LỜI CAM ĐOAN
MỞ ÐẦU . 1
1. Lý do chọn đề tài. 1
2. Mục đích và phạm vi nghiên cứu. 2
3. Nhiệm vụ nghiên cứu . 2
4. Phương pháp nghiên cứu. 2
5. Đóng góp của luận văn. 3
6. Cấu trúc của luận văn. 4
NỘI DUNG. 4
CHưƠNG 1. TỔNG QUAN VỀ VẬT LIỆU TỪ CỨNG NỀN
Co-Zr-B . 4
1.1. Cấu trúc và tính chất từ của một số hệ hợp kim Co-Zr-B. 4
1.1.1. Cấu trúc và tính chất từ của hệ hợp kim Co80Zr20-xBx (x = 0 - 4) chế tạo
bằng phương pháp thiêu kết xung điện Plasma(SPS). 4
1.1.2. Cấu trúc và tính chất từ của hệ hợp kim Co72Zr8B20. 6
1.1.3. Cấu trúc và tính chất từ của hệ hợp kim Co80Zr20-xBx (x = 0 - 4) chế tạo
bằng phương pháp phun băng nguội nhanh . 8
1.2. Cấu trúc và tính chất từ của một số hệ hợp kim Co-Zr-B có pha tạp . .12
1.2.1. Hệ hợp kim Co80Zr18-xMxB2 (x = 0 - 2) M = C, Cu, Ga, Al và Si. .12
1.2.2. Hệ hợp kim Co86,5Hf11,5-xZrxB2 (x = 0, 1, 2, 3 và 5). 15
1.2.3. Hệ hợp kim Co80Zr18-xTixB2 (x = 0 - 4) . 17
1.2.4. Hệ hợp kim Co80-xZr18CrxB2 (x = 0, 2, 3 và 4) . 20
1.2.5. Hệ hợp kim Co80Zr18-xNbxB2 (x = 0 - 4) . 24
51 trang |
Chia sẻ: honganh20 | Ngày: 12/02/2022 | Lượt xem: 375 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Khóa luận Ảnh hưởng của pha tạp nb và ủ nhiệt lên cấu trúc và tính chất từ của hợp kim Co - Zr - B chế tạo bằng phương pháp phun băng nguội nhanh, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
mẫu đã được tìm thấy bao gồm chủ yếu của pha CoxZr cùng với một
lượng nhỏ của các pha Co23Zr6 và Co. Như vậy, các hạt tương ứng với các pha
CoxZr và các ranh giới hạt giàu Co tương ứng với các pha Co. Sự tồn tại của số
lượng nhỏ pha Co23Zr6 đã không được phát hiện trong các nghiên cứu STEM, do sự
khác biệt về thành phần giữa các pha CoxZr và pha Co23Zr6. Các kết quả STEM của
mẫu băng Co80Zr18B2 là một nam châm nanocomposite trong đó các hạt pha từ
Hình 1.11. Ảnh TEM của băng Co80Zr18B2:
(a) trường sáng và (b) trường tối [27].
Hình 1.12. Ảnh HAADF-STEM của băng hợp kim Co80Zr18B2 [27].
12
cứng CoxZr có đường kính khoảng 200 nm, được bao quanh bởi các pha từ mềm
Co.
1.2. Cấu trúc và tính chất từ của hệ hợp kim Co-Zr-B có pha tạp
1.2.1. Hệ hợp kim Co80Zr18-xMxB2 (x = 0 - 2) M = C, Cu, Ga, Al và Si
Ảnh hưởng của sự bổ sung nguyên tố M (M = C, Cu, Ga, Al và Si) cho Zr
trong tính chất từ, phát triển pha và vi cấu trúc của băng hợp kim Co80Zr17M1B2
được H.W. Chang và cộng sự nghiên cứu [14], tính chất từ của chúng được liệt kê
trong bảng 1.2.
Bảng 1.2. Độ từ hóa ở từ trường ứng dụng 12 kOe, σ12 kOe, độ từ dư σr, lực kháng từ
iHc, tích năng lượng (BH)max và TC của pha 5:1 của băng hợp kim Co80Zr17MB2
(M = C, Cu, Ga, Al và Si) phun ở Vs = 40 m/s và đo ở 25
o
C.
M σ12 koe
(emu/g)
σr
(emu/g)
iHc
(kOe)
(BH)max
(MGOe)
Tc
(
o
C)
Không pha 63 49 4,1 5,0 491
C 77 58 2,4 2,8 482
Cu 62 48 2,8 3,0 459
Ga 62 48 3,3 3,8 452
Al 63 48 3,5 41 450
Si 64 51 4,5 5,3 458
Rõ ràng, tất cả nghiên cứu về băng Co80Zr17MB2 đều có hiệu suất từ vĩnh
cửu tốt. Đối với băng hợp kim tam nguyên Co80Zr18B2, tính chất từ đã đạt được là
σ12 kOe = 63 emu/g, σr = 49 emu/g, iHc = 4,1 kOe và (BH)max = 5,0 MGOe. Tính chất
từ của băng Co80Zr18B2 đã thay đổi khi thay thế các nguyên tố khác nhau. Với sự
thay thế của Cu, Ga và Al cho Zr, từ hóa ở từ trường 12 kOe, σ12 kOe và độ từ dư σr
giảm nhẹ tương ứng đến 62 emu/g - 63 emu/g và 48 emu/g và iHc đã giảm đến 2,8
kOe - 3,5 kOe, kết quả là (BH)max giảm đến 3,0 MGOe - 4,1 MGOe. Điều đáng chú
ý, khi thay thế Si cho Zr có thể cải thiện nâng cao σ12 kOe, σr, iHc và tích năng lượng
từ cực đại (BH)max của băng trên cùng một lúc. Trong băng Co80Zr17Si1B2 tính chất
từ đạt được là σr = 51 emu/g, Br = 5,2 kG, iHc = 4,5 kOe và (BH)max = 5,3 MGOe.
13
Hình 1.13 là phổ nhiễu xạ tia X của băng hợp kim Co80Zr17MB2. Kết quả
cho thấy hai pha từ mềm, cụ thể là fcc-Co và Co23Zr6 cùng tồn tại với pha cứng
Co5Zr trong băng hợp kim Co80Zr17M1B2 khi không có M và với M = Cu, Ga, Al và
Si. Với M = C, ngoài những pha trên, một pha yếu đã xuất hiện và bên cạnh đó,
cường độ đỉnh nhiễu xạ của pha fcc-Co và Co23Zr6 được tăng cường, gián tiếp làm
tăng số lượng của pha fcc-Co và Co23Zr6 với sự thay thế C. Mối quan hệ mạnh mẽ
giữa Zr và C [7] có thể tạo điều kiện cho sự hình thành của pha ZrC trong băng hợp
kim Co80Zr17MB2 với sự bổ sung C. Theo đó, σ12 kOe và σr được nâng cao, nhưng
iHC lại giảm với sự thay thế C.
Hình 1.14 (a), (b) và (c) là ảnh TEM tương ứng của băng hợp kim
Co80Zr18B2, Co80Zr17CB2 và Co80Zr17SiB2. Rõ ràng, sự thay thế của Si cho Zr là
hữu ích trong việc làm giảm kích thước hạt đến 10nm - 30 nm, nhưng sự thay thế C
làm thô kích thước hạt tới 30nm - 80 nm. Hơn nữa, một số kết tủa kích thước
khoảng 10nm - 15 nm xuất hiện trong băng hợp kim Co80Zr17CB2. Phân tích tia X
phân tán năng lượng (EDX), cho thấy rằng chúng là kết tủa của Co, phù hợp với
phân tích XRD như thể hiện trong hình 1.13.
Nguyên tố Si là nguyên tố ảnh hưởng nhiều nhất đến sự cải thiện của lực
kháng từ và tích năng lượng của băng hợp kim Co80Zr18B2. Vì vậy, ảnh hưởng của
nồng độ Si đến tính chất từ của băng hợp kim Co80Zr18-xSixB2 cũng được nghiên
Hình 1.13. Phổ XRD của mẫu
băng Co80Zr17MB2 [14].
Hình 1.14. Ảnh TEM của mẫu băng (a)
Co80Zr18B2, (b) Co80Zr17CB2, (c)
Co80Zr17SiB2 và (d) Co80Zr18Si2B2 [14].
14
cứu chi tiết. Hình 1.15 là đường cong khử từ của băng Co80Zr18-xSixB2, tính chất từ
của chúng được tóm tắt trong bảng 1.3.
Bảng 1.3. Tính chất từ của mẫu băng Co80Zr18-xSixB2 [14].
X σ12 koe
(emu/g)
σr
(emu/g)
iHc
(kOe)
(BH)max
(MGOe)
0 63 49 4,1 5,0
0,5 63 49 4,3 5,1
1 64 51 4,5 5,3
1,5 65 50 3,6 4,7
2 65 48 3,1 4,3
Với sự tăng nồng độ Si, σ12 kOe và σr tăng nhẹ từ 63 emu/g - 65 emu/g và từ
49 emu/g - 51 emu/g. Lực kháng từ iHC và tích năng lượng (BH)max tăng tương ứng
từ 4,1 kOe và 5,0 MGOe (với x = 0) đến 4,5 kOe và 5,3 MGOe với x = 1, sau đó
chúng giảm đến 3,1 kOe và 4,3 MGOe (với x = 2). Trong nghiên cứu này, băng
hợp kim Co80Zr17Si1B2 đạt được tính chất từ tối ưu là σr = 51 emu/g, Br = 5,2 kG,
iHc = 4,5 kOe và (BH)max = 5,3 MGOe.
Hình 1.15. Đường cong khử từ của
mẫu băng Co80Zr18-xSixB2 [14].
Hình 1.16. Phổ XRD của mẫu
Co80Zr18-xSixB2 [14].
15
Hình 1.16 là phổ nhiễu xạ tia X của băng hợp kim Co80Zr18-xSixB2. Kết quả
cho thấy, hai pha từ mềm là fcc-Co và Co23Zr6 cùng tồn tại với pha cứng Co5Zr
trong băng Co80Zr18-xSixB2. Hơn nữa, cường độ đỉnh nhiễu xạ của pha fcc-Co được
củng cố, cho thấy số lượng của pha fcc-Co tăng lên với sự tăng của nồng độ Si và
do đó σ12 kOe và σr tăng nhẹ. Mặt khác, kích thước hạt tăng lên khoảng 30nm - 80 nm
với nồng độ Si là 2% như được chỉ trong hình 1.14 (d), dẫn đến tính chất từ giảm.
1.2.2. Hệ hợp kim Co86,5Hf11,5-xZrxB2 (x = 0, 1, 2, 3 và 5)
Hình 1.17 là đường cong khử từ của băng Co86,5Hf11,5-xZrxB2. Các băng đều
thể hiện tính chất từ cứng khi x = 0 - 2 nhưng lại thể hiện tính chất từ mềm khi thay
thế nồng độ Hf khoảng 3% - 5%. Sau khi xử lí nhiệt tối ưu, tính chất từ cứng của
các băng ứng với x = 3 và 5 được thể hiện rõ rệt. Từ dư Br = 0,61 T - 0,74 T, lực
kháng từ iHc = 128 kA/m - 216 kA/m và tích năng lượng cực đại (BH)max = 23,2 kJ/m
3
cho đến 52,8 kJ/m3.
Tính chất từ của băng Co86,5Hf11,5-xZrxB2 sau khi xử lí nhiệt tối ưu được tóm
tắt trong hình 1.18. Đối với băng tam nguyên Co86,5Hf11,5B2 thu được tính chất từ Br
= 0,71 T, iHc = 192 kA/m và (BH)max = 34,4 kJ/m
3
. Với x = 1, từ dư Br và lực kháng
từ iHc được cải thiện và đạt tới 0,74 T và 216 kA/m. Tuy nhiên, với nồng độ Hf
tăng tới 5%, tính chất từ giảm nhẹ với Br = 0,61 T, iHc = 128 kA/m và tích năng
lượng (BH)max = 23,2 kJ/m
3. Trong nghiên cứu này, tính chất từ tối ưu với Br = 0,74 T,
iHc = 216 kA/m và (BH)max = 52,8 kJ/m
3
đạt được với băng Co86,5Hf10,5Zr1B2.
Hình 1.17. Đường từ trễ của mẫu băng Co86,5Hf11,5-
xZrxB2 khi chưa ủ và ủ ở 873 K [17].
16
Hình 1.19 dưới đây là phổ nhiễu xạ tia X của băng hợp kim Co86,5Hf11,5-
xZrxB2.
Kết quả cho thấy, hai đỉnh nhiễu xạ tại 2θ = 38,2o và 44,6o được tìm thấy
trong các mẫu với x = 0 - 2 cho thấy sự tồn tại của các pha kết tinh. Với nồng độ Hf
là 3%, mẫu thể hiện tính chất vô định hình. Sau khi ủ ở 873 K, phổ nhiễu xạ cho
hai mẫu với x = 3 và 5 khá giống mẫu với x = 0 - 2, điều này ngụ ý cho sự kết tinh
của pha từ cứng trong quá trình ủ.
Hình 1.18. Tính chất từ của mẫu băng
Co86,5Hf11,5-xZrxB2 theo nồng độ Zr [17].
Hình 1.19. Phổ XRD của mẫu băng Co86,5Hf11,5-xZrxB2 [17].
17
Hình 1.20 là ảnh từ kính hiển vi điện tử của mẫu băng Co86,5Hf11,5B2,
Co86,5Hf10,5Zr1B2 và Co86,5Hf8,5Zr3B2. Kết quả cho thấy, việc thay thế Zr cho Hf có
ích trong việc tinh chỉnh kích thước hạt của băng từ 10 nm - 35 nm với x = 0 đến
5nm - 15 nm với x = 1. Tuy nhiên, ủ các băng với x = 3 dẫn đến sự tăng trưởng của
các hạt Co11(Hf,Zr)2 (10 nm - 40 nm). Ngoài ra, thành phần của các hạt cũng đã
được phân tích bởi phổ tán xạ năng lượng EDX cho thấy rằng tỉ lệ của Co, (Hf+Zr)
tương ứng là 83% - 87%, 13% - 17%. Kết quả này cũng hỗ trợ giả định pha từ cứng
trong nghiên cứu băng Co86,5Hf11,5-xZrxB2 là Co11(Hf,Zr)2.
1.2.3. Hệ hợp kim Co80Zr18-xTixB2 (x = 0 - 4)
Hình 1.21 cho thấy độ từ dư σr, Hc và (BH)max của các băng hợp kim
Co80Zr18-xTixB2 (x = 0, 1, 2, 3 và 4) phun ở tốc độ là 30 m/s.
Kết quả cho thấy, tính chất từ của các mẫu băng phụ thuộc nhiều vào nồng
độ Ti. Các giá trị của lực kháng từ Hc và tích năng lượng cực đại (BH)max của mẫu
Hình 1.20. Ảnh TEM của mẫu băng Co86,5Hf11,5-xZrxB2 (a), Co86,5Hf11,5-xZrxB2 (b),
Co86,5Hf11,5-xZrxB2 (c) sau khi kết tinh ở nhiệt độ tối ưu [17].
Hình 1.21. Tính chất từ của mẫu
băng Co80Zr18-xTixB2 (x = 0 - 4)
phun ở tốc độ 30 m/s [36].
Hình 1.22. Tính chất từ của mẫu băng
Co80Zr15Ti3B2 ở các tốc độ khác nhau [36].
18
băng Co80Zr18-xTixB2 (x = 0, 1, 2, 3 và 4) tăng từ 3,0 kOe và 3,2 MGOe với x = 2
đến 4,5 kOe và 5,0 MGOe với x = 3. Sau đó chúng giảm mạnh mẽ với sự gia tăng
hơn nữa của nồng độ Ti. Đối với việc bổ sung Ti, các giá trị từ dư σr và (BH)max
đều được cải thiện đáng kể.
Tính chất từ của mẫu băng Co80Zr15Ti3B2 cũng phụ thuộc mạnh vào tốc độ
làm nguội và điều kiện ủ. Hình 1.22 cho thấy tính chất từ của Co80Zr15Ti3B2 như
một hàm của tốc độ làm nguội (vs). Có thể thấy rằng các tính chất từ tối ưu của các
mẫu băng được phun ở tốc độ khác được đặc trưng bởi Hc và (BH)max khá thấp. Vì
vậy, các băng Co80Zr15Ti3B2 phun ở tốc độ 30 m/s và 40 m/s đã được lựa chọn để ủ
nhiệt.
Hình 1.23 thể hiện sự phụ thuộc của lực kháng từ vào điều kiện ủ. Rõ ràng là
các băng phun ở tốc độ 30 m/s cho thấy một sự suy giảm ổn định của lực kháng từ
sau khi ủ nhiệt từ 600oC đến 700oC chỉ trong vài phút. Mặc dù lực kháng từ của
băng phun ở tốc độ 40 m/s chỉ là 1,7 kOe, nhưng nó tăng mạnh đến 4,9 kOe sau khi
ủ ở 650oC trong 2 phút. Với sự gia tăng hơn nữa nhiệt độ ủ hoặc thời gian ủ, lực
kháng từ giảm mạnh. Đặc biệt, sau khi ủ ở 700oC trong 4 phút, lực kháng từ giảm
mạnh đến 1,3 kOe. Trên hình 1.24 là đường cong từ trễ của băng Co80Zr15Ti3B2
phun ở tốc độ 30 m/s khi chưa ủ và phun ở tốc độ 40 m/s sau đó ủ ở 650oC trong 2
phút. Có thể thấy rằng các đường cong từ trễ của băng tan Co80Zr15Ti3B2 là trơn
Hình 1.23. Lực kháng từ của mẫu
băng Co80Zr15Ti3B2 phun ở các tốc
độ (a) 30 m/s và (b) 40 m/s theo
thời gian ủ [36].
Hình 1.24. Đường cong từ trễ của mẫu
băng Co80Zr15Ti3B2 phun ở các tốc độ 30
m/s (a) và 40 m/s ủ ở 650oC trong thời
gian 2 phút (b) [36].
19
mượt và chỉ một pha từ cứng được thể hiện trong đường cong khử từ, trong khi
đường cong từ trễ của băng ủ cho giá trị từ độ thấp hơn mẫu băng chưa ủ.
Hình 1.25 là phổ nhiễu xạ tia X của băng Co80Zr15Ti3B2 phun ở tốc độ 40
m/s khi chưa ủ và ủ ở 650oC trong các thời gian khác nhau.
Có thể thấy rằng, khi chưa ủ trên phổ XRD của mẫu băng chỉ có một pha
Co11Zr2. Sau khi mẫu băng ủ ở 650
oC trong 2 phút, các pha từ mềm Co23Zr6 và pha
fcc-Co xuất hiện. Với việc tăng thời gian ủ, tỷ phần của pha từ mềm Co23Zr6 và
fcc-Co tăng mạnh, trong khi tỷ phần pha từ cứng Co11Zr2 giảm. Có vẻ như pha từ
cứng Co11Zr2 bị phân hủy thành các pha từ mềm Co23Zr6 và fcc-Co. Sự phân hủy
này đã được khảo sát ở 800oC trong cả hợp kim Co-Zr và Co-Zr-B [12, 22, 26].
Tuy nhiên, sự phân hủy trong băng Co80Zr15Ti3B2 lại xảy ra ở nhiệt độ 650
o
C. Có
vẻ như sự thay thế Ti cho Zr làm cho các pha không bền hơn.
Để điều tra sự thay thế của Ti cho Zr ảnh hưởng như thế nào đến vi cấu trúc
của hợp kim Co80Zr18B2, các ảnh hiển vi điện tử quét SEM của các băng hợp kim
Co80Zr18-xTixB2 (x = 0, 3 và 4) được thể hiện trong hình 1.26. Các băng nứt gãy ở
những biên hạt, cho thấy cấu trúc hạt siêu nhỏ.
Hình 1.25. Phổ XRD của mẫu băng Co80Zr15Ti3B2 phun ở 40 m/s và ủ ở
650oC trong các thời gian khác nhau [36].
20
Như được hiển thị trong hình 1.26 (a), băng hợp kim Co80Zr18B2 bao gồm
những hạt hình cầu có đường kính dao động từ 200nm - 300 nm. Với sự gia tăng
nồng độ Ti, kích thước hạt giảm đáng kể, cho thấy rằng việc bổ sung để ngăn cản
sự phát triển hạt trong băng hợp kim Co80Zr18B2. Cũng cần lưu ý rằng tất cả các
băng được nghiên cứu gồm các hạt gần như hình cầu và không có thay đổi nhiều
trong hình thái của các hạt. Pha Co11Zr2 đã được chứng minh là pha từ cứng trong
hợp kim Co-Zr-B. Kể từ khi thay thế Ti cho Zr đã được báo cáo thay đổi trường dị
hướng nhỏ [3], một kích thước hạt phù hợp trong pha từ cứng được cho là nguyên
nhân chính cho sự gia tăng mạnh mẽ của lực kháng từ. Sau khi xử lý nhiệt giữa
600
o
C và 700oC, lực kháng từ của băng Co80Zr15Ti3B2 được phun ở tốc độ 30 m/s
giảm mạnh. Đó có thể là do sự xử lý nhiệt thúc đẩy các hạt Co11Zr2 tăng vượt ra
ngoài kích thước tới hạn của lực kháng từ cao nhất. Tương tự, sự khác biệt về kích
thước hạt xác định sự ảnh hưởng của tốc độ làm nguội lên lực kháng từ. Vì kích
thước hạt pha Co11Zr2 giảm dưới kích thước tới hạn, lực kháng từ của băng
Co80Zr15Ti3B2 làm nguội ở 40 m/s giảm. Sau khi ủ ở 650
oC trong 2 phút, lực kháng
từ tăng mạnh đến 4,9 kOe. Đó có thể là do các pha Co11Zr2 tăng đến kích thước hạt
tối ưu.
1.2.4. Hệ hợp kim Co80-xZr18CrxB2 (x = 0, 2, 3 và 4)
Hình 1.27 là phổ nhiễu xạ tia X của băng hợp kim Co80-xZr18CrxB2 (x = 0, 2,
3 và 4). Các đỉnh nhiễu xạ của tất cả bốn mẫu chỉ duy nhất là pha Co11Zr2, phù hợp
với báo cáo của Ivanova và các cộng sự [10]. Ở hình 1.28, hiển thị đường cong từ
nhiệt của các mẫu. Với mỗi mẫu, trên đường cong từ nhiệt chỉ cho thấy một quá
trình chuyển đổi pha từ tương ứng với Tc của Co11Zr2. Điều này khẳng định, băng
Hình 1.26. Ảnh SEM của mẫu băng (a) Co80Zr18B2, (b) Co80Zr15Ti3B2
và (c) Co80Zr14Ti4B2 [36].
21
Co80-xZr18CrxB2 (x = 0, 2, 3 và 4) là đơn pha từ. Do đó sự bổ sung của Cr không
làm thay đổi thành phần pha của Co80Zr18B2.
Hình 1.29 hiển thị từ độ ở từ trường 20 kOe σ20, từ độ dư σr và lực kháng từ
iHc của băng Co80-xZr18CrxB2 (x = 0, 2, 3 và 4). Với x = 0 thì σ20 = 65 emu/g,
σr = 43,5 emu/g và iHc = 3,1 kOe. Việc thay thế của Cr không có tác dụng nhiều
đến tính chất từ. Có thể thấy rằng σ20 và σr giảm với sự thay thế của Cr. Tuy nhiên,
iHc tăng từ 3,1 kOe với x = 0 đến 5,3 kOe ứng với x = 3 và sau đó lại giảm khi
nồng độ Cr tăng hơn nữa. Để có được lực kháng từ cao hơn, băng hợp kim
Co80-xZr18CrxB2 (x = 0, 2, 3 và 4) được ủ từ 500
o
C - 700
oC trong 2 phút.
Hình 1.27. Phổ XRD của mẫu băng
Co80-xZr18CrxB2 (x = 0, 2, 3 và 4) [34].
Hình 1.29. Tính chất từ của mẫu băng
Co80-xZr18CrxB2(x = 0, 2, 3 và 4) [34].
Hình 1.30. Sự thay đổi lực kháng từ
theo nhiệt độ ủ [34].
Hình 1.28. Đường cong từ nhiệt của băng
Co80-xZr18CrxB2 (x = 0, 2, 3 và 4) [34].
22
Hình 1.30 hiển thị sự phụ thuộc của lực kháng từ iHc vào nhiệt độ ủ. Kết quả
cho thấy, lực kháng từ iHc ở 4 mẫu trên đều có một quy luật giống nhau, đầu tiên
tăng đến một giá trị cực đại sau khi có nhiệt thích hợp và sau đó giảm dần khi nhiệt
độ ủ tăng hơn nữa. Giá trị cực đại của lực kháng từ iHc là 7,0 kOe với x = 3 sau khi
ủ ở 550oC. So sánh với giá trị cao nhất iHc là 5,1 kOe đã từng thu được trong
Co80Zr18B2 [30], iHc tăng 37,2%. Điều này cho thấy rằng sự bổ sung thích hợp của
Cr trong hợp kim Co80Zr18B2 có thể cải thiện lực kháng từ rất lớn.
Hình 1.31 cho thấy phổ nhiễu xạ tia X và đường cong nhiệt từ của mẫu đối
với x = 3 khi ủ ở 550oC và 700oC.
Như thể hiện ở hình 1.31 (a) và 1.31 (c), cả 2 kết quả cho thấy rằng mẫu
băng vẫn chỉ có pha Co11Zr2 sau khi được ủ ở 550
oC. Đối với băng được ủ ở 700oC,
tỷ phần của pha từ mềm Co23Zr6 và fcc-Co tăng, tỷ phần pha từ cứng Co11Zr2 giảm.
Do vậy, sự hình thành của pha Co23Zr6 và fcc-Co là do sự phân hủy của pha
Co11Zr2 ở 700
o
C.
Hình 1.32 cho thấy ảnh hiển vi điện tử quét SEM của mẫu với x = 3. Mẫu
băng bao gồm những hạt với kích thước trung bình khoảng 300nm - 350 nm. Khi
nhiệt độ tăng hơn nữa các hạt thậm chỉ trở nên lớn hơn và kích thước trung bình
của chúng từ 1m đến 1,5 m.
Hình 1.31. Phổ XRD và đường cong từ nhiệt của mẫu với x = 3
được ủ ở 550oC và 700oC [34].
23
Hình 1.33 là các đường cong từ trễ của mẫu băng với x = 3 (a) khi chưa ủ
được so sánh với các mẫu ủ ở 550oC (b) và 700oC (c).
Như đã được thấy trên hình 1.33 đường cong từ trễ của mẫu băng trơn đều
và biểu thị đặc tính trạng thái của một pha cứng. Với mẫu được ủ ở 550
o
C cho giá
trị lực kháng từ cao nhất.
Hình 1.34 cho thấy phổ nhiễu xạ tia X của mẫu băng Co80-xZr18CrxB2 (x = 0,
2, 3 và 4) với (a) x = 0 ủ ở 600oC, (b) x = 2 ủ ở 600oC và (c) x = 4 được ủ ở 650oC.
Hình 1.32. Ảnh SEM của mẫu băng Co77Zr18Cr3B2khi
chưa ủ và ủ ở 550
o
C và 700
o
C [34].
Hình 1.33. Đường cong từ trễ của mẫu băng Co77Zr18Cr3B2,
khi chưa ủ (a) và ủ ở 550oC (b) và 700oC (c) [34].
24
Với x = 0, mẫu chủ yếu bao gồm pha từ cứng Co11Zr2 và một số ít các pha từ
mềm fcc-Co và Co23Zr6. Trong trường hợp mẫu băng chứa Cr, cả hai mẫu đều bao
gồm đơn pha từ cứng Co11Zr2, nó hoàn toàn giống với thành phần pha của mẫu
băng với x = 3 được ủ ở 550oC. Lực kháng từ của mẫu với x = 3 bắt nguồn từ kích
thước hạt phù hợp của Co11Zr2. Do đó, đối với hai mẫu chứa Cr, việc xử lí nhiệt
phù hợp dẫn đến kích thước hạt cũng tăng đối với kích thước giới hạn dẫn đến lực
kháng từ cao.
1.2.5. Hệ hợp kim Co80Zr18-xNbxB2 (x = 0 - 4)
Hình 1.35 hiển thị sự phụ thuộc của các tính chất từ của băng Co80Zr18-
xNbxB2 (x = 0, 1, 2, 3 và 4) vào nồng độ Nb.
Hình 1.34. Phổ XRD của mẫu băng (a) x = 0 ủ ở 550oC, (b) x = 2 ủ ở 600oC
và (c) x = 4 ủ ở 700oC [34].
Hình 1.35. Tính chất từ của mẫu băng Co80Zr18-xNbxB2
(x = 0 - 4) theo nồng độ Nb [35].
25
Các giá trị của từ độ dư r , lực kháng từ Hc và tích năng lượng cực đại
(BH)max đầu tiên tăng, đạt giá trị lớn nhất tại x = 3, sau đó chúng giảm khi tăng
nồng độ Nb. Tính chất từ tối ưu r = 4,8 kG, Hc = 4,3 kOe và (BH)max = 3,6 MGOe
đã thu được trong băng Co80Zr15Nb3B2 phun ở tốc độ 30 m/s. So với mẫu băng
Co80Zr18B2, các giá trị này tăng tương ứng là 12,5%, 30,3% và 10%. Điều này cho
thấy, việc bổ sung thích hợp Nb có thể cải thiện đáng kể tính chất từ (đặc biệt là lực
kháng từ) của hợp kim Co-Zr-B.
Hình 1.36 cho thấy phổ nhiễu xạ tia X của mẫu băng Co80Zr18-xNbxB2 (x = 1,
2, 3 và 4). Chỉ có ba đỉnh nhiễu xạ rõ rệt được quan sát thấy trong các phổ XRD
được đánh dấu ''1'', ''2'' và ''3''. Các đỉnh ''1'' và ''3'' là pha Co11Zr2, đỉnh nhiễu xạ
''2'', mạnh nhất trong ba đỉnh là của pha fcc-Co.
Hình 1.37 cho thấy ảnh hiển vi điện tử quét SEM của mẫu băng (a)
Co80Zr18B2, (b) Co80Zr17Nb1B2, (c) Co80Zr16Nb2B2 và (d) Co80Zr15Nb3B2. Có thể
thấy rằng kích thước hạt giảm từ khoảng 2 µm với x = 0 xuống còn 0,5 µm với x = 2.
Kích thước hạt của băng Co80Zr15Nb3B2 và Co80Zr14Nb4B2 là quá nhỏ để có thể xác
định bằng SEM (thường ít hơn là 0,1 µm). Kết quả đã cho thấy rằng, việc bổ sung
Nb đã làm giảm kích thước hạt của băng Co-Zr-B. Mặt khác, giá trị của lực kháng
từ đầu tiên tăng, đạt giá trị tối đa, sau đó nó giảm dần theo sự giảm kích thước hạt.
Trong băng Co-Zr-B báo cáo bởi Stroink và các cộng sự, một kết quả tương tự
cũng được quan sát [9]. Vì vậy, sự khác biệt trong kích thước hạt của pha Co11Zr2
xác định sự ảnh hưởng của việc bổ sung Nb lên tính chất từ của băng Co-Zr-Nb-B,
một kích thước hạt phù hợp của pha Co11Zr2 được cho là nguyên nhân chính của sự
gia tăng mạnh lực kháng từ.
Hình 1.36. Phổ XRD của mẫu băng Co80Zr18-xNbxB2 (x = 0 - 4) [35].
26
Việc ủ băng Co-Zr-B dẫn đến sự gia tăng của kích thước hạt làm tăng lực
kháng từ, nhiệt độ ủ tối ưu của băng Co-Zr-B có thể là 600oC hoặc 650oC [29]. Như
vậy, băng Co80Zr15Nb3B2 được ủ ở nhiệt độ 600
o
C và 650
oC. Như được thể hiện
trong hình 1.38, xử lý nhiệt dẫn đến sự thay đổi mạnh lực kháng từ của băng
Co80Zr15Nb3B2. Một giá trị tối ưu Hc = 5,1 kOe đã thu được trong các băng ủ tại
600
oC trong vòng 3 phút. Giá trị của lực kháng từ giảm mạnh đến 2,0 kOe khi ủ ở
650
oC trong 7 phút.
Hình 1.37. Ảnh SEM mẫu băng (a) Co80Zr18B2, (b) Co80Zr17Nb1B2,
(c) Co80Zr16Nb2B2 và (d) Co80Zr15Nb3B2 [35].
Hình 1.38. Lực kháng từ của
mẫu băng Co80Zr15Nb3B2 theo
thời gian ủ [35].
Hình 1.39. Đường cong từ trễ của
mẫu băng Co80Zr15Nb3B2 khi chưa ủ
và ủ ở 600oC trong 3 phút [35].
27
Hình 1.39 cho thấy, các đường cong từ trễ của băng Co80Zr15Nb3B2 khi chưa
ủ (a) và ủ ở 600oC trong thời gian 3 phút (b). Tính chất từ tối ưu Hc = 5,1 kOe và
(BH)max = 3,4 MGOe đã thu được trong băng Co80Zr15Nb3B2 ủ ở 600
o
C trong 3
phút. Mặc dù tính chất từ của các mẫu này chưa tương xứng với các hợp kim đất
hiếm, nhưng chúng có thể so sánh với nhiều ferit và nam châm loại alnico [9].
Phổ nhiễu xạ tia X tương ứng của các mẫu băng được hiển thị trong hình
1.40. Có thể thấy rằng các đỉnh nhiễu xạ của pha Co23Zr6 xuất hiện khi băng được ủ
ở 600oC trong 3 phút. Đa số các đỉnh nhiễu xạ của pha Co23Zr6 có thể được tìm
thấy trong phổ XRD của băng Co80Zr15Nb3B2 ủ ở 650
o
C trong 7 phút, điều đó khẳng
định rằng pha Co23Zr6 là một pha cân bằng. Cũng như vậy, pha từ mềm fcc-Co
được quan sát khi băng ủ ở 650oC trong 7 phút. Dường như pha từ cứng Co11Zr2 đã
bị phân hủy thành các pha từ mềm Co23Zr6 và fcc-Co khi băng được ủ ở 650
o
C
trong 7 phút.
Hình 1.41 cho thấy ảnh hiển vi điện tử quét SEM của băng Co80Zr15Nb3B2
trong các điều kiện ủ khác nhau.
Hình 1.40. Phổ XRD của mẫu băng Co80Zr15Nb3B2
khi chưa ủ và ủ ở các nhiệt độ khác nhau [35].
Hình 1.41. Ảnh SEM của mẫu băng Co80Zr15Nb3B2khi ủ ở (a) 600
o
C trong 3
phút, (b) 650
o
C trong 5 phút và (c) 650
o
C trong 7 phút [35].
28
Có thể thấy rằng kích thước hạt của băng tăng từ mức dưới 0,1 µm đến
khoảng 0,15 µm khi ủ ở 600
oC trong 3 phút. Sự tăng mạnh của lực kháng từ được
xem là do sự gia tăng kích thước hạt của pha Co11Zr2. Mặt khác, nghiên cứu vi cấu
trúc cho thấy rằng băng ủ ở 650oC có hạt lớn hơn (khoảng từ 0,3 µm và 1,5 µm). Sự
giảm mạnh lực kháng từ chủ yếu do tiếp tục xử lý nhiệt làm thúc đẩy kích thước hạt
tăng vượt quá kích thước tới hạn của các giá trị cao nhất của lực kháng từ.
1.2.6. Hệ hợp kim Co80Zr18-xMoxB2 (x = 0 - 4)
Từ dư r và lực kháng từ Hc của băng Co80Zr18-xMoxB2 (x = 1, 2, 3, 4) đo
trong trường 20 kOe được liệt kê trong bảng 1.4. Kết quả cho thấy rằng, từ dư r
giảm với sự gia tăng nồng độ Mo, trong khi lực kháng từ Hc tăng từ 5,2 kOe cho x = 1
đến giá trị tối ưu 6,3 kOe cho x = 2. Sau đó lực kháng từ giảm với sự tăng thêm của
Mo. Điều này cho thấy rằng việc bổ sung Mo thích hợp có thể dẫn đến sự gia tăng
lực kháng từ.
Bảng1.4. Tính chất từ của băng Co80Zr18-xMoxB2.
Co80Zr18-xMoxB2 X = 1 X = 2 X = 3 X = 4
σr (emu/g) 39,84 36,14 35,63 32,86
Hc (kOe) 5,2 6,3 6,0 5,2
Hình 1.42 cho thấy phổ nhiễu xạ tia X của các mẫu nói trên. Các phổ nhiễu
xạ của băng Co80Zr18-xMoxB2 gồm có các pha Co5Zr, Co23Zr6 và fcc-Co. Với sự gia
tăng nồng độ của Mo, có sự tăng tương ứng của pha Co5Zr. Hiện tượng này là rất
rõ ràng khi nồng đọ Mo tăng đến 4%. Cường độ của đỉnh Co5Zr, yếu hơn so với
các đỉnh của Co23Zr6 và fcc-Co trong Co80Zr18-xMoxB2 (x = 1, 2, 3) và trở nên mạnh
hơn so với các đỉnh Co23Zr6 và fcc-Co trong Co80Zr18-xMoxB2 (x = 4). Nó hỗ trợ
quan điểm rằng thay thế Mo cho Zr đóng một vai trò quan trọng trong việc ổn định
pha Co5Zr [19]. Mặc dù pha Co5Zr cho lực kháng từ cao, nhưng giá trị lực kháng từ
tối đa của băng Co80Zr18-xMoxB2 (x = 1, 2, 3, 4) xuất hiện trong băng
Co80Zr16Mo2B2 chứ không phải trong băng Co80Zr14Mo4B2. Điều này có thể là do
29
các tỷ lệ tương ứng của mỗi pha, nghĩa là, có thể tồn tại một tỷ lệ quan trọng của
từng pha, nó đóng góp phần lớn vào lực kháng từ.
Băng Co80Zr18-xMoxB2 (x = 1, 2, 3 và 4) được ủ ở nhiệt độ từ 500
o
C đến
700
o
C trong 30 phút. Hình 1.43 biểu diễn sự phụ thuộc của lực kháng từ vào nhiệt
độ ủ của băng Co80Zx16Mo2B2. Kết quả cho thấy, lực kháng từ của băng giảm khi
băng được ủ 500
o
C, tăng đến một giá trị tối đa là 6,8 kOe tại 600
o
C và sau đó lại
giảm khi tăng hơn nữa nhiệt độ ủ.
Các phổ nhiễu xạ tia X tương ứng của các băng Co80Zr16Mo2B2 khi ủ ở các
nhiệt độ khác nhau được hiển thị trong hình 1.44.
Hình 1.42. Phổ XRD của mẫu băng
Co80Zr18-xMoxB2 (x = 0 - 4) [23].
Hình 1.43. Sự phụ thuộc của lực
kháng từ của mẫu băngCo80Zr16Mo2B2
vào nhiệt độ ủ [23].
Hình 1.44. Phổ XRD của mẫu băng Co80Zr16Mo2B2ủ ở (a) 500oC, (b) 55
o
C,
(c) 600
o
C, (d) 650
o
C và (e) 700
o
C [23].
30
Trên phổ nhiễu xạ gồm các pha Co5Zr, Co23Zr6 và fcc-Co, đã được tìm thấy
ở băng Co80Zr16Mo2B2 ủ ở nhiệt độ từ 500
o
C đến 600
o
C giống với trường hợp các
băng trước khi xử lý nhiệt. Khi băng Co80Zr16Mo2B2 được ủ ở nhiệt độ cao hơn tại
650
o
C và 700
o
C, ngoài các pha Co5Zr, Co23Zr6 và fcc-Co còn xuất hiện thêm pha
Co11Zr2.
Vi cấu trúc của băng Co80Zr16Mo2B2 trước khi ủ và khi ủ ở 600
o
C và 700
o
C
trong 30 phút đã được phân tích bởi SEM, chúng ta có thể thấy trong hình 1.45. Kết
quả cho thấy rằng, kích thước hạt của băng Co80Zr16Mo2B2 trước khi ủ là khá nhỏ
(khoảng 0,5 µm, trong khi các băng ủ tại 600
o
C có hạt mịn (khoảng 1 µm và kích
thước hạt của băng Co80Zr16Mo2B2 ủ ở 700
o
C là lớn hơn nhiều (khoảng 2 µm).
Từ cả phổ nhiễu xạ tia X và phân tích SEM, có thể kết luận rằng xử lý nhiệt
dẫn
Các file đính kèm theo tài liệu này:
- khoa_luan_anh_huong_cua_pha_tap_nb_va_u_nhiet_len_cau_truc_v.pdf