng cho phép điều chế xung theo mã đều có thể được sử dụng đối với bộ điều chế TH/ SS.
TH/SS có thể làm giảm giao diện giữa các hệ thống trong hệ thống ghép kênh theo thời gian. Vì mục đích này mà sự chính xác thời gian được yêu cầu trong hệ thống nhằm tối thiểu hóa độ dư giữa các máy phát.
Do hệ thống TH/SS có thể bị ảnh hưởng dễ dàng bởi giao thoa nên cần sử dụng hệ thống tổ hợp giữa hệ thống này với hệ thống FH/SS để loại trừ giao thoa có khả năng gây nên suy giảm lớn đối với tần số đơn.
So sánh các hệ thống SS
Mỗi loại hệ thống đều có ưu - nhược điểm. Việc chọn hệ thống nào phải dựa trên ứng dụng đặc thù. Chúng ta sẽ so sánh các hệ thống DS, FH và TH.
Các hệ thống DS/ SS giảm nhiễu giao thoa bằng cách trải rộng nó ở một phổ tần rộng. Trong các hệ thống FH/ SS ở mọi thời điểm cho trước, những người sử dụng phát các tần số khác nhau vì thế có thể tránh được nhiễu giao thoa. Các hệ thống TH/ SS tránh nhiẽu giao thoa bằng cách tránh không để nhiễu hơn một người sử dụng phát trong một thời điểm.
Có thể thiết kế các hệ thống DS/ SS với giải điều chế kết hợp và không kết hợp. Tuy nhiên, do sự nhảy chuyển tần số phát nhanh rất khó duy trì đồng bộ pha ở các hệ thống FH/SS vì thế chúng thường đòi hỏi giải điều chế không kết hợp. Trong thực tế các hệ thống DS/SS có chất lượng tốt hơn do sử dụng giải điều chế kết hợp nhưng giá thành của mạch pha sóng mang đắt.
Với cùng tốc độ đồng hồ của bộ tạo mã PN, FH/SS có thể nhảy tần trên băng tần rộng hơn nhiều so với băng tần của tín hiệu DS/SS. Ngoài ra có thể tạo ra tín hiệu TH/SS có độ rộng băng tần rộng hơn nhiều độ rộng băng tần của DS/ SS khi bộ tạo chuỗi của hai hệ thống này cùng tốc độ đồng hồ.
Hệ thống FH/SS loại trừ được các kênh tần số gây nhiễu giao thoa mạnh và thường xuyên, còn DS/SS nhạy cảm nhất với vấn đề gần xa. Các hệ thống FH/SS dễ bị thu trộm hơn so với hệ thống DS/SS.
Thời gian bắt mã ở các hệ thống FH/SS ngắn nhất, tuy nhiên máy phát và máy thu ở hệ thống FH/SS đắt do sự phức tạp của bộ tổng hợp tần số.
Các hệ thống FH/SS chịu được fading nhiều tia và các loại nhiễu.Trong khi các máy thu DS/SS đòi hỏi các mạch đặc biệt để làm việc tốt trong môi trường nói trên.
Hệ thống lai ( Hybrid )
Bên cạnh các hệ thống đã miêu tả ở trên, điều chế hybrid của hệ thống DS và FH được sử dụng để cung cấp thêm các ưu điểm cho đặc tính tiện lợi của mỗi hệ thống. Thông thường đa số các trường hợp sử dụng hệ thống tổng hợp bao gồm : FH/ DS, TH/ FH, TH/ DS.
Các hệ thống tổng hợp của hai hệ thống điều chế trải phổ sẽ cung cấp các đặc tính mà một hệ thống cơ bản đã nói đến ở trên không thể nào có được. Một mạch không cần phức tạp quá có thể bao gồm bởi bộ tạo dãy mã và bộ tổ hợp tần số cho trước.
Hệ thống FH/ DS
Hệ thống FH/ DS sử dụng tín hiệu điều chế DS với tần số trung tâm được chuyển nhảy một cách định kỳ. Phổ tần số của bộ điều chế được minh họa trên hình (19). Một tín hiệu DS xuất hiện một cách tức thời với độ rộng băng là một phần trong độ rộng băng của rất nhiều các tín hiệu trải phổ chồng lấn và tín hiệu toàn bộ xuất hiện như là sự chuyển động của tín hiệu DS tới độ rộng băng khác nhờ các mẫu tín hiệu FH. Hệ thống tổng hợp FH/ DS được sử dụng vì các lý do sau đây:
1. Dung lượng trải phổ
2. Đa truy nhập và thiết lập địa chỉ phân tán.
3. Ghép kênh.
Hệ thống điều chế tổng hợp các ý nghĩa đặc biệt khi tốc độ nhịp của bộ tạo mã DS đạt tới giá trị cực đại và giá trị giới hạn của kênh FH. Ví dụ, trong trường hợp độ rộng băng RF yêu cầu là 1 Ghz thì hệ thống DS yêu một bộ tạo mã tức thời có tốc độ nhịp là 1136Mchip/s và khi sử dụng hệ thống FH thì yêu cầu một bộ trộn tần để tạo ra tần số có khoảng cách 5 KHz. Tuy nhiên, khi sử dụng hệ thống tổng hợp thì yêu cầu một bộ tạo mã tức thời 114Mchip/s và một bộ trộn tần để tạo ra 20 tần số.
Bộ phát tổng hợp FH/ DS như trên hình (20) thực hiện chức năng điều chế DS nhờ biến đổi tần số sóng mang (sóng mang FH là tín hiệu DS được điều chế ) không giống như bộ điều chế DS đơn giản. Nghĩa là, có một bộ tạo mã để cung cấp các mã với bộ trộn tần được sử dụng để cung cấp các dạng nhảy tần số và một bộ điều chế cân bằng để điều chế DS.
Sự đồng bộ thực hiện giữa các mẫu mã FH/ DS biểu thị rằng phần mẫu DS đã cho được xác định tại cùng một vị trí tần số lúc nào cũng được truyền qua một kênh tần số nhất định. Nhìn chung thì tốc độ mã của DS phải nhanh hơn tốc độ nhảy tần. Do số lượng các kênh tần số được sử dụng nhỏ hơn nhiều so với số lượng các chip mã nên tất cả các kênh tần số nằm trong tổng chiều dài mã sẽ được sử dụng nhiều lần. Các kênh được sử dụng ở dạng tín hiệu giả ngẫu nhiên như trong trường hợp các mã.
Bộ tương quan được sử dụng để giải điều chế tín hiệu đã được mã hóa trước khi thực hiện giải điều chế băng tần gốc tại đầu thu, bộ tương quan FH có một bộ tương quan DS và tín hiệu dao động nội được nhân với tất cả các tín hiệuthu được. Hình (21) miêu tả một bộ thu FH/ DS điển hình. Bộ tạo tín hiệu dao động nội trong bộ tương quan giống như bộ điều chế phát trừ 2 điểm sau:
1. Tần số trung tâm của tín hiệu dao động nội được cố định bằng độ lệch tần số trung gian ( IF ).
2. Mã DS không bị biến đổi với đầu vào băng gốc.
Giá trị độ lợi xử lý dB của hệ thống tổng hợp FH/ DS có thể được tính bằng tổng của độ lợi xử lý của hai loại điều chế trải phổ đó. Do đó, giới hạn giao thoa trở nên lớn hơn so với hệ thống FH hoặc hệ thống DS đơn giản.
Hệ thống TH/ FH
Hệ thống điều chế TH/FH được áp dụng rộng rãi khi muốn sử dụng nhiều thuê bao có khoảng cách và công suất khác nhau tại cùng một thời điểm. Với số lượng việc xác định địa chỉ thuê bao là trung bình thì nên sử dụng một hệ thống mã đơn giản hơn là một hệ thống trải phổ đặc biệt. Khuynh hướng chung là tạo ra một hệ thống chuyển mạch điện thoại vô tuyến có thể chấp nhận các hoạt động cơ bản của hệ thống như là sự truy nhập ngẫu nhiên hoặc sự định vị các địa chỉ phân tán. Đó cũng là một hệ thống cố thể giải quyết các vấn đề liên quan đề khoảng cách. Như trên hình (22) ta thấy hai đầu phát và thu đã được xác định và máy phát ở đường thông khác hoạt động như là một nguồn giao thoa khi đường thông đó được thiết lập. Hơn nữa, sự khác nhau về khoảng cách giữa máy phát bên cạnh và máy phát thực hiện thông tin có thể gây ra nhiều vấn đề. Hệ thống này làm giảm ảnh hưởng giao thoa chấp nhận được của hệ thống thông tin trải phổ xuống tới vài độ.
Do ảnh hưởng của khoảng cách gây ra cho tín hiệu không thể loại trừ được chỉ với việc xử lý tín hiệu đơn giản mà một khoảng thời gian truyền dẫn nhất định nên được xác định để tránh hhiện tượng chồng lấn các tín hiệu tại một thời điểm.
Hệ thống TH/DS
Nếu phương pháp ghép kênh không đáp ứng các yêu cầu giao diện đường truyền khi sử dụng hệ thống DS thì hệ thống TH được sử dụng thay thế để cung cấp một hệ thống TDM cho khả năng điều khiển tín hiệu. Yêu cầu sự đồng bộ nhanh đối với tương quan mã giữa các đầu mối của hệ thống DS, hệ thống TH được giả quyết cho trường hợp này. Nghĩa là, đầu cuối thu của hệ thống DS nên có một thời gian chính xác để kích hoạt TDM, để đồng bộ chính xác mã tạo ra tại chỗ trong thời gian chip của mã PN.
Hơn nữa, thiết bị điều khiển đóng/ mở chuyển mạch được yêu cầu để thêm TH- TDM vào hệ thống DS. Trong trường hợp này thì kết cuối đóng/ mở chuyển mạch có thể được trích ra một cách dễ dàng từ bộ tạo mã sử dụng để tạo ra các mã trải phổ và hơn nữa thiết bị điều khiển đóng/ mở được sử dụng để tách các trạng thái ghi dịch cấu thành bộ tạo mã và dựa trên các kết quả, số lượng n cổng được sử dụng để kích hoạt bộ phát có thể được thiết lập một cách đơn giản. Hình (23) minh họa bộ phát và thu TH/ DS. Bộ thu rất giống như bộ phát ngoại trừ phần phía trước và một phần của bộ tạo tín hiệu điều khiển được sử dụng để kích hoạt trạng thái đóng/ mở của tín hiệu để nó truyền đi. Điều đó nhận được nhờ chọn trạng thái bộ ghi dịch sao cho bộ ghi dịch này được tạo một cách lặp lại trong quá trình chọn mã đối với điều khiển thời gian. Trong bộ tạo mã dài nhất bậc n thì điều kiện thừ nhất tồn tại và điều này được lặp lại với chu kỳ là m. Khi chọn bậc ( n- r) và tách ra tất cả các trạng thái của nó thì bộ tạo mã có tạo tín hiệu giả ngẫu nhiên phân bố dài gấp hai chu kỳ mã. Như ở trên thì n biểu thị độ dài bộ ghi dịch và r nghĩa là bậc ghi dịch không tách được.
Cũng vậy, việc tạo đầu ra và chu kỳ tạo trung bình có khoảng cách giả ngẫu nhiên có thể được chọn nhờ mã trong chu kỳ giả ngẫu nhiên. Loại phân chia thực hiện trong quá trình chu kỳ giả ngẫu nhiên này có thể có nhiều người sử dụng kênh để có nhiều truy cập và có chức năng tiến bộ hơn so với giao diện ghép kênh theo mã đơn giản.
Bộ phát của TH/DS
Bộ thu của TH/DS
Các dãy mã ngẫu nhiên PN
Giới thiệu chung về chuỗi PN
Một dãy ngẫu nhiên nhị phân đơn giản nhất, dãy Bernoulli, đôi khi được xem như một dãy “xấp ngửa” mà “0” hoặc “1” tương ứng với kết quả “ngửa” hoặc “xấp” trong một chuỗi các thử nghiệm tung đồng su. Nhưng ngay cả dãy ngẫu nhiên nhị phân đơn giản nhất này cũng đòi hỏi bộ nhớ lớn vô hạn tại cả máy thu và máy phát. Tuy nhiên, sự “ngẫu nhiên” trong một dãy Bernoulli cũng có thể được tạo ra nhờ một phép toán tuyến tính đơn giản được quy địng bởi một số lượng vừa phải các tham số nhị phân (bit). Do đó, biến số ngẫu nhiên duy nhất là điểm khởi đầu của chuỗi. Các dãy giả ngẫu nhiên này phải có các thuộc tính cơ bản của “sự ngẫu nhiên” như sau:
Tính cân đối Trong một chu kỳ của dãy, số bit “1” và số bit “0” khác nhau nhiều nhất là 1.
2. Khoảng chạy
Một bước chạy là một dãy các số ‘1’ liên tiếp hay một dãy các số ‘0’ liên tiếp. Độ dài của bước chạy là số bít trong bước chạy. Trong tất cả các bước chạy của một chu kỳ của chuỗi, để thỏa mãn tính chạy cần có 1/2 bước chạy có độ dài là 1, 1/4 bước chạy có độ dài là 2, 1/8 bước chạy có độ dài là 3...Tổng quát có 1/2r bước chạy có độ dài r với r < n-1 và 1/2n-1 bước chạy có độ dài n với n là số phần tử nhớ.
Tính tương quan
Khi so sánh theo kiểu số hạng: so sánh số hạng của một dãy với chính dãy ấy nhưng bị dịch đi. Dãy có tính tương quan tốt nếu như số số hạng giống nhau khác số số hạng khác nhau không quá một chỉ số đếm.
Dãy ghi dịch tuyến tính độ dài cực đại (dãy- m)
Có nhiều loại mã PN khác nhau được sử dụng trong kỹ thuật trải phổ, trong đó loại quan trọng nhất là các mã PN được tạo ra từ dãy ghi dịch cơ số hai có độ dài cực đại hay dãy m. Các dãy cơ số hai m được tạo ra bằng cách sử dụng thanh ghi dịch có mạch hồi tiếp và các mạch cổng hoặc loại trừ (XOR). Một dãy thanh ghi dịch tuyến tính được xác định bởi một đa thức tạo mã tuyến tính g(x) bậc m > 0.
g(x) = gmxm + gm-1xm-1 + gm-2xm-2 + ... + g1x + go (2.8).
Đối với chuỗi cơ số hai có giá trị {0,1} , gi bằng 0 hoặc 1và gm = g0 = 1.
Đặt g(x) = 0, ta được sự hồi quy sau:
1 = go+ g1x + g2x2 + ... + gm-2xm-2 + gm-1xm-1 + xm (2.9).
Với xk thể hiện đơn vị trễ, phương trình hồi quy trên xác định các kết nối hồi tiếp trong mạch thanh ghi dịch như hình (24).
Trong mạch thanh ghi dịch, các mạch XOR thực hiện phép cộng mod 2. Nếu gi= 1 khóa tương ứng của mạch đóng, nếu gi≠1 thì khóa này mở.
Thanh ghi dịch là một mạch cơ số 2 trạng thái hữu hạn có m phần tử nhớ. Mỗi phần tử nhớ là một Flip-Flop hai trạng thái {1,0}. Vì thế số trạng thái khác không cực đại của mạch là 2m-1. Số này bằng chu kỳ cực đại của chuỗi ra C = (co, c1, c2,...).Trong hình (24), trạng thái của thanh ghi dịch ở xung đồng hồ thứ i là:
Si = { Si(1), Si(2), Si(3), ... Si(m)}
Đầu ra của thanh ghi dịch ở xung đồng hồ thứ i là:
Ci-m = Si(m).
Thay 1=Ci vào phương trình (2.9) ta được điều kiện hồi quy của chuỗi ra:
Ci = g1ci-1 + g2ci-2 + ... +gm-1ci-m+1 + ci-m
Hay
Ci+m = g1ci+m-1 + g2ci+m-2 + ... +gm-1ci+1 + ci (mod 2) (2.10). với i >=0.
Như vậy ứng với mỗi đa thức tạo mã nhất định, ta sẽ xác định được giá trị hồi quy Ci và xây dựng được thanh ghi dịch bằng bậc m của đa thức. Số phần tử trong thanh ghi dịch bằng bậc m của đa thức.Trạng thái của thanh ghi dịch thay đổi theo điều kiện hồi quy được xác định bởi một đa thức tạo mã g(x). Đầu ra thanh ghi dịch sẽ cho ta một chuỗi cơ số hai có độ dài cực đại hay chuỗi m.
Xét ví dụ với đa thức tạo mã g(x)= 1+x+x4
Đa thức có m = 4 nên có 4 phần tử nhớ (Flip- Flop). Từ đa thức tạo mã, theo công thức (2.10) ta có điều kiện hồi quy như sau:
Ci = Ci-1 + Ci-4.
Mạch thanh ghi dịch và chuỗi mã tạo ra ứng với đa thức này như sau:
Chuỗi ra C = 111101011001000
Chuỗi có chu kỳ cực đại N = 24 = 15. Sau 15 xung nhịp thì các thanh ghi dịch trở về trạng thái ban đầu. Trạng thái 1111 là trạng thái nạp lúc khởi đầu cho các Flip- Flop. Các trạng thái đầu của các F-F có thể là bất kỳ nhưng yêu cầu phải khác không.
Với việc chọn một đa thức tạo mã nguyên thủy, ta sẽ tạo ra được chuỗi m thỏa mãn các chỉ tiêu ngẫu nhiên.
Đồng bộ
Điều kiện cơ bản để thực hiện đa thâm nhập là phải đồng bộ bộ tạo chuỗi mã PN ở phía thu và ở phía phát để trải phổ. Điều kiện này cho phép máy thu tách được thông tin hữu ích Mi(t).
Quá trình đồng bộ gồm hai giai đoạn:
Bắt chuỗi (Aquistion).
Bám chuỗi (Tracking).
Quá trình bắt chuỗi mã (bắt đồng bộ) :
Các chuỗi mã PN được tạo ta độc lập ở phía phát và phía thu nên các chuỗi PN ở phía thu sẽ bị dịch đi một lượng là τ. Tín hiệu phía phát là Ci(t) thì tín hiệu phía thu là Ci(t-τ). Để thực hiện bắt chuỗi người ta có thể sử dụng sơ đồ bắt chuỗi
Sơ đồ hình (25) là sơ đồ bắt mã cho trường hợp giải điều chế kết hợp (có khôi phục sóng mang). Trong trường hợp này trước hết sóng mang đã khôi phục được nhân với sóng mang thu:
S2(t) = Mi(t).Ci(t). cosωc(t) cosωc(t) = 1/2Mi(t).Ci(t)[ cos(2ωct))+1] (2.6).
Sau bộ lọc thông thấp ta được:
S3(t) = 1
Các file đính kèm theo tài liệu này:
- Tìm Hiểu Kỹ Thuật CDMA.doc