Sơ đồ công nghệ PLATFORMING của UOP (Mỹ): Thiết bị phản ứng ược
xếp chồng lên nhau. Xúc tác đi từ trên xuống qua hệ thống thiết bị phản ứng, sau
đó tập trung lại và được nâng lên thiết bị tái sinh nhờ khí nâng. Sau khi tái sinh,
chất xúc tác được đưa trở lại thiết bị phản ứng thứ nhất. Nhờ được lấy ra từng
phần và tái sinh liên tục mà hoạt tính xúc tác ổn định cao hơn so với trong trường
hợp lớp xúc tác cố định (công nghệ bán tái sinh). Công nghệ này hiện nay được
sử dụng phổ biến hơn cả (chiếm 70% thị phần công nghệ CCR trên thế giới). Tuy
nhiên cũng có nhược điểm là vận hành khó khăn do chiều cao hệ thống thiết bị
phản ứng (hình 22).
2. Sơ đồ công nghệ OCTANIZING của IFP (Pháp): Hệ thống thiết bị phản
ứng được sắp xếp theo hàng ngang. Tuy khắc phục được nhược điểm về chiều
cao nhưng lại tốn diện tích xây dựng và đường ống dẫn lớn dẫn đến tăng giá
thành xây dựng và chi phí vận hành cao (hình 23). Ngoài ra có thể kể đến công
nghệ tái sinh liên tục POWERFORMING (Anh) và công nghệ hỗn hợp
DUALFORMING (Pháp), trong đó kết hợp 2 hệ thống bán tái sinh và tái sinh liên
tục với 2 loại xúc tác khác nhau. Phân xưởng reforming xúc tác của nhà máy lọc
dầu số 1 Dung quất Việt nam được lắp đặt theo công nghệ Platforming của UOP
(Mỹ). Phân xưởng này có nhiệm vụ cung cấp hợp phần pha xăng (reformat) chất
lượng cao và đáp ứng một phần nguyên liệu (BTX) cho hóa dầu.
41 trang |
Chia sẻ: trungkhoi17 | Lượt xem: 789 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Giáo trình Refoming xúc tác (Phần 2), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
C1-C2: 2-4%
Hidro: 1,5 -3,5%
Trong đó các sản phẩm quan trọng hơn cả là reformat (xăng C5
+), các
hydrocacbon thơm-mà chủ yếu là benzen, toluen, xylen (BTX) và khí hydro kỹ
thuật.
3.1. Sản phẩm xăng reforming xúc tác
Một số tính chất của xăng (reformat):
- Thành phần cất: thông thường từ 35 – 190oC
- Tỉ trọng: 0,76 – 0,78
- Chỉ số octan RON: 94 – 103
- Thành phần hydrocacbon: chủ yếu là aromatic và parafin, naphten chỉ
chiếm < 10%, olefin không đáng kể.
Do có chất lượng cao (chỉ số octan cao nhất trong số các xăng thành phần,
thu được từ quá trình lọc dầu), hàm lượng olefin lại rất thấp nên xăng reforming
có thể sử dụng làm xăng máy bay.
Sự thay đổi thành phần và tính chất của xăng reformat trong các giới hạn
nêu trên phụ thuộc vào nguyên liệu ban đầu, điều kiện công nghệ, chất xúc tác.
Ví dụ tương quan giữa nguyên liệu là naptha Trung đông và sản phẩm
reforming trình bày trong bảng 6. Thành phần parafin trong nguyên liệu khá ảnh
hưởng đến chất lượng xăng C5
+.
Bảng 6. So sánh Nguyên liệu – Sản phẩm reforming từ dầu thô Trung Đông
d4
15
ASTM D86 Thành phần, %V
IBP
10
%
50
%
90
%
FB
P
P N A N+2A RON
Nguyên liệu 0,754 81 105 119 143 166 45 45 10 65 55
Sản phẩm
C5
+
0,701 60 93 118 152 185 40 5 55 115 95
Nếu chỉ sử dụng toàn bộ reformat làm xăng thương phẩm sẽ không kinh tế,
do hàm lượng hydrocacbon thơm quá cao, tạo nhiều cặn trong động cơ và gây ô
nhiễm môi trường. Xăng này lại có áp suất hơi bão hòa thấp, làm cho động cơ
47
khó khởi động. Chính vì vậy người ta đưa vào xăng thương phẩm các hợp phần
khác như xăng đồng phân hóa, xăng alkylat, butan, MTBE...
3.2. Các sản phẩm khí: hydro và các khí nhẹ
3.2.1. Khí giàu hydro
Đây là sản phẩm khá quan trọng của quá trình reforming xúc tác. Hàm
lượng hydro trong khí chiếm 70 – 90%. Thành phần nguyên liệu, chất xúc tác và
điều kiện công nghệ cũng ảnh hưởng đến hàm lượng hydro trong khí. Khí này
một phần được sử dụng lại cho quá trình reforming, còn phần lớn được sử dụng
cho các quá trình làm sạch bằng hydro (HDS, HDN, HDM...) hoặc các quá trình
chuyển hóa có hydro (hydrocraking, hydroisomer hóa). Đây là nguồn thu hydro
khá rẻ, hiệu suất cao (thu được khoảng 90 – 120 Nm3/ m3 nguyên liệu) và có thể
làm sạch tuỳ mục đích sử dụng. Việc cải tiến công nghệ, xúc tác cho quá trình
reforming nhằm làm tăng hiệu suất xăng thì cũng kéo theo sự gia tăng hàm
lượng H2 trong sản phẩm và thúc đẩy thêm sự phát triển các quá trình sử dụng
hydro.
3.2.2. Khí hoá lỏng LPG
Khí hóa lỏng thu được sau khi cho sản phẩm đi qua tháp ổn định xăng,
bao gồm chủ yếu propan và butan. Hiệu suất khí phụ thuộc vào tính chất
của chất xúc tác mà trước tiên là độ axit. Đây là sản phẩm không mong muốn
trong điều kiện reforming, vì sẽ làm giảm hiệu suất của sản phẩm chính là
reformat.
3.3. Sản phẩm hydrocacbon thơm
Quá trình reforming còn cung cấp nguồn nguyên liệu BTX (benzen-toluen-
xylen) cho hóa dầu. Các sản phẩm thơm trong quá trình này chiếm tới 65-75%
trong tổng sản phẩm lỏng hoặc có thể cao hơn nữa với các công nghệ và xúc tác
hiện đại. Trong đó đặc biệt quan trọng là paraxylen-nguyên liệu cho sản xuất chất
dẻo, sợi tổng hợp, cao su nhân tạo, nguyên liệu cho công nghiệp dược phẩm, mỹ
phẩm, thuốc nhuộm
Câu hỏi Bài 4:
1. Nguồn nguyên liệu cho quá trình reforming xúc tác. Đặc điểm chung về
thành phần và tính chất nguyên liệu. Tại sao ngày nay người ta thường sử
dụng các phân đoạn sôi có giới hạn sôi đầu ≥ 80oC làm nguyên liệu?
2. Thành phần và tính chất nguyên liệu ảnh hưởng thế nào đến hiệu suất và
48
chất lượng sản phẩm? Trong CN người ta thường dựa vào đại lượng nào
để đánh giá khả năng chuyển hóa thành sản phẩm thơm của nguyên liệu?
3. Các loại sản phẩm chính thu được từ quá trình reforming xúc tác?
4. Các thông số vận hành (nhiệt độ, áp suất, tốc độ nạp liệu, tỉ lệ H2/NL) ảnh
hưởng như thế nào đến hiệu suất và chất lượng sản phẩm?
49
BÀI 5. CÁC LOẠI CÔNG NGHỆ REFORMING XÚC TÁC
Mã bài: HD F5
Giới thiệu
Mục đích bài này nhằm giúp học viên tiếp cận với những công nghệ
reformimg thông dụng và tiên tiến nhất trên thế giới hiện nay.
Mục tiêu thực hiện
- Nắm được các đặc điểm về thiết bị, xúc tác, điều kiện vận hành và chất
lượng sản phẩm của 2 loại công nghệ reforming xúc tác hiện nay.
- So sánh ưu, nhược điểm của công nghệ bán tái sinh và công nghệ tái
sinh liên tục xúc tác.
- Biết cách vận hành sơ đồ reforming xúc tác ở qui mô phòng thí nghiệm,
nắm được phương pháp phân tích sản phẩm và cách tính toán kết quả
thực nghiệm.
Nội dung chính
- Công nghê bán tái sinh xúc tác
- Công nghệ tái sinh xúc tác liên tục
- Đặc điểm thiết bị xúc tác trong công nghệ tái sinh liên tục
- Đánh giá hiệu quả kinh tế của quá trình reforming xúc tác
- Công nghệ reforming sử dụng cho mục đích hóa dầu (sản xuất BTX)
- Vận hành sơ đồ reforming ở qui mô phòng thí nghiệm
Hiện nay trên thế giới tồn tại 2 loại công nghệ reforming chủ yếu: công nghệ
bán tái sinh và công nghệ tái sinh liên tục (CCR).
1. Công nghệ bán tái sinh
Một số đặc điểm cơ bản:
- Lớp xúc tác cố định
- Hệ thống dòng nguyên liệu được chuyển động từ thiết bị phản ứng này
sang thiết bị phản ứng khác.
- Ngưng hoạt động toàn bộ hệ thống để tái sinh chất xúc tác tại chỗ, ngay
trong thiết bị phản ứng, khi lượng cốc trên lớp xúc tác chiếm 15-20%
trọng lượng.
Thường thì chu kỳ làm việc của xúc tác trong khoảng 6 tháng đến 1 năm.
50
Thời gian tái sinh xúc tác mất khoảng 2 tuần lễ. Trong một số công nghệ bán
tái sinh người ta sử dụng các thiết bị phản ứng (reactor) có các van đóng mở độc
lập, hoặc lắp thêm một thiết bị phản ứng dự trữ, cho phép tái sinh xúc tác ở từng
thiết bị riêng biệt mà không cần dừng toàn bộ hệ thống. Tuy nhiên vận hành công
nghệ cũng trở nên phức tạp hơn.
Công nghệ bán tái sinh tương đối lâu đời (công nghệ truyền thống), các cải
tiến chủ yếu chỉ tập trung vào xúc tác. Từ những năm 1949-1950 chất xúc tác
trên cơ sở Pt (xúc tác đơn kim loại) đã được đưa vào sử dụng cho xúc tác tầng
cố định. Loại xúc tác này tuy cho hoạt tính xúc tác cao, nhưng có nhược điểm là
rất dễ bị cốc hóa nên phải vận hành trong điều kiện áp suất hidro khá cao (xấp xỉ
40 atm). Khoảng những năm 60, một số kim loại phụ gia được đưa thêm vào hệ
xúc tác Pt (xúc tác lưỡng kim), khắc phục tình trạng giảm nhanh hoạt tình xúc
tác. Chất xúc tác trở nên bền hơn với quá trình cốc hóa, giúp quá trình công
nghệ được vận hành ở áp suất thấp hơn (khoảng từ 15 đến 30 atm).
Sơ đồ đơn giản của công nghệ bán tái sinh được trình bày trên hình 19.
Mô tả hoạt động của sơ đồ
Nguyên liệu (phân đoạn naphta nặng) đã được làm sạch từ quá trình hydro
hóa, được trộn với khí hydro từ máy nén, sau khi qua các thiết bị trao đổi nhiệt
được dẫn lần lượt vào các lò phản ứng (có thể từ 3-4 lò) có chứa lớp xúc tác cố
định. Các sản phẩm được tạo thành sau khi ra khỏi hệ thống phản ứng, qua thiết
bị trao đổi nhiệt, thiết bị đốt nóng và thiết bị làm lạnh. Qua thiết bị ngưng tụ, sản
phẩm lỏng giữ lại, khí không ngưng được sẽ đưa vào thiết bị tách khí. Phần lớn
khí được nén lại nhờ máy nén khí và tuần hoàn trở lại lò phản ứng. Phần khí còn
lại được dẫn sang bộ phận tách khí. Hydro được tách ra từ đây có thể được sử
dụng cho các quá trình làm sạch dùng hydro. Phần lỏng tách ra được đưa vào
tháp ổn định, thực chất là một tháp chưng cất với mục đích tách phầnnhẹ (LPG)
nhằm tăng độ ổn định của xăng và giảm áp suất hơi bão hòa.
51
52
LPG tách ra được đưa vào thiết bị ngưng tụ. Xăng sản phẩm ra ở đáy tháp, một
phần được đun nóng và hồi lưu trở lại tháp ổn định, phần lớn được làm lạnh và
đưa vào bể chứa.
Công nghệ bán tái sinh hiên nay vẫn còn rất thịnh hành ở Pháp và một số
nước khác. Ví dụ, Viện dầu mỏ Pháp ((IFP) đã lắp đặt được 600 phân xưởng
bán tái sinh trên thế giới so với 120 phân xưởng CCR.
2. Công nghệ tái sinh liên tục (continuous regenerative-viết tắt CCR)
Đặc điểm:
- Lớp xúc tác được chuyển dộng nhẹ nhàng, liên tục trong hệ thống thiết
bị phản ứng với vận tốc vừa phải (trong khoảng 3- 10 ngày).
- Toàn bộ hệ thống được vận hành liên tục.
- Lớp xúc tác sau khi ra khỏi hệ thống phản ứng được đưa ra ngoài để tái
sinh trong một hệ thóng tái sinh riêng. Sau đó được quay trở lại hệ
thống phản ứng.
Cấu tạo một lò phản ứng dạng ống thẳng với lớp xúc tác chuyển động dùng
trong công nghệ CCR được mô tả trên hình 20.
Hình 20. Cấu tạo theo mặt cắt dọc lò phản ứng reforming xúc tác
6
1
53
Kích thước lò phản ứng thay đổi trong khoảng: Đường kính 1,5 – 3,5 m,
Chiều cao 4 – 12 m, Thể tích lớp xúc tác: 6 – 80 m3.
Chi tiết hơn chúng ta thấy cụm hệ thống thiết bị phản ứng bao gồm 3-4 lò
phản ứng có kích thước, điều kiện vận hành, lượng xúc tác nạp vào không giống
nhau, từ đó phân bố thành phần sản phẩm ra từ mỗi lò cũng không giống nhau
(hình 21).
Hệ thống cấu tạo từ nhiều lò phản ứng giúp cho dòng hỗn hợp nguyên liệu
và khí giàu hidro (khí tuần hoàn) đạt được nhiệt độ phản ứng và bù trừ nhiệt
năng từ các phản ứng hóa học xảy ra trong quá trình reforming. Nhiệt độ giảm
nhanh trong lò thứ nhất do sự xuất hiện của các phản ứng thu nhiệt quan trọng
(chủ yếu là phản ứng dehydro hóa naphten), lượng xúc tác tiêu thụ cho giai đoạn
này chiếm 10-15% trọng lượng. Ở lò phản ứng thứ 2 nhiệt độ giảm ít hơn, lượng
xúc tác tiêu thụ chiếm 20-30%. Tại lò phản ứng cuối cùng, nhiệt độ gần như ổn
định do có sự bù trừ nhiệt giữa các phản ứng thu nhiệt nhẹ với các phản ứng tỏa
nhiệt kiểu như hydrocracking
Hình 21. Sự thay đổi thông số vận hành và phân bố sản phẩm theo vị trí lò
Phản ứng
54
Hiện nay có 2 kiểu lắp đặt hệ thống phản ứng trong sơ đồ công nghệ CCR
(hình 22 và hình 23):
1. Sơ đồ công nghệ PLATFORMING của UOP (Mỹ): Thiết bị phản ứng ược
xếp chồng lên nhau. Xúc tác đi từ trên xuống qua hệ thống thiết bị phản ứng, sau
đó tập trung lại và được nâng lên thiết bị tái sinh nhờ khí nâng. Sau khi tái sinh,
chất xúc tác được đưa trở lại thiết bị phản ứng thứ nhất. Nhờ được lấy ra từng
phần và tái sinh liên tục mà hoạt tính xúc tác ổn định cao hơn so với trong trường
hợp lớp xúc tác cố định (công nghệ bán tái sinh). Công nghệ này hiện nay được
sử dụng phổ biến hơn cả (chiếm 70% thị phần công nghệ CCR trên thế giới). Tuy
nhiên cũng có nhược điểm là vận hành khó khăn do chiều cao hệ thống thiết bị
phản ứng (hình 22).
2. Sơ đồ công nghệ OCTANIZING của IFP (Pháp): Hệ thống thiết bị phản
ứng được sắp xếp theo hàng ngang. Tuy khắc phục được nhược điểm về chiều
cao nhưng lại tốn diện tích xây dựng và đường ống dẫn lớn dẫn đến tăng giá
thành xây dựng và chi phí vận hành cao (hình 23). Ngoài ra có thể kể đến công
nghệ tái sinh liên tục POWERFORMING (Anh) và công nghệ hỗn hợp
DUALFORMING (Pháp), trong đó kết hợp 2 hệ thống bán tái sinh và tái sinh liên
tục với 2 loại xúc tác khác nhau. Phân xưởng reforming xúc tác của nhà máy lọc
dầu số 1 Dung quất Việt nam được lắp đặt theo công nghệ Platforming của UOP
(Mỹ). Phân xưởng này có nhiệm vụ cung cấp hợp phần pha xăng (reformat) chất
lượng cao và đáp ứng một phần nguyên liệu (BTX) cho hóa dầu.
55
56
57
3. Đặc điểm của thiết bị xúc tác chuyển động và tái sinh liên tục
So với quá trình bán tái sinh (semiregenerative) hoặc tái sinh tuần hoàn
(cyclic regenerative)-trong đó lần lượt từng thiết bị phản ứng có thể dừng để tái
sinh xúc tác mà không ảnh hưởng đến vận hành chung của hệ thống, thì quá
trình tái sinh liên tục cho hiệu suất reformat (xăng C5
+) luôn ổn định theo thời gian
(hình 24).
Hình 24. Sơ đồ tương quan giữa đặc thù công nghệ và hiệu suất sản phẩm
reformat.
58
Sự khác biệt về các đặc trưng kỹ thuật (áp suất vận hành, tỉ lệ H2 /nguyên
liệu, loại xúc tác, chu kỳ tái sinh xúc tác) và hiệu suất, chất lượng sản phẩm giữa
2 công nghệ bán tái sinh và tái sinh liên tục được trình bày trên bảng 7 và hình
25. Công nghệ tái sinh liên tục tỏ ra ưu việt hơn về hiệu suất và chất lượng sản
phẩm và vận hành ở áp suất thấp hơn.
Xu hướng công nghệ hiện nay trên thế giới thiên về sử dụng công nghệ
reforming tái sinh xúc tác liên tục với áp suất thấp nhất.Tuy nhiên công nghệ này
cũng có hạn chế là chu kỳ hoạt động ngắn hơn do phải tái sinh xúc tác liên tục,
đòi hỏi chi phí năng lượng và chi phí đầu tư cao hơn.
Bảng 7. So sánh các đặc trưng công nghệ và chất lượng sản phẩm giữa 2
công nghệ bán tái sinh và tái sinh liên tuc
Bán tái sinh Tái sinh liên tục
Áp suất (bar)
H2/HC (mol)
Xúc tác
Chu kỳ hoạt động
C5+ (wt %)
H2 (wt %)
RON
MON
12-25
5-7
Pt-Re
6-15 tháng
75-84
1.5-2 %
95-98
85-88
3 -10
1.5-4
Pt-Sn
3-10 ngày
85-92
2-3.6 %
100-102
90-92
59
Pt - Sn
1
2
3
4
5
6
7
8
9
0 5 10 15 20 25 30 35
P (bar)
H2/HC (mol/mol)
1
2
3
Semi-Reg
CCR
Pt
Semi-Reg
Pt - Re
Hình 25. Tương quan giữa các đặc trưng công nghệ và chất xúc tác giữa 2
công nghệ bán tái sinh và tái sinh liên tục.
4. Đánh giá hiệu quả kinh tế của quá trình reforming xúc tác:
Dưới đây phân tích các số liệu kinh tế của một cụm CCR (công nghệ Pháp)
với công suất 25.000 thùng/ ngày:
Cân bằng vật chất nguyên liệu – sản phẩm:
Thành
phần
(kg/giờ)
Nguyên liệu Khí giàu H2
Sau khi làm
sạch hệ thống
LPG Reformat
H2 - 4.604 26 - -
C1 - 917 54 4 -
C2 - 1.208 241 242 -
C3 - 869 161 1.285 -
IC4 - 288 35 840 55
nC4 - 253 20 634 1.043
C5
+ 121.850 309 27 115 108.720
Tổng 121.850 8.448 564 3.020 109.818
* Tổng giá trị sản phẩm tương đương 200 triệu Franc trong 1 năm
Chi phí vận hành:
60
Tiêu hao nhiên liệu: 6 tấn /giờ
Hơi nước áp suất cao: 18 tấn/giờ
Tiêu thụ điện năng: 1700 kwh/giờ
Chất xúc tác: 16 tấn/năm
Tổng chi phí hàng năm: 32 triệu Franc /năm
Đầu tư:
Thiết bị: 500 triệu Franc
Platin (xúc tác): 20 triệu Franc
Thời gian thu hồi vốn: Vốn đầu tư thu hồi sau khoảng 3 năm.
5. Công nghệ reforming sử dụng cho mục đích hóa dầu (sản xuất BTX):
Các sản phẩm thơm Benzen – Toluen – Xylen, mà đặc biệt là p – Xylen có
nhiều ứng dụng quan trọng trong công nghiệp hóa dầu. Từ quá trình reforming
xúc tác có thể thu được khoảng 80% BTX.
Về nguyên tắc, các công nghệ reforming xúc tác đều có thể sử dụng cho sản
xuất BTX. Hiện nay xu hướng chính là dùng công nghệ CCR để sản xuất BTX và
chế tạo một số chất xúc tác đặc hiệu nhằm làm tăng độ lựa chọn theo BTX (đặc
biệt xúc tiến quá trình dehydro vòng hóa parafin). Ví dụ IFP có công nghệ
AROMIZING với các xúc tác họ AR-401, AR- 405. Criterion có các xúc tác PS-20,
PS-40.
Với mục đích sản xuất BTX thì việc lựa chọn nguồn nguyên liệu và giới hạn
khoảng nhiệt độ chưng cất đóng vai trò quan trọng. Ví dụ: sản xuất tổng BTX
chọn PĐ 60 – 145oC, nhằm mục đích thu benzen chọn 65 – 85oC, thu toluen
chọn 85 – 120oC, thu xylen chọn PĐ 120 – 145oC.
6. Công nghệ reforming với giải pháp khử Benzen trong xăng:
Benzen hiện nay được biết đến như một tác nhân rất độc hại, gây ung thư
cho con người. Hiện nay các nước tiên tiến đã khống chế hàm lượng benzen
trong xăng thương phẩm xuống < 1%. Với mục đích sản xuất xăng thì việc loại
trừ hợp phần benzen ra khỏi thành phần sản phẩm reformat là điều mà các nhà
công nghệ hiện nay rất quan tâm đến. Để loại trừ tối đa benzen ra khỏi nguyên
liệu, người ta đã nâng điểm sôi đầu của nguyên liệu lên ≥ 85oC. Tuy nhiên
benzen vẫn luôn là sản phẩm của quá trình dehydro hóa naphten chứa 6 cacbon
và dealkyl hóa các hydrocacbon thơm mạch dài hơn. Yêu cầu về độ khắc nghiệt
hóa của công nghệ càng cao (thể hiện qua yêu cầu cao về RON) thì hàm lượng
61
benzen trong sản phẩm tạo thành càng nhiều hơn. Các nhà công nghệ đề nghị
một số giải pháp sau đây cho việc giảm thiểu hàm lượng benzen trong sản
phẩm:
Loại trừ benzen và các tiền chất tạo benzen (các naphten chứa 6 C), bằng
cách tách xăng nhẹ ra khỏi nguyên liệu reforming. Sau đó đưa vào sử dụng cho
cụm đồng phân hóa. Tại đây benzen được no hóa trước khi vào hệ thống đồng
phân hóa. Cách này có thể làm giảm bớt 1 chỉ số RON của xăng reforming
nhưng khó có thể làm giảm benzen xuống mức 1% theo tiêu chuẩn môi trường.
Cách thứ 2 là lắp thêm một cột cất phía sau để loại trừ các reformat nhẹ
(chứa benzen sản phẩm) và hydro hóa benzen thành hydrocacbon no. Cách này
có thể giúp giảm benzen xuống 1%, tuy nhiên làm mất 1,5 chỉ số RON.
7. Vận hành sơ đồ reforming ở qui mô phòng thí nghiệm:
Để tiến hành quá trình reforming xúc tác ở điều kiện gần với công nghiệp,
nghĩa là trong điều kiện áp suất hidro, có thể sử dụng mô hình thực nghiệm được
lắp đặt tại Trung tâm nghiên cứu và phát triển Chế biến Dầu khí (xem hình 26).
7.1. Cấu tạo sơ đồ:
Sơ đồ gồm 3 phần chính:
a. Bộ phận nạp liệu:
Bình chứa nguyên liệu lỏng và bơm định lượng chịu áp với độ chính xác
cao.
Máy phát H2 và bộ đo tốc độ dòng H2 cung cấp cho hệ thống để duy trì áp
suất và phục vụ cho mục đích khử xúc tác sau khi làm việc.
Hệ thống khí (không khí, nitơ) cho mục đích tái sinh xúc tác và tráng rửa hệ
thống.
b. Bộ phận phản ứng:
Lò gia nhiệt có hệ thống điều khiển tự động nhiệt độ với độ ổn định nhiệt độ
cao (ΔT = 2oC).
Bình phản ứng chịu áp suất (4 atm) là nơi diễn ra các quá trình phản ứng.
Bình cấu tạo hình chữ U nhằm làm tăng thời gian tiếp xúc của dòng nguyên liệu
với vùng nhiệt độ phản ứng trước khi dẫn vào lớp xúc tác.
c. Bộ phận ngưng, tách sản phẩm và lấy mẫu phân tích:
Các hệ thống sinh hàn, bình ngưng và cyclon tách lỏng – khí.
Các bộ phận lấy mẫu lỏng, khí đem phân tích.
62
7.2. Qui trình vận hành:
Nhờ bơm vi lượng có độ chính xác cao dòng nguyên liệu được đưa vào bình
phản ứng với các tốc độ ổn định. Có thể thay đổi tốc độ (khối lượng) nạp liệu
bằng cách thay đổi tốc độ dòng nguyên liệu hoặc thay đổi khối lượng chất xúc
tác. Dòng khí hidro với tốc độ và áp suất ổn định được pha trộn với nguyên liệu
trước khi đưa vào hệ thống phản ứng. Tại đây xảy ra quá trình phản ứng, các
sản phẩm lỏng và khí được tạo thành.
Phản ứng được khảo sát với các nhiệt độ nằm trong khoảng 450 – 520oC.
Sau khi ra khỏi bình phản ứng, sản phẩm lỏng được ngưng lại nhờ hệ thống sinh
hàn, bình ngưng và được lấy đi phân tích. Sản phẩm khí qua hệ thống đo lưu
lượng khí thoát ra ngoài và lấy đi phân tích.
7.3. Phương pháp phân tích thành phần nguyên liệu và sản phẩm:
Thành phần nguyên liệu và sản phẩm đựơc xác định bằng phương pháp sắc
ký khí. Máy sắc ký khí hiệu HP 6890 Plus (Mỹ) với phần mềm chuyên dụng
AC/DHA (dùng cho phân tích các sản phẩm dầu mỏ) cho phép xác định chính
xác thành phần (%tl, %tt, % mol) và tính toán một số tính chất khác của hệ như
chỉ số octan RON, trọng lượng phân tử trung bình, tỉ trọng...
Các điều kiện phân tích như sau:
- Khí mang: He
- Detectơ: Ion hóa ngọn lửa FID
- Cột: HP-1, 100 m x 250 μm x 0,5 μm
- Nhiệt độ detectơ: 280oC, Nhiệt độ buồng bơm mẫu: 250oC
- Lượng mẫu bơm: 0,5 μl, tỉ lệ chia dòng 1/100
Mô tả phần mềm AC DHA:
a) Phạm vi ứng dụng:
- Chương trình AC DHA dùng để xác định thành phần hydrocacbon của các
hỗn hợp hydrocarbon nhẹ như: naptha, reformate, alkylate, xăng cracking,
condensate với khoảng sôi lên đến 225oC
- Có thể được dùng để nhận biết và phân tích chính xác với các cấu tử có
hàm lượng từ 0,01-30% khối lượng.
- Có thể ứng dụng cho các hydrocarbon lỏng chứa olefin nhỏ hơn 25% khối
lượng, đặc biệt là các phân đoạn nhẹ của sản phẩm cracking xúc tác.
b) Nguyên tắc sử dụng phần mềm nhận danh AC-DHA:
63
- Nhận danh các cấu tử
- Tính chỉ số index cho mỗi peak sắc ký
- So sánh với bảng tham khảo
Quy trình tự động xác định các thành phần:
Đối với mỗi peak sau khi tính chỉ số, phần mềm sẽ tự động tìm trong file
tham khảo cho vùng nhận danh mà chỉ số index nằm trong đó. Tiếp theo là đối
chiếu peak đó với tên cấu tử. Chương trình phần mềm sau đó sẽ tự sắp xếp,
đưa ra bảng báo cáo nhận danh các cấu tử theo nhóm hóa học. Dữ liệu tính tóan
cho mỗi peak bao gồm: thời gian lưu, chỉ số index, % diện tích tương ứng với %
khối lượng (% thể tích, % mol).
Có thể biểu diễn thành sơ đồ khối như sau:
c) Tính toán các thông số vật lý dựa trên kết qủa sắc ký khí:
Xác định trực tiếp tức quá trình tính tóan các thông số vật lý như tỉ trọng,
khối lượng phân tử trung bình, áp suất hơi dựa vào thành phần % các cấu tử có
trong mẫu. Phương pháp này có lợi điểm là nhanh, cần lượng mẫu ít, khá chính
xác, có thể so sánh với các phương pháp tiêu chuẩn.
Xác định gián tiếp tức việc xác định các thông số vật lý như RON và MON
được thực hiện thông qua phương trình tóan học.
RON = A + kiCI
64
A, kI: hằng số xác định bằng thực nghiệm
CI: % khối lượng.
7.4. Xử lý kết quả thực nghiệm
Các số liệu sắc ký khí được trình bày dưới dạng các bảng kết quả reforming,
phụ thuộc vào sự thay đổi các thông số như nhiệt độ phản ứng, tốc độ nạp liệu, tỉ
lệ H2/nguyên liệu. Từ đó có thể đánh giá về hiệu suất reformat, độ chọn lọc theo
sản phẩm thơm và đề nghị các điều kiện vận hành tối ưu của quá trình cho một
loại nguyên liệu và một loại xúc tác cụ thể.
Ví dụ, trên bảng 8 trình bày kết quả reforming phân đoạn nguyên liệu 85-
165oC của dầu thô Bạch hổ, nhiệt độ phản ứng 500oC, xúc tác R-134 (Mỹ) trên
sơ đồ PTN Trung tâm NC&PTCB Dầu khí:
Bảng 8. Hiệu suất và thành phần sản phẩm reforming PĐ 85-165oC từ dầu thô
BH.
% khối lượng
. Hiệu suất sản phẩm khí 16,0
. Hiệu suất reformat C5+ 84,0
Trong đó:
Tổng aromat 74,9
Tổng naphten 3,4
Tổng parafin 18,4
Tổng olefin 3,3
RON (tính toán) 102
Câu hỏi bài 5:
1. Đặc điểm của công nghệ reforming bán tái sinh xúc tác. Vẽ sơ đồ, mô tả
hoạt động của quá trình.
2. Trình bày đặc điểm, mô tả sơ đồ đơn giản công nghệ tái sinh liên tục xúc
tác reforming CCR.
3. So sánh sự khác biệt giữa 2 công nghệ bán tái sinh và tái sinh liên tục.
4. Đặc điểm của công nghệ reforming sử dụng cho mục đích hóa dầu.
5. Vẽ 1 sơ đồ reforming ở qui mô phòng thí nghiệm. Mô tả qui trình vận hành
và nêu phương pháp phân tích thành phần và sản phẩm quá trình.
65
66
BÀI 6. SỰ TIẾN BỘ CỦA REFORMING XÚC TÁC
Mã bài HD F6
Giới thiệu
Bài này giúp học viên thấy được ý nghĩa của việc cải tiến công nghệ, xúc tác
đối với việc nâng cao chất lượng sản phẩm mong muốn và đáp ứng yêu cầu khắt
khe hơn về môi trường.
Mục tiêu thực hiện
- Nắm được các cải tiến của công nghệ reforming trong thời gian qua.
- Các định hướng cải tiến trong tương lai và các yếu tố ràng buộc.
Nội dung chính
- Các cải tiến đã đạt được trong thời gian qua của công nghệ reforming
(thay đổi về xúc tác, thiết bị công nghệ, điều kiện vận hành)
- Xu hướng cải tiến trong tương lai và các điều kiện ràng buộc (thị phần
sản phẩm, yếu tố môi trường, hướng phát triển hóa dầu)
Công nghệ reforming trải qua nhiều thập niên phát triển đã được cải tiến
theo các hướng sau:
- Giảm áp suất vận hành làm tăng hiệu suất reformat và hydrogen.
- Tìm ra các loại xúc tác mới bền hơn, có tuổi thọ cao hơn (ít bị tác động cốc
hóa trong điều kiện giảm áp suất), và có độ lựa chọn theo sản phẩm thơm cao
hơn.
- Thay đổi sơ đồ công nghệ trong đó xúc tác được tuần hoàn và được tái
sinh liên tục.
Sự cải tiến công nghệ và xúc tác reforming như trên dẫn tới sự tiến bộ đáng
kể về chất lượng sản phẩm reforming (bảng 9).
Bảng 9. Sự tiến bộ về chất lượng sản phẩm reforming
Sản phẩm,
(%tl)
1960 1970 1980 1990 1998
H2 2,0 2,7 3,2 3,3 3,8
C1 + C2 4,4 3,1 1,2 1,1 -
C3 + C4 13,1 10,4 8,0 6,9 -
C5
+ (reformat) 80,5 83,8 87,6 88,7 88,0
67
RON RON = 100-102
Yêu cầu xúc tác lý tưởng: H2 = 5%, C5
+ = 95%
Với những tiêu chuẩn nghiêm ngặt mới về môi trường, việc loại bỏ hoàn
toàn hợp phần phụ gia chì có trong xăng mà vẫn phải bảo đảm chất lượng xăng
thương phẩm (chỉ số octan cao) càng cho thấy vai trò quan trọng của reforming
trong công nghệp lọc dầu.
Các số liệu mới nhất về thành phần xăng thương phẩm thế giới được trình
bày trên bảng 10.
Bảng 10. Thành phần xăng thương phẩm thế giới
Thành phần, %tl Pháp Mỹ Tây Âu
- Butan
- Xăng nhiệt phân
- Xăng nhẹ
- Xăng đồng phân hóa
- Xăng alkyl hóa
- Xăng FCC
- Xăng reforming
- Hợp chất chứa oxy
(MTBE, etanol)
4,0
6,0
-
10,0
5,0
40,0
33,0
2,0
5,5
-
4,0
4,7
13,0
36,1
34,6
2,1
5,7
-
7,6
5,0
5,9
27,1
46,9
1,8
Bảng 10 cho thấy ở Mỹ, Pháp hợp phần xăng reforming trong xăng thương
phẩm chỉ thua kém không đáng kể so với xăng cracking, còn ở Tây Âu, xăng
reforming chiếm phần áp đảo (phân nửa thị phần).
Trong nhiều trường hợp, để thu được xăng thương phẩm không chì RON 95
và RON 98 người ta đưa vào hợp phần xăng reforming lên tới 60%-80%.
68
Xăng không chì RON 98
Xăng không chì RON 95
Hình 27. Thành phần một số loại xăng thương phẩm cao cấp không chì
Trong tương lai sắp tới, người ta sẽ phải tiếp tục cải tiến công nghệ
reforming hơn nữa nhằm thoả mãn các yêu cầu cao hơn về chất lượng sản
69
phẩm. Tuy nhiên các khuyn
Các file đính kèm theo tài liệu này:
- giao_trinh_refoming_xuc_tac_phan_2.pdf