Bài 2/SHD – 80
? Muốn tìm ĐK của biến x để giá trị của biểu thức trên được xác định ta phải làm gì?
? Để chứng minh biểu thức không phụ thuộc vào giá trị của biến x ta phải làm gì?
GV: Gợi ý Có thể biến đổi biểu thức này thành một hằng số.
GV: Uốn nắn, bổ sung và chốt lại cách giải và cách trình bày.
78 trang |
Chia sẻ: vudan20 | Lượt xem: 621 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Giáo án Đại số 8 - Bài 1 đến bài 40, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
các đa thức có hệ số nguyên
? Khi phân tích đa thức thành nhân tử bằng PP dùng hđt cần lưu ý điều gì.
* Làm bài tập phần vận dụng và tìm tòi mở rộng
GV gợi ý:
Bài 1: Áp dụng hđt để biến đổi biểu thức đã cho không còn chứa x
Bài 3:
- Biến đổi phân tích một vế của đẳng thành tích của hai thừa số, vế còn lại là một số nguyên n.
- Phân tích số nguyên n thành tích hai thừa số bằng tất cả các cách, từ đó tìm ra các số nguyên x, y.
ta có x + 3y = xy + 3 (x – 3)(1 - y) = 0 x =3 thì y bất kỳ hoặc y = 1 thì x bất kỳ.
* Đọc trước bài phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
III. Điều chỉnh bổ xung
Điều chỉnh bổ xung tài liệu (thiếu, thừa, sai, )
Điều chỉnh phương thức hoạt động, điều chỉnh....
IV. Nhận xét đánh giá HS (dựa vào mục tiêu bài dạy để nhận xét KT, kĩ năng, PC, năng lực,)
Những điểm thành công.
Những điểm chưa thành công.
Đánh giá học sinh.
Hs đạt được:
HS chưa đạt được:
Ngày soạn: 24./9/2017
Ngày dạy: 26; 2./9;10/2017 Lớp 8C4, 2, 1 ;3
Bài 7: Tiết 9 + 10 : PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG
PHƯƠNG PHÁP NHÓM HẠNG TỬ CHUNG VÀ PHỐI HỢP NHIỀU PHƯƠNG PHÁP
I. Chuẩn bị
1. Giáo viên: Sổ tay lên lớp.
2. Học sinh:
- Ôn phép nhân hai lũy thừa cùng cơ số, nhân hai đơn thức, nhân đa thức với đa thức.
- Học thuộc và nắm vững 5HĐT đã học; làm bài tập về nhà.
II. Tiến trình tổ chức hoạt động dạy học
Hoạt động của thầy, của trò
Ghi bảng
HĐ 1: Hoạt động khởi động và hình thành kiến thức
Tiết 1
* Kiểm tra
? Tính nhanh: 872 + 732 – 272 – 132 GV kiểm tra nhận xét – ĐVĐ vào bài mới.
GV Yêu cầu HS thực hiện hoạt động 1(a)
Phương thức hoạt động: Cặp đôi
Nhiệm vụ của HS:
+ Thực hiện hoạt động theo shd/25
+ Báo cáo kết quả.
GV Hỗ trợ HS:
? Với VD trên thì có sử dụng được 2 phương pháp đã học không?
? Trong 4 hạng tử, những hạng tử nào có nhân tử chung?
? Hãy nhóm các hạng tử đó và đặt nhân tử chung cho từng nhóm?
? Có thể nhóm các hạng tử theo cách khác được không?
GV: Cách làm như trên gọi là phân tích đa thức thành nhân tử bằng phương pháp nhóm nhiều hạng tử.
GV Yêu cầu HS thực hiện hoạt động 1(b)
Phương thức hoạt động: Cá nhân
Nhiệm vụ của HS:
+ Đọc kỹ cách phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử shd/25
+ Đọc nội dung chú ý shd/25
GV hỗ trợ
? Khi sử dụng phương pháp nhóm hạng tử phân tích đa thức thành nhân tử ta làm như thế nào?
GV: Chốt cách làm
? Đối với một đa thức khi nhóm cần chú ý điều gì?
GV: Lưu ý: Khi nhóm các hạng tử phải nhóm một cách thích hợp, cụ thể:
- Mỗi nhóm đều có thể phân tích được.
- Sau khi phân tích đa thức thành nhân tử ở mỗi nhóm thì quá trình phân tích phải tiếp tục được.
GV Yêu cầu HS thực hiện hoạt động 1(c)
Phương thức hoạt động: Cá nhân
Nhiệm vụ của HS:
+ Tìm các cách nhóm để phân tích phân tích các đa thức sau thành nhân tử:
x3 – 2x2 – x + 2 và x2 + 6x – y2 + 9
+ Trình bày lời giải.
+ Quan sát cách phân tích đa thức x4–6x2+x2 – 6x thành nhân tử của ba bạn qua đó nêu ý kiến nhận xét.
GV hõ trợ:
? Nêu các cách nhóm để phân tích.
GV: Bổ sung và chốt lại cách làm.
? Nêu ý kiến của mình về cách phân tích của ba Bình, Minh, Mai.
? Hãy phân tích tiếp với cách làm của bạn Bình và Minh.
GV: Chốt lại cách phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử.
GV Yêu cầu HS thực hiện hoạt động 2(a)
Phương thức hoạt động: Cá nhân
Nhiệm vụ của HS:
+ Thực hiện điền vào chỗ trống
+ Đọc và tìm hiểu nội dung phần gợi ý.
+ Đại diện lên trình bày.
GV hỗ trợ
? Để p.tích đa thức x2 + 3x – 2xy – 3y + y2 thành nhân tử ta đã dùng những phương pháp nào?
GV chốt cách phân tích
? Có nhận xét gì về các đa thức x2 – 2x – 3 ?
? Có thể sử dụng các phương pháp đã học để phân tích đa thức đó thành nhân tử được không?
? Để phân tích được người ta làm như thế nào?
GV: Nhấn mạnh lại phần gợi ý: Tách hạng tử hoặc Thêm 1 và bớt 1 sau đó sử dụng các phương pháp đã học để phân tích.
- Yêu cầu HS trình bày – Lớp nhận xét.
GV: Uốn nắn, bổ sung và chốt lại cách giải
GV Yêu cầu HS thực hiện hoạt động 2(b)
Phương thức hoạt động: Cá nhân
Nhiệm vụ của HS
+ Đọc kỹ trình tự làm.
GV hỗ trợ
? Phân tích đa thức thành nhân tử ta thường tiến hành theo trình tự nào?
GV: Lưu ý trình tự tìm cách phân tích 1đa thức thành nhân tử.
GV Yêu cầu HS thực hiện hoạt động 2(c)
Phương thức hoạt động: Cá nhân
Nhiệm vụ của HS
+ Suy nghĩ cách phân tích đa thức sau thành nhân tử: 2x3y – 2xy3 – 4xy2 – 2xy
+ Thực hành phân tích đa thức sau thành nhân tử: 2x3y – 2xy3 – 4xy2 – 2xy
+ Đại diện HS trình bày
GV hỡ trợ
? Khi phân tích đa thức trên ta đã vận dụng kiến thức nào?
GV Uốn nắn, bổ sung.
1. Phân tích đa thức thanh nhân tử bằng phương pháp nhóm hạng tử.
VDụ:Phân tích đa thức sau thành nhân tử
x2 - 2x + xy - 2y
* Cách làm: SHD - 26
* Chú ý :SHD-26
* Áp dụng:
Phân tích các đa thức sau thành nhân tử:
x3 – 2x2 – x + 2 = (x3 – 2x2) – (x – 2)
= x2 (x – 2) – (x – 2)
= (x – 2) (x2 – 1)
= (x – 2)(x – 1)(x + 1)
x2 + 6x – y2 + 9 = (x2 +6x + 9) – y2
= (x + 3)2 – y2
= (x + 3 – y )(x + 3 + y)
C1: x4 – 6x3 + x2 – 6x = x (x3 – 6x2 + x – 6)
= x [(x3 + x) – (6x2 + 6)]
= x [x(x2 + 1) – 6(x2 + 1)]
= x (x2 + 1)(x – 6)
C2: x4 – 6x3 + x2 – 6x = (x4 – 6x3) + (x2 – 6x)
= x3(x – 6) + x(x – 6)
= (x – 6)(x3 + x)
= (x – 6) x (x2 + 1)
2. Phân tích đa thức thanh nhân tử bằng cách phối hợp nhiều phương pháp
VD1: SHD - 26
.
VD 2: P.tích đa thức sau thành nhân tử
x2 – 2x – 3
Cách 1: x2 – 2x – 3 = x2 – 2x – 2 – 1
= (x2 – 1) – (2x + 2 )
= (x – 1 )(x + 1) – 2 (x + 1)
= (x + 1)(x – 1 – 2 )
= (x + 1)(x – 3)
Cách 2: Cách 1: x2 – 2x – 3 = x2 – 2x + 1 – 3 – 1
= (x2 – 2x + 1 ) – 4
= (x – 1 )2 – 4
= (x – 1 + 2)(x – 1 – 2 )
= (x + 1)(x – 3)
* Trình tự làm: SHD - 27
* Áp dụng: Phân tích đa thức thành nhân tử
2x3y – 2xy3 – 4xy2 – 2xy
= 2xy(x2 – y2 – 2y – 1)
= 2xy[x2 – (y2 + 2y + 1)]
= 2xy[x2 – (y + 1)2]
= 2xy(x + y + 1)(x – y – 1).
HĐ 2: Luyện tập
Tiết 2:
*Kiểm tra bài cũ
? Nêu các PP phân tích đa thức thành nhân tử?
GV yêu cầu HS bài tập 1/27 – SHD
Phương thức hoạt động: Cá nhân
Nhiệm vụ của HS:
+ Lần lượt lên bảng trình bày lời giải
Gv hỗ trợ:
? Với mỗi phần hãy cho biết các phương pháp phân tích đã áp dụng.
GV: theo dõi uốn nắn, bổ sung – Lưu ý các trình tự phân tích.
Bài tập 2/27 - SHD
Phương thức hoạt động: Cá nhân
Nhiệm vụ của HS:
+ Thảo luận cách tính nhanh.
+ Trình bày lời giải.
+ Đai diện lên trình bày.
GV hỗ trợ HS nêu cách giải:
? Tính nhanh làm như thế nào? Phân tích các đa thức đó bằng phương pháp nào?
GV chốt cách tính nhanh
Bài tập 3 /24 - SHD
Phương thức hoạt động: Cặp đôi
Nhiệm vụ cho HS:
+ Thảo luận cách làm.
+ Trình bày lời giải.
+ Đai diện lên trình bày.
GV hỗ trợ HS nêu cách giải:
? Nêu cách tìm x? Viết các vế trái thành tích bằng phương pháp phân tích nào?
GV chốt cách tìm x và các kiến thức vận dụng.
Bài tập 4/28 – SHD
Phương thức hoạt động: Nhóm hai bàn
Nhiệm vụ cho HS:
+ Thảo luận cách làm.
+ Trình bày lời giải.
+ Đai diện lên trình bày.
GV hỗ trợ HS nêu cách giải:
? Nêu cách phân tích các đa thức đó thành nhân tử?
GV chốt cách làm
Bài tập 1/23 - SHD:
Phân tích đa thức thành nhân tử
a) 2x2 – 2xy – 5x + 5y = (x – y)(2x – 5)
b) 8x2 + 4xy – 2ax – ay = (2x + y)(4x – a)
c) x3 – 4x2 + 4x = x(x – 2)2
d) 2xy – x2 – y2 + 16 = (2 – x +y)(2 + x – y)
e) x2 – y2 – 2xy – z2 = (x – y + z)(x +y + z)
g) 3a2 – 6ab + 3b2 – 12c2
= 3( a – b – 2c)( a – b + 2c)
Bài tập 2/27 - SHD: Tính nhanh
a) 37,5.8,5 – 7,5.3,4 – 6,6.7,5 + 1,5.37,5
= 37,5.(8,5 + 1,5) – 7,5.(3,4 + 6,6)
= 10.( 37,5 – 7,5) = 300
b) 352 + 402 – 252 + 80.35
= (352 + 402 + 80.35) – 252
= (35 + 40)2 – 252
= (75 – 25)(75 + 25) = 500
Bài tập 3/28 – SHD: Tìm x, biết:
a) x3 –x2 = 0 = 0
= 0
x = 0 hoặc x =
b) đáp số x = 1 hoặc x = 3
c) đáp số x = y (x ; y Z)
d) đáp số x = 3
Bài tập 4/28 – SHD
Phân tích đa thức thành nhân tử
a) x2 – 4x + 3 = x2 – x – 3x + 3
= (x2 – x) – (3x – 3 )
= x(x – 1 ) – 3(x – 1)
= (x – 1)(x – 3)
b) x2 + x – 6 = x2 + 3x – 2x – 6
= (x2 + 3x) – (2x + 6)
= x(x + 3 ) – 2(x + 3)
= (x – 2)(x + 3)
c) x2 – 5x + 6 = x2 – 3x – 2x + 6
= (x2 – 3x) – (2x – 6)
= x(x – 3) – 2(x – 3)
= (x – 3)(x – 2)
d) x4 + 4 = x4 + 4x2 – 4x2 + 4
= (x4 + 4x2 + 4) – 4x2
= (x2 + 2)2 – 4x2
= (x2 + 2 – 2x) (x2 + 2 + 2x)
HĐ3: Vận dụng và Tìm tòi, mở rộng
GV giao học sinh về nhà thực hiện :
* Học lý thuyết
- Ôn lại các phương pháp phân tích đa thức thành nhân tử.
- Nắm chắc trình tự khi phân tích 1 đa thức thành nhân tử.
- Xem lại các bài tập đã làm ở trên lớp;
* Làm bài tập phần vận dụng
GV gợi ý:
Bài 1: Phân tích (3n + 4)2 – 16 = (3n + 4 – 4 )(3n + 4 + 4) = 3n.(3n + 8) 3.
Bài 2:Phân tích đa thức M = a3 – a2b – ab2 + b3 = (a – b)2(a + b)
Thay giá trị a; b vào ta được M = 22,5
Bài 3:- Chuyển các hạng tử vế phải sang vế trái.
- Phân tích vế trái thành nhân tử
- Tìm x
x2 + x = 6 (x – 2)(x + 3) = 0 x = -3 hoặc x = 2
* Đọc cách phân đa thức bậc hai bằng tách các hạng tử ở phần tìm tòi mở rộng.
* Đọc trước bài đơn thức cho đơn thức, chia đa thức cho đa thức.
III. Điều chỉnh bổ xung
Điều chỉnh bổ xung tài liệu (thiếu, thừa, sai, )
Điều chỉnh phương thức hoạt động, điều chỉnh....
IV. Nhận xét đánh giá HS (dựa vào mục tiêu bài dạy để nhận xét KT, kĩ năng, PC, năng lực,)
Những điểm thành công.
Những điểm chưa thành công.
Đánh giá học sinh.
Hs đạt được:
HS chưa đạt được:
Ngày soạn: 1/10/2017
Ngày dạy: 3; 9/10/2017 Lớp 8C1; 2; 3;4
Bài 8 - Tiết 13 + 14: CHIA ĐƠN THỨC CHO ĐƠN THỨC. CHIA ĐA THỨC CHO ĐA THỨC
I. Chuẩn bị
1. Giáo viên: Sổ tay lên lớp
2. Học sinh: Đọc trước bài mơi, ôn công thức lũy thừa ở lớp 7.
II. Tiến trình tổ chức hoạt động dạy học
Hoạt động của thầy, của trò
Ghi bảng
HĐ 1: Hoạt động khởi động
Gv yêu cầu hs hoạt động nhóm mục 1và mục 2 theo shd/30
HS: Thực hiện nhiệm vụ trên bảng nhóm.
GV: Quan sát, HS hoạt động
HS: Lên bảng thực hiện .
HS: Nhận xét
GV: Bổ sung
* Công thức
xm : xn = xm - n (m > n)
xm : xn = 1 (m = n)
Áp dụng tính:
a) 45: 43 = 42
b) x6 : x3 = x3
c) (-y)6: : y5 = y6 : y5 = y
* Thực hiện phép nhân
2x3.3x = 6x4
5xy2.(-3x3y) =-15x4y3
7xy2.(x2y3 + 3x2 +1) = x3y5 + 21x3y2 + 7xy2
HĐ 2: Hoạt động hình thành kiến thức
GV yêu cầu hs hoạt động cá nhân đọc nội dung mục 1shd/31
HS: Trả lời câu hỏi:
? A và B là hai đa thức . Khi nào đa thức A chia hết cho đa thức B
GV nhận xét – bổ xung – chốt khái niệm.
GV yêu cầu hs hoạt động cá nhân cặp đôi thực hiện các hoạt động mục 2(a) shd/31
HS: Thực hiện nhiệm vụ - Báo cáo kết quả.
GV: Kiểm tra, hỗ trợ cách thực hiện phép chia đơn thức cho đơn thức, và nhận xét biến và số mũ tương ứng của biến trong đơn thức thương và đơn thức chia.
GV yêu cầu hs hoạt động cá nhân đọc nội dung mục 2(b) shd/32
HS: Thực hiện nhiệm vụ - trả lời câu hỏi sau:
? Vậy đơn thức A chia hết cho đơn thức B khi nào?
? Muốn chia đơn thức A cho đơn thức B (Trường hợp A chia hết cho B) ta làm như thế nào?
GV: Chốt quy tắc.
Gv yêu cầu HS hoạt động nhóm mục 2(c) shd/32
Nhiệm vụ
+ Đọc bài giải mẫu, nêu cách thực hiện.
+ Làm tính chia theo bài giải mẫu.
HS: Thực hiện nhiệm vụ
GV: Kiểm tra, hỗ trợ cách thực hiện phép chia – Chốt cách trình bày.
GV: yêu cầu HS hoạt động cá nhân mục 3(a)
HS: Thực hiện - Báo cáo kq
GV theo dõi – nhận xét bổ xung.
GV: yêu cầu HS hoạt động cá nhân đọc mục 3(b) shd/32
HS trả lời câu hỏi:
? Muốn chia đa thức A cho đơn thức B (Trường hợp các hạng tử của A chia hết cho đơn thức B) ta làm như thế nào
GV chốt quy tắc chia đa thức cho đơn thức.
GV: yêu cầu HS hoạt động cá nhân mục 3(c)
HS: Thực hiện - Báo cáo kq
GV theo dõi – nhận xét bổ xung.
1.Khái niệm:
A, B là các đa thức (B 0)
A B nếu tìm được 1 đa thức Q
sao cho: A = B. Q
* Kí hiệu:
Q = A : B hoặc
2. Quy tắc: (SHD - 32)
a) Quy tắc chia đơn thức cho đơn thức: (SHD - 32)
*Áp dụng : Làm tính chia:
+) 12x7 : 3x3 = 4x4
+) 21x4y2 : 7x2y = 3x2y
+) 20x5 : (-12x) = -x4
+) 6x3y : (-9x2) = -xy
+ Tính giá trị của biểu thức P tại
x = -3, y= 2,016
P = 20x4y2 : (-25xy2) = -x3
Thay x = -3 vào P, ta được:
P = -(-3)3 =
b) Quy tắc chia đa thức cho đơn thức: (SHD - 32)
* Áp dụng: Làm tính chia:
(30x4y3 - 25x2y3 - 3x4y4) : 5x2y3
= 6x2 – 5 - x2y
HĐ 3: Luyện tập
HS hoạt động nhóm làm Bài 1- Báo cáo kq
GV: Nhấn mạnh phép chia hết và phép không chia hết.
HS hoạt động cá nhân làm bài 2
HS: Thực hiện nhiệm vụ
GV: - Kiểm tra, hỗ trợ cách trình bày
HS: Đại diện lên bảng trình bày
GV: Nhận xét, bổ sung tương ứng từng phần.
HS lhoạt động cặp đôi àm bài 3
Nhiệm vụ:
+ Đọc kỹ bài viết của bạn Bình.
+ Nêu nhận xét bài giải của bạn Bình.
HS: thực hiện - Báo cáo kq
GV: nhận xét – sửa sai (nếu có)
Bài 1/SHD- 33
a) AB
b,c,d) A B
Bài 2/SHD- 33 Làm Tính chia
x12 : (-x)6 = x6
(-x)7 : (-x)5 = x2
5x3y4 : 10x2y =xy3
x3y3 : = -x2y
g) (3x2y2 – 6x2y + 12xy) :3xy
= xy – 2x +4
(2x3 -2x2y + 3xy2) :
= -4x4 + 4x3y – 6y2
Bài 3/SHD- 33
Bạn Bình giải đúng.
g) (3x2y2 – 6x2y + 12xy) :3xy
= 3xy(xy – 2x +4) :3xy
= xy – 2x +4
HĐ4: Vận dụng và Tìm tòi, mở rộng
HS Hoạt động cá cặp đôi làm bài 3
HS: Báo cáo kq
GV: Chốt phép chia đơn (đa) thức cho đơn thức
Bài 1/SHD -34 Tìm nN:
n3
n3
HĐ5: Hướng dẫn HS học bài và làm bài ở nhà
- Vận dụng được quy tắc chia đơn (đa) thức cho đơn thức.
- Làm bài tập phần 2,3/4
III. Điều chỉnh bổ xung
1. Điều chỉnh bổ xung tài liệu (thiếu, thừa, sai, )
2. Điều chỉnh phương thức hoạt động, điều chỉnh....
IV. Nhận xét đánh giá HS (dựa vào mục tiêu bài dạy để nhận xét KT, kĩ năng, PC, năng lực,)
1. Những điểm thành công.
2. Những điểm chưa thành công.
3. Đánh giá học sinh.
Nội dung
HS đã đạt
HS chưa đạt
Kiến thức
Kỹ năng
P. chất
N. Lực
Ngày soạn: 8 /10 /2017
Ngày giảng: 11; 16 /10/2017
Bài 9. Tiết 14 - 15: CHIA ĐA THỨC MỘT BIẾN ĐÃ SẮP XẾP (2 tiết)
I. Chuẩn bị
+ GV: Sách hướng dẫn học toán 8 tập 1, sổ tay lên lớp
+ HS: Sách hướng dẫn học toán 8 tập 1,
Ôn nhân đa thức với đâ thức.
II. Tiến trình tổ chức hoạt động dạy học
* Dự kiến tiết dạy
Tiết 1: Hết HĐ A B
Tiết 2: Từ HĐ C đến hết
Hoạt động của thầy, của trò
Ghi bảng
Hoạt động 1: Kiểm tra bài cũ
KT
- Phát biểu quy tắc chia đa thức A cho đơn thức B (Trong trường hợp mỗi hạng tử của A chia hết cho B)
Hoạt động 2: Hoạt động khởi động và Hình thành kiến thức
1a)
PT: Cá nhân
NV:
+ Thực hiện phép nhân
(3x2 – 2x – 3)(x2 – 4x +2)
(9x2 + 6x + 4)(3x – 2)
+ Thực hiện phép chia 962 cho 26 theo cột dọc
HS: Thực hiện – Đại diện lên bảng trình bày.
GV theo dõi nhận xét bổ xung.
GV yêu hs hoạt động cặp đôi xét phép chia
(3x4 – 14x3 + 11x2 + 8x – 6) cho (x2 – 4x +2)
NV:
+ Đọc phần hướng dẫn t. hiện phép chia (3x4 – 14x3 + 11x2 + 8x – 6):(x2 – 4x +2)
+ Thảo luận nêu cách làm.
GV kiểm tra hỗ trợ:
? Hai đa thức (3x4 – 14x3 + 11x2 + 8x – 6) và (x2 – 4x +2) đã được sắp xếp chưa?
GV: Hướng dẫn HS đặt phép chia.
? Chia hạng tử bậc cao nhất của đa thức bị chia cho hạng tử bậc cao nhất của đa thức chia?
? Nhân 3x2 với đa thức chia, kết quả viết dưới đa thức bị chia?
? Lấy đa thức bị chia trừ đi tích nhận được?
GV: Giới thiệu hiệu vừa tìm được:
– 2x3 + 5x2 + 8x – 6 là dư thứ nhất.
GV: Yêu cầu HS tiếp tục thực hiện tiếp với dư thứ nhất như đã thực hiện với đa thức bị chia (chia, nhân, trừ) để được dư thứ 2. Tiếp tục thực hiện đến khi được dư bằng 0?
1b)
PT: Cá nhân.
Nhiệm vụ:
- Đọc kĩ nội dung trong khung.
GV: Trợ giúp
? Phép chia như thế nào là phép chia hết.
GV: Chốt kiến thức nội dung 1(b)
1c)
PT: Cá nhân
NV:
+ HS: Đọc đề bài. 1 HS lên bảng làm.
+ HS: Nhận xét bài làm..
GV hỗ trợ
? Có nhận xét gì về đa thức bị chia ở ý 2
GV: Kiểm tra phần HS thực hiện.
HS: Đại diện báo cáo.
GV: Nhận xét - Chốt kiến thức
2a)
PT: Cặp đôi
NV:
+ T. hiện phép chia đa thức 37x3 + 5x – 6 cho đa thức 9x2 + 6x + 4
+ Nhận xét gì về số mũ của biến trong đa thức bị chia.
GV: Hướng dẫn HS cách đặt phép tính, bỏ trống vị trí hạng tử bậc nhất.
? 1 HS lên bảng thực hiện phép chia?
? Nhận xét bài làm?
2b)
PT: Cá nhân.
NV: Đọc kĩ nội dung trong khung.
GV: Trợ giúp
? Phép chia hai đa thức đã sắp xếp được thực hiện như thế nào?
GV. Chốt kiến thức nội dung 2(b)
? Tìm bậc của đa thức: 5x + 2 và bậc của đa thức chia?
? So sánh bậc của đa thức dư và bậc của đa thức chia?
GV: Giới thiệu phép chia có dư.
? Trong phép chia có dư trên, đa thức bị chia được viết như thế nào?
HS: Nêu chú ý.
2c)
PT: Cá nhân
NV :
+ Đọc nội dung đề bài, nêu yêu cầu
+ Thảo luận cặp đôi nêu cách tìm dư R.
HS thực hiện – Đại diện lên bảng thực hiện phép chia
GV. Quan sát – NX – Chốt cách tìm dư R trong phép chia.
1. Phép chia hết
* VD: Thực hiện phép chia
(3x4 – 14x3 + 11x2 + 8x – 6) : (x2 – 4x +2 )
3x4 – 14x3 + 11x2 + 8x – 6 x2 – 4x +2
–
3x4 – 12x3 + 6x2 3x2 – 2x – 3
– 2x3 + 5x2 + 8x – 6
–
– 2x3 + 8x2 – 4x
– 3x2 + 12x – 6
–
– 3x2 + 12x – 6
0
Vậy:(3x4 – 14x3 + 11x2 + 8x–6):(x2 – 4x +2)
= 3x2 – 2x – 3
* Áp dụng:
(x3 – x2 – 7x + 3):(x – 3) = x2 + 2x – 1
(12x5–45x4–48x3+15x2–18x+3):(x4 + 4x3–3x2+2x–1)
2. Phép chia có dư:
* VD: Thực hiện phép chia
(27x3 + 5x – 6 ) : (9x2 + 6x + 4)
27x3 + 5x – 6 9x2 + 6x + 4
–
27x3 +18x2 + 12x 3x – 2
–18x2 – 7x – 6
–
–18x2 – 12x – 8
5x + 2
Ta nói phép chia này là phép chia có dư.
Ta có: (27x3 + 5x – 6 ) : (9x2 + 6x + 4)
= (3x – 2)(9x2 + 6x + 4) +(17x – 6)
* Khái niệm : SHD – 38
* Chú ý: (SGK - 31)
A, B là các đa thức (B 0)
A = B.Q + R (Q, R là các đa thức)
+ R = 0 A B
+ R 0 A B
(bậc của R < bậc của B)
* Áp dụng:
3x4 + x3 – 6x – 4 = (x2 + 1)( 3x2–x–3) (-5x– 1)
Hoạt động 3: Luyện tập
Tiết 2:
Kiểm tra:
? Viết hệ thức liên hệ giữa đa thức bị chia A, đa thức bị chia B, đa thức thương Q và đa thức dư R.
? Nêu điều kiện của đa thức dư R và cho biết khi nào là phép chia hết.
Bài 1/SHD - 38
PT: Cá nhân
NV : Làm theo SHD – 38
GV: Yêu cầu 2HS lên bảng chữa bài
- Cho lớp nhận xét, bổ sung.
Bài 2/SHD - 38
PT cặp đôi
NV:
+ Đọc đề bài
+ Thảo luận nêu cách tìm đa thức Q và R sao cho A = B.Q + R
HS thực hiện.
GV trợ giúp
? Tìm đa thức Q và R ta làm như thế nào?
GV yêu cầu 1 hs lên thực hiện phép chia.
- Cho lớp NX kết quả
GV chốt cáh tìm đa thức Q và R
Bài 3/SHD - 39
PT: Nhóm
NV : Làm theo SHD – 39
GV: Yêu cầu đại diện nhóm trình bày kết quả
- Cho lớp nhận xét, bổ sung
GV: Uốn nắn và lưu ý cách chia đa thức một biến bằng cách áp dụng hằng đẳng thức
Bài 1/SHD - 38
a) (x3 – 3x2 – 11x + 5 ) : (x – 5) = x2 + 2x - x
b) (4x4 – 3x3 - 5x2 + 9x – 3) : (x2 – 3)
= (4x2 – 3x + 7)(x2 – 3) + 18
Bài 2/SHD - 38
A = (2x2 – 3x + 5)(x2 – 4x + 1) + (3x + 4)
Bài 3/SHD - 39
a) (4x2 + 4xy + y2) : (2x + y)
= (2x + y)2 : (2x + y) = 2x + y
b) (27x3 + 1) : (3x + 1)
= (3x +1)(9x2 - 3x +1):(5x +1)= 9x2 –3x +1
c) (x2 – 6xy + 9y2) : (3y – x)
= (3y – x)2 : (3y – x) = 3y – x
d) (8x3 – 1) : (4x2 + 2x +1)
= (3x –1)(4x2 + 2x +1) :(3x –1)
= 4x2 + 2x +1
Hoạt động 4: Vận dụng
Bài 1/SHD - 39
PT: Cặp đôi
NV:
+ Thảo luận nêu cách tính nhanh
+ Thực hiện tính
Gv trợ giúp
? Ta sử dụng kiến thức nào để thực hiện phép chia trên?
Gv chốt tính nhanh ta vận dụng hđt để tính nhanh.
Bài 2/SHD - 39
PT nhóm
NV: Thảo luận nêu cách tìm
GV trợ giúp: Tìm số dư của phép chia
? Để phép chia hết thì R = ?
? Để tìm hệ số a ta làm như thế nào
GV: Yêu cầu một hs lên bảng làm
GV: Nêu lại cách làm
Bài 3/SHD - 39
GV hướng dẫn hs làm
Bài 1/SHD - 39
a) (4x4 – 9) : (2x2 – 3) = 2x2 + 3
b) (8x3 – 27) : (4x2 + 6x +9) = 2x – 3
Bài 2/SHD - 39
(2x3 –3x 2 + 5x + a) : (x + 2)
= (2x 2 – 7x + 19)(x + 2) + (a – 30)
Đa thức 2x3 –3x 2 + 5x + a chia hết cho đa thức x + 2 thì dư a – 30 = 0 hay a = 30
Bài 3/SHD - 39
- Với n Z n - 1 Z
A B khi Z
2n + 1 Ư(3) = {}
+ 2n + 1 = -1 n = -1
+ 2n + 1 = 1 n = 0
+ 2n + 1 = -3 n = -2
+ 2n + 1 = 3 n = 1
Vậy: 2n2 - n + 2 chia hết cho 2n + 1 khi:
n {-2; -1; 0; 1}
Hoạt động 5: Tìm tòi mở rộng
HS khá giỏi hoạt động nhóm cùng tìm hiểu nội dung của định lý Bơdu.
HS: Báo cáo kq
Hoạt động 6: Hướng dẫn HS học bài và làm bài ở nhà
- Tiết sau ôn tập chương I.
- Làm 6 câu hỏi ôn tập chương I (SHD – T40) ra vở bài tập.
- BTVN: 1-> 8 phần hoạt động luyện tập SHD – 41; 42
- Đặc biệt ôn tập kỹ 7 hằng đẳng thức đáng nhớ (phát biểu bằng lời).
III. Điều chỉnh bổ xung
Điều chỉnh bổ xung tài liệu (thiếu, thừa, sai, )
Mục 1(c) làm phép chia: Thay ý hai bằng (12x5 – 45x4 – 48x3 +15x2 –18x + 3):(x4 + 4x3 – 3x2 + 2x –1)
Vì trong sách cho phép chia đó là phép chia có dư, mà phép chia có dư HS học ở mục 2 shd -37.
2. Điều chỉnh phương thức hoạt động, điều chỉnh....
IV. Nhận xét đánh giá HS (dựa vào mục tiêu bài dạy để nhận xét KT, kĩ năng, PC, năng lực,)
1. Những điểm thành công.
2. Những điểm chưa thành công.
3. Đánh giá học sinh.
Nội dung
HS đã đạt
HS chưa đạt
Kiến thức
Kỹ năng
P. chất
N. Lực
Ngày soạn: 15./10/2017
Ngày giảng: 17; 20./10/2017 Lớp 8C1;2;3;4
BÀI 10. Tiết 17 - 18: ÔN TẬP CHƯƠNG I
I. Chuẩn bị
+ GV: Sách hướng dẫn học toán 8 tập 1, sổ tay lên lớp, lựa chọn dạng bài tập
+ HS: Sách hướng dẫn học toán 8 tập 1, Ôn tập lý thuyết chương I.
II. Tiến trình tổ chức hoạt động dạy học
* Dự kiến tiết dạy
Tiết 1: Hết HĐ C3 + C4 làm bài tập 1 ,2,3,4,6,7
Tiết 2: Từ HĐ C4 gồm các bài tập 5, 6, 7, 8 đến hết
Hoạt động của thầy, của trò
Ghi bảng
Hoạt động 1: Hoạt động luyện tập
Tiết 1:
1,2 ) GV yêu cầu HS HĐ nhóm.
HS: Thực hiện nhiệm vụ
+ Nhắc lại các kiến thức cơ bản của Chương I.
+ Ghi lại các kiến thức đã học bằng sơ đồ.
+ Trả lời 7 câu hỏi SHD - 40
GV: Quan sát, HS hoạt động, tổ chức cho các nhóm báo cáo
HS: Báo cáo , nhận xét, đánh giá
GV: Bổ sung.
3) HS HĐ cá nhân
HS: Đọc kỹ nội dung phần đóng khung.
GV hỗ trợ HS tái hiện lại sơ đồ, chốt kiến thức.
4) HS HĐ cá nhân
HS: Thực hiện:
+ Đọc yêu cầu của bài tập
+ Tìm hướng làm
+ Trình bày lời giải
GV hỗ trợ
Bài 1/SHD – 41
? 2 HS lên bảng làm BT 1?
? Để giải BT trên ta đã sử dụng những kiến thức cơ bản nào?
GV chốt cách làm.
GV: Lưu ý sau khi thực hiện phép nhân xong phải thu gọn kết quả.
Bài 2/SHD – 41
? 2 HS lên bảng làm BT 2?
? Tính nhanh giá trị biểu thức trên ntn?
GV chốt cách làm: Rút gọn biểu thức (bằng cách áp dụng các hđt) sau đó thay giá trị của x, y rồi tính.
Bài 3/SHD – 41:
? Sử dụng kiến thức nào để giải bài?
GV: Gọi đồng thời 2 HS lên thực hiện.
GV: Để rút gọn biểu thức ta quan sát xem biểu thức hay 1 bộ phận của biểu thức có dạng nào rồi rút gọn.
Bài 4/SHD – 42:
GV: gọi 3 HS lên bảng làm 3 câu a, b, c
? Nhận xét bài làm?
? Nêu các phương pháp đã sử dụng phân tích?
GV chốt phương pháp làm
? Nêu cách làm câu d?
GV: Hướng dẫn HS tách:
-7x = -10x + 3x
HS lên bảng trình bày
Tiết 2
Bài 5/SHD – 42:
GV: Gọi 2 HS lên bảng làm câu a, c
HS nhận xét bài làm.
? Các phép chia trên có phải là phép chia hết không?
? Nêu cách thực hiện phép chia
? Ở câu c tính nhanh được không?
? Để quá trình chia được nhanh chóng, thuận lợi ta nên làm thế nào?
GV chốt cách làm.
Bài 6/SHD – 42:
? Nêu hướng giải?
? 1 HS lên bảng làm?
? Khi phân tích VT thành nhân tử, đã sử dụng những phương pháp nào?
GV: Khi phân tích đa thức thành nhân tử, tuỳ từng BT mà ta chọn phương pháp cho phù hợp.
Bài 7/SHD – 42:
? Nhận xét gì về VT của bất đẳng thức?
? Làm thế nào để chứng minh bất đẳng thức?
? HS biến đổi câu a?
GV: nêu hướng chứng minh câu b .
GV: Chốt lại cách làm:
- Để chứng minh f(x) > 0 ta biến đổi:
f(x) = [g(x)]2 + số dương
- Để chứng minh f(x) < 0 ta biến đổi:
f(x) = -[g(x)]2 + số âm
* Ngoài ra ta còn vận dụng cách làm trên để giải dạng bài toán: Tìm GTLN, GTNN của biểu thức:
- Tìm GTNN: f(x) = [g(x)]2 + a a
GTNN của f(x) bằng a khi g(x) = 0 (a là hằng số).
- Tìm GTLN: f(x) = -[g(x)2 + a] a
GTLN của f(x) bằng a khi g(x) = 0 (a là hằng số).
Bài 8/SHD – 42:
? 1 HS lên bảng thực hiện phép chia?
? Nhận xét gì về phép chia vừa thực hiện?
? Chỉ rõ thương và số dư?
? Viết công thức tổng quát của phép chia có dư?
GV: Hướng dẫn HS viết phép chia có dư dưới dạng:
GV: Với n Z 2n – 3 Z
? 10n3 – 23n2 + 14n – 5 chia hết cho 2n – 3 khi nào ?
? khi nào?
? Ư(2) = ?
? Tìm n để 2n – 3 Ư(2)?
GV: Chốt lại cách làm.
I. Lý thuyết
SHD – 41
II. Bài tập
Bài 1/SHD – 41: Thực hiện phép nhân
a) 3x2(5x2 – 7x + 4) = 15x4 – 21x3 + 12x2
c) (2x2 – 5x)(3x2 – 2x + 1)
= 6x4 – 19x3 + 12x2 – 5x
Bài 2/SHD – 41: Tính nhanh giá trị của biểu thức:
a) A = x2 + 9y2 – 6xy = (x – 3y)2
tại x = 19; y = 3
A = (19 – 3.3)2 = 102 = 100
b) B = x3 – 6x2y + 12xy2 – 8y3 = (x - 2y)3
tại x = 6; y = -8
B = [12 – 2.(–4)]3 = 203 = 8 000
Bài 3/SHD – 41: Rút gọn biểu thức:
a) 3(x – y)2 – 2(x + y)2 – (x – y) (x + y)
= 3(x2–2xy +y2)–2(x2+2xy+y2) – (x2–y2)
= 3x2 – 6xy +3y2 – 2x2 – 2xy –y2 – x2 + y2
b) 2(2x + 5)2 – 3(1– 4x) (4x + 1)
= 2(4x2 + 20x + 25 – 3(1– 4x) (1+ 4x)
= 8x2 + 40x + 50 – 3 + 48x2
= 56x2 + 40x + 47
Bài 4/SHD – 42: Phân tích đa thức thành nhân tử:
a/ x2 – 9 + (x – 3 )2
= (x – 3)(x + 3) + (x – 3)2
= (x – 3)(x + 3 + x – 3)
= (x – 3).2x = 2x(x – 3)
b/ x3 – 4x2 + 4x –xy2
= x(x2 – 4x + 4 – y2)
= x [(x – 2 )2 – y2]
Các file đính kèm theo tài liệu này:
- Dai so 8 chuong 123_12305562.doc