Đồ án Tìm hiểu và ứng dụng mạng không dây

MỤC LỤC

 

NHẬN XÉT CỦA GIÁO VIÊN 1

 

MỤC LỤC 2

LỜI MỞ ĐẦU 4

 

Phần I: TỔNG QUAN VỀ MẠNG KHÔNG DÂY 5

I. Các khái niệm ban đầu về mạng không dây 5

1. Lịch sử phát triển 5

2. Khái niệm 5

II. Phân loại mạng không dây 6

III. Các vấn đề kĩ thuật trong mạng không dây 6

IV. Sơ nét về một số mạng không dây 6

1. Mạng WPAN 6

2. Mạng WLAN 7

3. Mạng WMAN 7

4. Mạng WWAN 8

Phần II: MẠNG KHÔNG DÂY CỤC BỘ WLAN 9

I. Giới thiệu và các khái niệm về Wireless LAN- WLAN 9

1. Giới thiệu 9

2. Các khái niệm về WLAN 9

II. Các thiết bị cơ bản và ứng dụng của hệ thống WLAN 10

1. Các thiết bị cơ bản 10

2. Các ứng dụng của hệ thống WLAN 11

III. Ưu, nhược điểm của WLAN 13

1. Những ưu điểm 13

2. Nhược điểm 13

IV. Các chuẩn thông dụng của WLAN 13

1. Các Chuẩn IEEE 802.11 13

2. Hiper LAN 14

3. Các chuẩn khác 15

V. Nguyên lí hoạt động của mạng không dây 15

VI. Cấu trúc của các giao thức được sử dụng trong mạng không dây 16

Phần III: BẢO MẬT MẠNG KHÔNG DÂY 17

I. Một số hình thức tấn công xâm nhập phổ biến 17

1. Tấn công không qua chứng thực 17

2. Giả mạo AP 17

3. Tấn công dựa trên sự cảm nhận sóng mang lớp vật lý 17

4. Giả địa chỉ MAC 17

5. Tấn công từ chối dịch vụ 17

II. Các phương pháp bảo mật cho mạng Wireless LAN 18

1. Firewall, các phương pháp lọc 18

2. Mã hoá dữ liệu 19

III. Một số sai lầm phổ biến về bảo mật cho mạng LAN không dây 21

 

Phần IV: THIẾT KẾ, TRIỂN KHAI SỬ DỤNG HỆ THỐNG WLAN 22

I. Các thành phần, thiết bị hạ tầng của mạng không dây 22

1. Bộ điều hợp mạng không dây – Card mạng không dây 22

2. Điểm truy cập mạng không dây 22

3. Router không dây 23

4. Ăngten không dây 23

5. Máy tăng tín hiệu không dây 23

6. Các thiết bị máy khách 24

II. Các vấn đề liên quan khi lắp đặt, khai thác, sử dụng WLAN 24

1. Lắp đặt WLAN 24

2. Khai thác WLAN 24

III. Thiết kế, triển khai lắp đặt mạng WLAN 24

1. Phân tích 25

2. Đánh giá lưu lượng truyền thông 25

3. Dự thảo mô hình mạng 26

4. Tính toán giá 26

5. Xây dựng bảng địa chỉ IP 28

6. Sơ đồ hệ thống mạng 29

Phần V: TỔNG KẾT VÀ HƯỚNG PHÁT TRIỂN 31

I. Kết luận 31

II. Hướng phát triển 31

 

TÀI LIỆU THAM KHẢO 32

 

doc33 trang | Chia sẻ: oanh_nt | Lượt xem: 12382 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Đồ án Tìm hiểu và ứng dụng mạng không dây, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
icensed) và 450-470 MHz thì được gọi là giải tần bảo được bảo vệ (có giấy phép). Kỹ thuật radio tổng hợp: Thuật ngữ kỹ thuật radio tổng hợp đề cập đến các sản phẩm được điều khiển bằng tinh thể, yêu cầu công ty sản xuất cài một tinh thể cho mỗi tần số có thể. Các giải pháp dựa trên UHF được tổng hợp cung cấp khả năng cài đặt các thiết bị chuẩn mà không cần phải thay thế phần cứng, ít phức tạp hơn và khả năng điều chỉnh mỗi thiết bị. Hoạt động đa tần: Các hệ thống UHF hiện đại cho phép các Access Point được cấu hình một cách riêng biệt cho tác vụ trên một trong những tần số được cấu hình trước. Các trạm không dây có thể được lập trình với một danh sách tất cả các tần số được sử dụng trong các Access Point đã được cài, cho phép chúng thay đổi tần số khi roaming. Để tăng thông lượng (throughput), các Access Point có thể được cài đặt giống nhau nhưng lại sử dụng các tần số khác nhau. Các thiết bị cơ bản và ứng dụng của hệ thống WLAN: Các thiết bị cơ bản: Card mạng không dây (Wireless NIC): Card mạng không dây giao tiếp máy tính với mạng không dây bằng cách điều chế tín hiệu dữ liệu với chuỗi trải phổ và thực hiện một giao thức truy nhập cảm ứng sóng mang. Hình 2: Card mạng không dây Các điểm truy cập (Access Point): Các điểm truy cập không dây AP (Access Point) tạo ra các vùng phủ sóng, nối các nút di động tới các cơ sở hạ tầng LAN có dây. Các điểm truy cập này không chỉ cung cấp trao đổi thông tin với các mạng có dây mà còn lọc lưu lượng và thực hiện chức năng cầu nối với các tiêu chuẩn khác. Các điểm truy cập trao đổi với nhau qua mạng hữu tuyến để quản lí các nút di động. Hình 3: Access Point Bridge không dây (Wbridge): WBridge (Bridge không dây) tương tự như các điểm truy cập không dây trừ trường hợp chúng được sử dụng cho các kênh bên ngoài. WBridge được thiết kế để nối các mạng với nhau, đặc biệt trong các toà nhà có khoảng cách xa tới 32 km. WBridge có thể lọc lưu lượng và đảm bảo rằng các hệ thống mạng không dây được kết nối tốt mà không bị mất lưu lượng cần thiết. Hình 4: Wbridge Các router điểm truy cập (Access Point Router): Một “AP router” là một thiết bị kết hợp các chức năng của một Access Point và một router. Khi là Access Point, nó truyền dữ liệu giữa các trạm không dây và một mạng hữu tuyến cũng như là giữa các trạm không dây. Khi là router, nó hoạt động như là điểm liên kết giữa hai hay nhiều mạng độc lập, hoặc giữa một mạng bên trong và một mạng bên ngoài. Các ứng dụng của hệ thống WLAN: Vai trò truy cập (Access Role): WLAN hầu như được triển khai ở lớp access, nghĩa là chúng được sử dụng ở một điểm truy cập vào mạng có dây thông thường. Các WLAN là các mạng ở lớp data-link như tất cả những phương pháp truy cập khác. Vì tốc độ thấp nên WLAN ít được triển khai ở core và distribution. Hình 5: Access Role Mở rộng mạng (Network Extention): Các mạng không dây có thể được xem như một phần mở rộng của một mạng có dây. Khi muốn mở rộng một mạng hiện tại, nếu cài đặt thêm đường cáp thì sẽ rất tốn kém. Các WLAN có thể được thực thi một cách dễ dàng, vì ít phải cài đặt cáp trong mạng không dây. Hình 6: Mở rộng mạng Văn phòng nhỏ - Văn phòng gia đình (Small Office-Home Office): Các thiết bị wireless SOHO thì rất có ích khi người dùng muốn chia sẻ một kết nối Internet với các doang nghiệp nhỏ, văn phòng nhỏ… Hình 7: SOHO Wireless LAN Văn phòng di dộng (Mobile Offices): Các văn phòng di động cho phép người dùng có thể di chuyển đến một vị trí khác một cách dễ dàng. Các kết nối WLAN từ toà nhà chính ra các lớp học di động cho phép các kết nối một cách lịnh hoạt với chi phí có thể chấp nhận được. Hình 8: Văn phòng di động Ưu, nhược điểm của WLAN: Những ưu điểm: Mạng không dây không dùng cáp cho các kết nối, thay vào đó, chúng sử dụng sóng Radio. Ưu thế của mạng không dây là khả năng di động và sự tự do, người dùng không bị hạn chế về không gian và vị trí kết nối. Những ưu điểm của mạng không dây bao gồm: Khả năng di động và sự tự do- cho phép kết nối bất kì đâu. Không bị hạn chế về không gian và vị trí kết nối. Dễ lắp đặt và triển khai. Tiết kiệm thời gian lắp đặt dây cáp. Không làm thay đổi thẩm mỹ, kiến trúc tòa nhà. Giảm chi phí bảo trì, bảo dưỡng hệ thống. Nhược điểm: Nhiễu: Nhược điểm của mạng không dây có thể kể đến nhất là khả năng nhiễu sóng radio do thời tiết, do các thiết bị không dây khác, hay các vật chắn (như các nhà cao tầng, địa hình đồi núi…). Bảo mật: Đây là vấn đề rất đáng quan tâm khi sử dụng mạng không dây. Việc vô tình truyền dữ liệu ra khỏi mạng của công ty mà không thông qua lớp vật lý điều khiển khiến người khác có thể nhận tín hiệu và truy cập mạng trái phép. Tuy nhiên Wireless LAN có thể dùng mã truy cập mạng để ngăn cản truy cập, việc sử dụng mã tuỳ thuộc vào mức độ bảo mật mà người dùng yêu cầu. Ngoài ra người ta có thể sử dụng việc mã hóa dữ liệu cho vấn đề bảo mật. Các chuẩn thông dụng của WLAN: Các Chuẩn IEEE 802.11: IEEE 802.11: Ra đời năm 1997. Đây là chuẩn sơ khai của mạng không dây, mô tả cách truyền thông trong mạng không dây sử dụng các phương thức như: DSSS, FHSS, infrared (hồng ngoại). Tốc độ tối đa là 2Mbps, hoạt động trong băng tần 2.4Ghz ISM. Hiện nay chuẩn này rất ít được sử dụng trong các sản phầm thương mại. IEEE 802.11b: Đây là một chuẩn mở rộng của chuẩn 802.11. Nó cải tiến DSSS để tăng băng thông lên 11Mbps, cũng hoạt động ở băng tần 2.4Ghz, và tương thích ngược với chuẩn 802.11. 802.11b+: TI (Texas Instruments) đã phát triển một kỹ thuật điều chế gọi là PBCC (Packet Binary Convolutional Code) mà nó có thể cung cấp các tốc độ tín hiệu ở 22Mbps và 33Mbps. Chúng hoàn toàn tương thích với 802.11b, và khi trao giao tiếp với nhau có thể đạt được tốc độ tín hiệu 22Mbps. Một sự tăng cường mà TI có thể được sử dụng giữa các thiết bị 802.11b+ là chế độ 4x, nó sử dụng kích thước gói tin tối đa lớn hơn (4000 byte) để giảm chồng lấp và tăng thông lượng. IEEE 802.11a: Chuẩn này mô tả các thiết bị WLAN hoạt động trong băng tần 5Ghz UNII. Do sử dụng băng tần UNII nên hầu hết các thiết bị có thể đạt được tốc độ 6, 9, 12, 18, 24, 36, 48 và 54Mbps. Không giống như băng tần ISM (khoảng 83 MHz trong phổ 2.4 Ghz), 802.11a sử dụng gấp 4 lần băng tần ISM vì UNII sử dụng phổ không nhiễu 300MHz, 802.11a sử dụng kỹ thuật FDM. Hình 9: Dải tần 5Ghz IEEE 802.11g: 802.11g cung cấp cùng một tốc độ tối đa như 802.11a. Tuy nhiên nó tương thích ngược với các thiết bị 802.11b, nhờ đó dễ dàng nâng cấp mạng WLAN với chi phí thấp hơn. 802.11g hoạt động trong băng tần 2.4Ghz IMS. Đồng thời sử dụng công nghệ điều chế OFDM ( Orthogonal Frequency Division Multiplexing) để đạt tốc độ cao như 802.11a. 802.11g+: được cải tiến từ chuẩn 802.11g, hoàn toàn tương thích với 802.11g và 802.11b, được phát triển bởi TI. Khi các thiết bị 802.11g+ hoạt động với nhau thì thông lượng đạt được có thể lên đến 100Mbps. IEEE 802.11i: Là chuẩn bổ sung cho các chuẩn 802.11a, 802.11b, 802.11g về vấn đề bảo mật. Nó mô tả cách mã hóa dữ liệu truyền giữa các hệ thống sử dụng các chuẩn này. 802.11i định nghĩa một phương thức mã hoá mạnh mẽ gồm Temporal Key Integrity Protocol (TKIP) và Advanced Encryption Standard (AES). IEEE 802.11n: Một chuẩn Wi-Fi mới đang được Liên minh WWiSE đưa ra xin phê chuẩn (dự kiến vào năm 2008), với mục tiêu đưa kết nối không dây băng thông rộng lên một tầm cao mới. Công nghệ này hứa hẹn sẽ đẩy mạnh đáng kể tốc độ của các mạng cục bộ không dây (WLAN). Hiper LAN: Sự phát triển của thông tin vô tuyến băng rộng đã đặt ra những yêu cầu mới về mạng LAN vô tuyến. Đó là nhu cầu cần hỗ trợ về QoS, bảo mật, quyền sử dụng,… ETSI (European Telecommunications Standards Institute- Viện tiêu chuẩn viễn thông châu Âu ) đã nghiên cứu xây dựng bộ tiêu chuẩn cho các loại LAN hiệu suất cao (High Performance LAN), tiêu chuẩn này xoay quanh mô tả các giao tiếp ở mức thấp và mở ra khả năng phát triển ở mức cao hơn. HiperLAN cụ thể là thông tin liên lạc số không dây tốc độ cao ở băng tần 5.1- 5.3Ghz và băng tần 17.2- 17.3Ghz. HIPERLAN 1 HIPERLAN 2 HIPERLAN 3 HIPERLAN 4 Ứng dụng Wireless LAN Truy nhập WATM Truy nhập WATM cố định từ xa Kết nối point-to-point WATM Băng tần 2,4 GHz 5 GHz 5 GHz 17 GHz Tốc độ đạt được 23,5 Mbps 54 Mbps 54 Mbps 155 Mbps Bảng các tiêu chuẩn của ETSI HIPERLAN Các chuẩn khác: HomeRF: Là chuẩn hoạt động tại phạm vi băng tần 2.4GHz, cung cấp băng thông 1.6MHz với thông lượng sử dụng là 659Kb/s. Khoảng cách phục vụ tối đa của HomeRF là 45m. HomeRF cũng sử dụng cơ chế trải phổ FHSS tại tầng vật lý, và tổ chức các thiết bị đầu cuối thành mạng ad–hoc (các máy trao đổi trực tiếp với nhau) hoặc liên hệ qua một điểm kết nối trung gian như Bluetooth. OpenAir: Là sản phẩm độc quyền của Proxim. openAir là một giao thức trước 802.11 sủ dụng lĩ thuật nhảy tần (2FSK và 4FSK), có tốc độ 1.6Mbps. OpenAir MAC dựa trên CSMA/CA và RTS/CTS như 802.11. Bluetooth: Là một công nghệ nhảy tần hoạt động trong băng tần 2.4Ghz ISM.Tỷ lệ nhảy của các thiết bị Bluetooth khoảng 1600hop/s. Tỷ lệ nhảy cao cũng giúp cho công nghệ kháng cự tốt hơn với nhiễu băng hẹp. Các thiết bị Bluetooth hoạt động trong 3 lớp công suất: 1mW, 2.5mW và 100mW, và ảnh hưởng đến các hệ thống FHSS khác. Infrared (IR): Là một công nghệ truyền thông dựa trên ánh sáng chứ không phải là công nghệ trải phổ. Các thiết bị IR có thể đạt tốc độ tối đa là 4Mbps, và tốc độ thường thấy là 115Kbps- đủ cho việc trao đổi dữ liệu giữa các thiết bị cầm tay. Đặc biệt không gây nhiễu với mạng trải phổ RF. Nguyên lí hoạt động của mạng không dây: Mạng WLAN kết nối hai hay nhiều máy tính qua tín hiệu sóng radio. Khi lắp đặt, mỗi thiết bị đầu cuối trong mạng được trang bị một thiết bị thu phát tín hiệu radio từ các máy tính khác trong mạng hay còn gọi là card mạng WLAN. Tương tự mạng Ethernet, mạng WLAN truyền tín hiệu theo dạng gói. Mỗi adapter có một số ID địa chỉ duy nhất. Mỗi gói chứa dữ liệu cùng địa chỉ của adapter nhận và adapter gởi. Card mạng còn có khả năng kiểm tra đường truyền trước khi gởi dữ liệu lên mạng. Nếu đường truyền rỗi, việc gửi dữ liệu sẽ được thực hiện. Ngược lại, card mạng sẽ tạm nghỉ và kiểm tra đường truyền sau một thời gian nhất định. Tốc độ truyền dữ liệu và tần số sử dụng khác nhau, phụ thuộc vào các chuẩn như: IEEE 802.11…, OperAir và HomeRF. Các Adapter sử dụng một trong hai giao thức điều chế là: trải phổ nhảy tần FHSS (Frequency Hopping Spread Spectrum) và trải phổ phân đoạn trực tiếp DSSS (Direct- Sequency Spread Spectrum) để tăng hiệu quả và bảo mật. Mạng cho phép người sử dụng chia sẻ các tập tin, máy in hay truy cập Internet với các đặc điểm của mạng Wireless: Chia sẻ tài nguyên và truyền không cần dây. Cài đặt dễ dàng, tính ổn định cao nên phù hợp với gia đình hay công sở. Kết nối từ nhiều thiết bị khác nhau. Cấu trúc của các giao thức được sử dụng trong mạng không dây: Mạng không dây khác với mạng hữu tuyến truyền thống chủ yếu là ở lớp vật lý và ở lớp điều khiển truy nhập môi trường (MAC) của mô hình tham chiếu liên kết hệ thống mở (OSI). Những phần khác nhau này của hai phương thức tiếp cận trong cung cấp điểm giao diện vật lý cho các WLAN. Nếu điểm giao diện vật lý là ở lớp điều khiển kênh logic (LLC) thì phương pháp tiếp cận này đòi hỏi các bộ điều khiển của khách hàng phỉ cung cấp phần mềm mức cao hơn như là hệ điều hành mạng. Một giao diện như vậy cho phép các nút di dộng trao đổi thông tin trực tiếp với nhau thông qua các card giao diện mạng vô tuyến. Điểm giao diện khác là ở lớp MAC và thường áp dụng điểm truy nhập. Vì vậy các điểm truy nhập thực hiện cầu nối và không thực hiện định tuyến. Mặc dù giao diện MAC yêu cầu một kết nối hữu tuyến nhưng nó cho phép bất kì hệ điều hành mạng nào hoặc bộ điều khiển bất kì làm việc với WLAN. Một giao diện như vậy cho phép một LAN hữu tuyến đang có mở rộng dễ dàng nhờ cung cấp truy nhập cho thiết bị mạng vô tuyến mới. Các lớp thấp hơn của card giao diện vô tuyến thường được thực hiện bởi phần sụn “Firmware” và chạy trên các bộ xử lý nhúng. Các lớp cao hơn của ngăn xếp giao thức mạng do hệ điều hành và các chương trình ứng dụng cung cấp. Một bộ điều khiển mạng cho phép hệ điều hành trao đổi thông tin với phần firmware lớp thấp hơn được nhúng trong card giao diện mạng vô tuyến. Ngoài ra nó thực hiện các chức năng LLC tiêu chuẩn. Đối với hệ điều hành Windows bộ điều khiển thường tuân thủ một số phiên bản của chỉ tiêu kỹ thuật bộ điều khiển mạng (NDIS). Các bộ điều khiển dựa trên Unix, Linux và Apple Powerbook cũng có thể sử dụng được. Phần III: BẢO MẬT MẠNG KHÔNG DÂY Bảo mật là vấn đề hết sức quan trọng đối với người dùng trong tất cả các hệ thống mạng (LAN, WLAN…). Để kết nối tới một mạng LAN hữu tuyến cần phải truy cập theo đường truyền bằng dây cáp, phải kết nối một PC vào một cổng mạng. Với mạng không dây chỉ cần có thiết bị trong vùng sóng là có thể truy cập được nên vấn đề bảo mật mạng không dây là cực kỳ quan trọng đối với người sử dụng mạng. Bảo mật là vấn đề rất quan trọng và đặc biệt rất được sự quan tâm của những doanh nghiệp. Không những thế, bảo mật cũng là nguyên nhân khiến doanh nghiệp e ngại khi cài đặt mạng cục bộ không dây (Wireless LAN). Một số hình thức tấn công xâm nhập phổ biến: Tấn công không qua chứng thực: Tấn công không qua chứng thực (Deauthentication attack), tin tặc sẽ sử dụng một nút giả mạo để tìm ra địa chỉ của AP đang điều khiển mạng. Khi tin tặc có được địa chỉ của AP, chúng sẽ gửi quảng bá các bản tin không chứng thực ra toàn mạng khiến cho các nút trong mạng dừng trao đổi tin với mạng. Sau đó tất cả các nút đó sẽ cố kết nối lại, chứng thực lại và liên kết lại với AP. Quá trình này lặp lại liên tục khiến cho mạng rơi vào tình trạng bị dừng hoạt động. Giả mạo AP: Giả mạo AP là kiểu tấn công “man in the middle” cổ điển. Đây là kiểu tấn công mà tin tặc đứng ở giữa và trộm lưu lượng truyền giữa 2 nút. Kiểu tấn công này rất mạnh vì tin tặc có thể trộm tất cả lưu lượng đi qua mạng. Tin tặc tạo ra một AP thu hút nhiều sự lựa chọn hơn AP chính thống. AP giả này có thể được thiết lập bằng cách sao chép tất cả các cấu hình của AP chính thống đó là: SSID, địa chỉ MAC v.v… Tấn công dựa trên sự cảm nhận sóng mang lớp vật lý: Tần số là một nhược điểm bảo mật trong mạng không dây. Mức độ nguy hiểm thay đổi phụ thuộc vào giao diện của lớp vật lý. Có một vài tham số quyết định sự chịu đựng của mạng là: năng lượng máy phát, độ nhạy của máy thu, tần số RF, băng thông và sự định hướng của anten. Giả địa chỉ MAC: Địa chỉ MAC là một cách để ngăn người dùng bất hợp pháp gia nhập vào mạng. Giá trị được mã hoá phần cứng là không thay đổi nhưng giá trị đưa ra phần sụn của phần cứng lại thay đổi được. Có nhiều chương trình sử dụng cho các hệ điều hành khác nhau có thể thay đổi được địa chỉ MAC được đưa ra trong bộ điều hợp mạng. Tấn công từ chối dịch vụ: Đây là hình thức tấn công làm cho các mạng không dây không thể phục vụ được người dùng, từ chối dịch vụ với những người dùng hợp pháp. Trong mạng có dây có các hình thức tấn công từ chối dịch vụ DoS (Denial of Service) phổ biến như Ping of Death, SYN Flooding. Mạng không dây, một kẻ tấn công có thể tạo ra các sóng có cùng tần số với tần số truyền tín hiệu để gây nhiễu cho đường truyền. Các phương pháp bảo mật cho mạng Wireless LAN: Firewall, các phương pháp lọc: Lọc SSID: Lọc SSID (SSID Filtering) là một phương pháp lọc chỉ được dùng cho hầu hết các điều khiển truy nhập. SSID của một trạm WLAN phải khớp với SSID trên AP hoặc của các trạm khác để chứng thực và liên kết Client để thiết lập dịch vụ. Nhiều AP có khả năng lấy các SSID của các khung thông tin dẫn đường (beacon frame). Trong trường hợp này client phải so khớp SSID để liên kết với AP. Lọc SSID được coi là một phương pháp không tin cậy trong việc hạn chế những người sử dụng trái phép của một WLAN. Một vài lỗi chung do người sử dụng WLAN tạo ra khi thực hiện SSID là: Sử dụng SSID mặc định: Sự thiết lập này là một cách khác để đưa ra thông tin về WLAN của mạng. Nó đủ đơn giản để sử dụng một bộ phân tích mạng để lấy địa chỉ MAC khởi nguồn từ AP. Cách tốt nhất để khắc phục lỗi này là: Luôn luôn thay đổi SSID mặc định. Sử dụng SSID như những phương tiện bảo mật mạng WLAN: SSID phải được người dùng thay đổi trong việc thiết lập cấu hình để vào mạng. Nó nên được sử dụng như một phương tiện để phân đoạn mạng chứ không phải để bảo mật, vì thế hãy: Luôn coi SSID chỉ như một cái tên mạng. Không cần thiết quảng bá các SSID: Nếu AP của mạng có khả năng chuyển SSID từ các thông tin dẫn đường và các thông tin phản hồi để kiểm tra thì hãy cấu hình chúng theo cách đó. Cấu hình này ngăn cản những người nghe vô tình khỏi việc gây rối hoặc sử dụng WLAN. Lọc địa chỉ MAC: WLAN có thể lọc dựa vào địa chỉ MAC của các trạm khách. Hầu hết tất cả các AP đều có chức năng lọc MAC. Người quản trị mạng có thể biên tập, phân phối và bảo trì một danh sách những địa chỉ MAC được phép và lập trình chúng vào các AP. Nếu một Card PC hoặc những Client khác với một địa chỉ MAC mà không trong danh sách địa chỉ MAC của AP, nó sẽ không thể đến được điểm truy nhập đó. Hình 10: Lọc địa chỉ MAC Lập trình các địa chỉ MAC của các Client trong mạng WLAN vào các AP trên một mạng rộng là không thực tế. Bộ lọc MAC có thể được thực hiện trên vài RADIUS Server thay vì trên mỗi điểm truy nhập. Cách cấu hình này làm cho lọc MAC là một giải pháp an toàn, và do đó có khả năng được lựa chọn nhiều hơn. Mặc dù Lọc MAC trông có vẻ là một phương pháp bảo mật tốt, chúng vẫn còn dễ bị ảnh hưởng bởi những thâm nhập sau: Sự ăn trộm một Card PC trong có một bộ lọc MAC của AP Việc thăm dò WLAN và sau đó giả mạo với một địa chỉ MAC để thâm nhập vào mạng. Với những mạng gia đình hoặc những mạng trong văn phòng nhỏ, nơi mà có một số lượng nhỏ các trạm khách, thì việc dùng bộ lọc MAC là một giải pháp bảo mật hiệu quả. Vì không một hacker thông minh nào lại tốn hàng giờ để truy nhập vào một mạng có giá trị sử dụng thấp. Lọc giao thức: Mạng Lan không dây có thể lọc các gói đi qua mạng dựa trên các giao thức lớp 2-7. Trong nhiều trường hợp, các nhà sản xuất làm các bộ lọc giao thức có thể định hình độc lập cho cả những đoạn mạng hữu tuyến và vô tuyến của AP. Nếu các kết nối được cài đặt với mục đích đặc biệt của sự truy nhập Internet của người sử dụng, thì bộ lọc giao thức sẽ loại tất cả giao thức, ngoại trừ SMTP, POP3, HTTP, HTTPS, FTP... Hình 11: Lọc giao thức Mã hóa dữ liệu truyền: WEP: Khi thiết kế các yêu cầu kỹ thuật cho mạng không dây, chuẩn 802.11 của IEEE đã tính đến vấn đề bảo mật dữ liệu đường truyền qua phương thức mã hóa WEP. Phương thức này được đa số các nhà sản xuất thiết bị không dây hỗ trợ như một phương thức bảo mật mặc định. Tuy nhiên, những phát hiện gần đây về điểm yếu của chuẩn 802.11 WEP đã gia tăng sự nghi ngờ về mức độ an toàn của WEP. Tuy vậy, đa phần các thiết bị không dây hiện tại đã và đang sử dụng WEP. Giao thức WEP: WEP (Wired Equivalent Privacy) nghĩa là bảo mật tương đương với mạng có dây (Wired LAN). WEP được thiết kế để đảm bảo tính bảo mật cho mạng không dây đạt mức độ như mạng nối cáp truyền thống. Đối với chuẩn 802.11, vấn đề mã hóa dữ liệu được ưu tiên hàng đầu do đặc tính của mạng không dây là không thể giới hạn về mặt vật lý truy cập đến đường truyền, bất cứ ai trong vùng phủ sóng đều có thể truy cập dữ liệu nếu không được bảo vệ. WEP cung cấp bảo mật cho dữ liệu trên mạng không dây qua phương thức mã hóa sử dụng thuật toán đối xứng RC4. Thuật toán RC4 cho phép chiều dài của khóa thay đổi và có thể lên đến 256 bit. Hiện nay, đa số các thiết bị không dây hỗ trợ WEP với ba chiều dài khóa: 40 bit, 64 bit và 128 bit. Một máy nối mạng không dây không có khóa WEP chính xác sẽ không thể truy cập đến Access Point (AP) và cũng không thể giải mã cũng như thay đổi dữ liệu trên đường truyền. Hạn chế của WEP Do WEP sử dụng RC4, một thuật toán sử dụng phương thức mã hóa dòng (stream cipher), nên cần một cơ chế đảm bảo hai dữ liệu giống nhau sẽ không cho kết quả giống nhau sau khi được mã hóa hai lần khác nhau. Đây là một yếu tố quan trọng trong vấn đề mã hóa dữ liệu nhằm hạn chế khả năng suy đoán khóa của hacker. Thêm vào đó, một trong những mối nguy hiểm lớn nhất là những cách tấn công dùng hai phương pháp nêu trên đều mang tính chất thụ động. Có nghĩa là kẻ tấn công chỉ cần thu nhận các gói dữ liệu trên đường truyền mà không cần liên lạc với Access Point. Điều này khiến khả năng phát hiện các tấn công tìm khóa WEP đầy khó khăn và gần như không thể phát hiện được. Hiện nay, trên Internet đã sẵn có những công cụ có khả năng tìm khóa WEP như AirCrack , AirSnort, dWepCrack, WepAttack, WepCrack, WepLab. Tuy nhiên, để sử dụng những công cụ này đòi hỏi nhiều kiến thức chuyên sâu và chúng còn có hạn chế về số lượng gói dữ liệu cần bắt được. Giải pháp WEP tối ưu: Để gia tăng mức độ bảo mật cho WEP và gây khó khăn cho hacker, các biện pháp sau được đề nghị: Sử dụng khóa WEP có độ dài 128 bit: Sử dụng khóa với độ dài 128 bit gia tăng số lượng gói dữ liệu hacker cần phải có để phân tích, gây khó khăn và kéo dài thời gian giải mã khóa WEP. Thực thi chính sách thay đổi khóa WEP định kỳ: Do WEP không hỗ trợ thay đổi khóa tự động nên sự thay đổi khóa định kỳ sẽ gây bất lợi cho người sử dụng. Nếu không đổi khóa WEP thường xuyên thì cũng nên thực hiện ít nhất một lần trong tháng hoặc khi nghi ngờ có khả năng bị lộ khóa. Sử dụng các công cụ theo dõi số liệu thống kê dữ liệu trên đường truyền không dây: Do các công cụ dò khóa WEP cần bắt được số lượng lớn gói dữ liệu và hacker có thể phải sử dụng các công cụ phát sinh dữ liệu nên sự đột biến về lưu lượng dữ liệu có thể là dấu hiệu của một cuộc tấn công WEP, đánh động người quản trị mạng phát hiện và áp dụng các biện pháp phòng chống kịp thời. WPA (Wifi Protected Access): Wi-Fi Alliance đã đưa ra giải pháp gọi là Wi-Fi Protected Access (WPA). Một trong những cải tiến quan trọng nhất của WPA là sử dụng hàm thay đổi khoá TKIP (Temporal Key Integrity Protocol). WPA cũng sử dụng thuật toán RC4 như WEP, nhưng mã hoá đầy đủ 128 bit. Và một đặc điểm khác là WPA thay đổi khoá cho mỗi gói tin. Các công cụ thu thập các gói tin để phá khoá mã hoá đều không thể thực hiện được với WPA. Bởi WPA thay đổi khoá liên tục nên hacker không bao giờ thu thập đủ dữ liệu mẫu để tìm ra mật khẩu. WPA có sẵn 2 lựa chọn: WPA Personal và WPA Enterprise. Cả 2 lựa chọn này đều sử dụng giao thức TKIP, và sự khác biệt chỉ là khoá khởi tạo mã hoá lúc đầu. WPA Personal thích hợp cho gia đình và mạng văn phòng nhỏ, khoá khởi tạo sẽ được sử dụng tại các điểm truy cập và thiết bị máy trạm. Trong khi đó, WPA cho doanh nghiệp cần một máy chủ xác thực và 802.1x để cung cấp các khoá khởi tạo cho mỗi phiên làm việc. WPA được coi là loại trừ mọi lỗ hổng dễ bị tấn công của WEP, nhưng người sử dụng vẫn không thực sự tin tưởng vào WPA. Có một lỗ hổng trong WPA và lỗi này chỉ xảy ra với WPA Personal. Khi mà sử dụng hàm thay đổi khoá TKIP được sử dụng để tạo ra các khoá mã hoá bị phát hiện, nếu hacker có thể đoán được khoá khởi tạo hoặc một phần của mật khẩu, họ có thể xác định được toàn bộ mật khẩu, do đó có thể giải mã được dữ liệu. Một số sai lầm phổ biến về bảo mật cho mạng LAN không dây: Cứ 5 người dùng mạng không dây tại nhà thì có đến 4 người không kích hoạt bất kỳ chế độ bảo mật nào. Mặc định, các nhà sản xuất tắt chế độ bảo mật để cho việc thiết lập ban đầu được dễ dàng, khi sử dụng phải mở lại. Tuy nhiên, cần phải cẩn thận khi kích hoạt tính năng bảo mật, dưới đây là một số sai lầm thường gặp phải: Không thay đổi mật khẩu của nhà sản xuất. Khi lần đầu tiên cài đặt router không dây (AP Router) hay Access Point, chúng ta rất dễ quên thay đổi mật khẩu mặc định của nhà sản xuất. Nếu không thay đổi, có thể người khác sẽ dùng mật khẩu mặc định truy cập vào Router và thay đổi các thiết lập để thoải mái truy cập vào mạng. Vì vậy nên luôn thay mật khẩu mặc định. Không kích hoạt tính năng mã hóa. Nếu không kích hoạt tính năng mã hóa, chúng ta sẽ quảng bá mật khẩu và e-mail của mình đến bất cứ ai trong tầm phủ sóng, người khác có thể cố tình dùng các phầm mềm nghe lén miễn phí như AirSnort (airsnort.shmoo.com) để lấy thông tin rồi phân tích dữ liệu. Vì vậy hãy bật chế độ mã hóa để truyền dữ liệu an toàn. Không kiểm tra chế độ bảo mật. Chúng ta mua một router không dây, kết nối Internet băng rộng, lắp cả máy in vào, rồi có thể mua thêm nhiều thiết bị không dây khác nữa. Có thể vào một ngày nào đó, máy in sẽ tự động in hết giấy bởi vì chúng ta không thiết lập các tính năng bảo mật. Vì vậy không nên cho rằng mạng của chúng ta đã an toàn. Hãy nhờ những người am hiểu kiểm tra hộ. Quá tích cực với các thiết lập bảo mật. Mỗi card mạng không dây đều có một địa chỉ phần cứng (địa chỉ MAC) mà router không dây có thể dùng để kiểm soát những máy tính nào được phép nối vào mạng. Khi bật chế độ lọc địa chỉ MAC, có khả năng chúng ta sẽ quên thêm địa chỉ MAC của máy tính chúng ta đang sử dụng vào danh sách, như thế sẽ tự cô lập chính mình, tương tự như bỏ chìa khóa trong xe hơi rồi chốt cửa lại. Vì vậy phải kiểm tra cẩn thận khi thiết lập tính năng bảo mật. Cho phép mọi người truy cập. Có thể chúng ta là người đầu tiên có mạng không dây và muốn “khoe” bằng cách đặt tên mạng là “truy cập thoải mái”

Các file đính kèm theo tài liệu này:

  • docCD265.doc