Khóa luận Ứng dụng kỹ thuật Multiplex – PCR để phát hiện một số gen độc lực của nhóm escherichia coli sản sinh độc tố shiga (STEC) phân lập được từ phân bò, heo tiêu chảy và thịt bò

MỤC LỤC

TRANG

Lời cảm tạ iii

Tóm tắt iv

Summary v

Mục lục vi

Danh sách các chữ viết tắt ix

Danh sách các bảng x

Danh sách các sơ đồ, biểu đồ, hình xi

1. MỞ ĐẦU 1

1.1. Đặt vấn đề 1

1.2. Mục tiêu – yêu cầu 2

1.2.1. Mục tiêu 2

1.2.2. Yêu cầu 2

2. TỔNG QUAN TÀI LIỆU 3

2.1. Vi khuẩn E. coli 3

2.1.1 Đặc điểm sinh học 3

2.1.2. Yếu tố kháng nguyên 3

2.1.3. Phân loại E. coli 4

2.2. Shiga toxigenic E. coli (STEC) 5

2.2.1.Thuật ngữ 5

2.2.2. Các yếu tố liên quan đến đặc tính gây bệnh của STEC 6

2.2.2.1. Độc tố Shiga (Stx) 6

2.2.2.2. Enterohemolysin 8

2.2.2.3. Yếu tố bám dính 8

2.2.3. Cách sinh bệnh 9

2.2.4. Khía cạnh lâm sàng 10

2.2.5. Dịch tễ học 11

2.2.6. Chẩn đoán 12

2.2.7. Phòng ngừa 12

 

2.3. Serotype O157:H7 12

2.4. Kỹ thuật PCR 14

2.4.1. Khái niệm 14

2.4.2. Nguyên tắc 14

2.4.3. Các thành phần cần thiết của phản ứng PCR 15

2.4.4. Phân tích kết quả PCR 16

2.4.5 Multiplex – PCR 16

2.4.6. Ứng dụng 16

3. NỘI DUNG VÀ PHƯƠNG PHÁP THỰC HIỆN 18

3.1.Thời gian và địa điểm thực hiện 18

3.1.1. Thời gian 18

3.1.2. Địa điểm 18

3.2. Nội dung thực hiện 18

3.3. Phương pháp thực hiện 18

3.3.1 Vật liệu thí nghiệm cơ bản . 18

3.3.2. Cách lấy mẫu và bảo quản mẫu 19

3.3.2. Nuôi cấy và phân lập E. coli 19

3.3.2.1. Môi trường nuôi cấy 19

3.3.2.2. Qui trình phân lập, định tính 19

(1) Nuôi cấy và phân lập 19

(2) Chọn khuẩn lạc E. coli 20

(3) Thử sinh hóa 20

3.3.3. Ly trích DNA 20

3.3.4. Qui trình multiplex – PCR 22

3.3.5. Điện di, đọc kết quả 23

4. KẾT QUẢ VÀ THẢO LUẬN 24

4.1. Kết quả phát hiện các gen độc lực của E. coli phân lập được từ phân bò tiêu chảy 24

4.2. Kết quả phát hiện gen độc lực của E. coli phân lập được từ phân heo con cai sữa tiêu chảy 26

4.3. Kết quả phát hiện các gen độc lực của E. coli phân lập được từ phân bê tiêu chảy 28

4.4. Kết quả phát hiện gen độc lực của E. coli phân lập được từ bề mặt thịt bò 29

4.5 Tổng kết kết quả phát hiện gen độc lực của E. coli trên các mẫu khảo sát có nguồn gốc từ bò và heo 31

5. KẾT LUẬN VÀ ĐỀ NGHỊ 34

5.1. Kết luận 34

5.2. Tồn tại và đề nghị 34

6. TÀI LIỆU THAM KHẢO 36

7. PHỤ LỤC 41

 

 

 

 

 

 

doc43 trang | Chia sẻ: maiphuongdc | Lượt xem: 2633 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Khóa luận Ứng dụng kỹ thuật Multiplex – PCR để phát hiện một số gen độc lực của nhóm escherichia coli sản sinh độc tố shiga (STEC) phân lập được từ phân bò, heo tiêu chảy và thịt bò, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
nh O:H phổ rộng. Karmali (1989) đã liệt kê 32 serogroup O (tương đương với 60 tuýp O:H khác nhau). Trên khắp thế giới, các dòng STEC thuộc serotype O157:H- là nguyên nhân chính gây bệnh cho người. Việc phân lập các serotype này thường dựa vào khả năng không lên men sorbitol nên đã góp phần đánh giá quá cao tỉ lệ mắc phải nhóm này so với các serotype khác. Khi một tuýp được phân lập là O157, có lẽ có khuynh hướng bỏ qua tầm quan trọng tiềm năng gây bệnh của các tuýp khác. Trong khi đó, các serotype STEC không thuộc O157:H7 cũng là nguyên nhân nổi bật gây bệnh cho người. Nguồn lây nhiễm: Nhiều cuộc điều tra dịch tễ đã chứng minh rằng các dòng STEC hiện diện trong đường ruột của nhiều loài vật nuôi như bò, cừu, heo, dê, chó, mèo (Beutin và ctv, 1995) và cả ngựa (Chalmer và ctv, 1997). Do đó, STEC tồn lưu trong gia súc chính là nguồn quan trọng gây bệnh cho người, và nguồn quan trọng nhất là từ trâu bò. STEC lây truyền qua người chủ yếu bằng con đường thực phẩm, nước và từ người qua người. Cụ thể, STEC có thể xâm nhập vào chuỗi sản xuất thực phẩm cho con người từ nguồn gốc vật nuôi, vấy nhiễm thông thường nhất cho thịt là phân hoặc các thành phần trong ruột sau khi hạ thịt (Paton và Paton, 1998). Truyền lây STEC giữa người và người xảy ra trong các đợt bộc phát bệnh. Thời gian bài thải O157 qua phân là 2 – 4 tuần, nhưng khoảng 13% bệnh nhân thải O157 hơn một tháng và triệu chứng bệnh không biểu hiện trong giai đoạn sau. Như vậy nguy cơ truyền lây giữa người – người là cao (Keene và ctv, 1994). 2.2.6. Chẩn đoán Có những khó khăn liên quan đến chẩn đoán cảm nhiễm do STEC. Trong giai đoạn đầu, STEC tồn tại nhiều trong phân; có nhiều trường hợp, STEC chiếm trên 90% quần thể vi sinh vật hiếu khí (Paton và ctv, 1996). Tuy nhiên, lúc bệnh thuyên giảm, số lượng này giảm nhanh cực kỳ. Đối với những bệnh nhân HUS, triệu chứng dạ dày ruột có thể chỉ xuất hiện một tuần hoặc nhiều tuần, và ở thời điểm này số lượng STEC hiện diện trong phân rất ít. Trong vài trường hợp, tiêu chảy không kéo dài và nếu lấy bệnh phẩm qua trực tràng thì số lượng sẽ hạn chế. Vì những lí do này, yêu cầu của phương pháp chẩn đoán thích hợp phải nhạy, nhanh và đòi hỏi khối lượng mẫu tối thiểu. Các qui trình chẩn đoán thường tập trung vào việc phát hiện Stx, đặc biệt là Stx trong phân. Do các qui trình khác nhau về tính phức tạp, thời gian, độ nhạy, tính chuyên biệt và giá thành, vì vậy phải có chiến lược chẩn đoán thích hợp tùy hoàn cảnh và nguồn mẫu (Paton và Paton, 1998). 2.2.7. Phòng ngừa E. coli gây bệnh theo phân ra ngoài và phát tán trong đất, nước, không khí. Ngoài ra, bệnh có thể lây truyền từ người sang người do tay bẩn, thực phẩm và nước uống bị nhiễm. Do đó, bệnh có thể gây thành dịch, đặc biệt ở nhà trẻ, khoa nhi của bệnh viện và người già. Vì vậy, phòng bệnh chủ yếu là tuân thủ nghiêm ngặt qui chế vệ sinh, chú ý xử lý phân và dụng cụ của bệnh nhân. Không nên ăn những loại thực phẩm không đảm bảo chất lượng, đặc biệt là sản phẩm từ thịt chưa nấu chín vì chúng có thể là nguồn truyền nhiễm STEC. Có thể xác định chỉ số E. coli trong nước để xem nước có nhiễm bẩn hay không. 2.3. Serotype O157:H7 Theo thống kê về tình hình các ổ dịch bệnh do nhiễm phải STEC thì hầu hết các trường hợp đều do serotype O157:H7 gây ra (Nataro và Kaper, 1998). Điều này cho thấy serotype này nguy hiểm hơn, dễ lây lan bệnh hơn so với các serotype khác. Lần đầu tiên, serotype O157:H7 được phân lập và định danh vào năm 1982. E. coli O157:H7 ngày càng có tác động lớn ở Mỹ và châu Âu. Hàng năm, ở Mỹ có trên 73000 ca ngộ độc thực phẩm do nhiễm phải O157:H7, trong đó có 61 trường hợp tử vong. Nguyên nhân do ăn phải thịt bò chưa nấu chín hay đã bị vấy nhiễm, do uống sữa tươi hay do truyền lây giữa người và người sau khi đi bơi trong các hồ đã bị nhiễm (USA Department of Agriculture’s Food safety and Inspection Service, 2004). Từ đó, người ta xem O157:H7 là nguyên nhân phổ biến nhất cho HC và HUS. Serotype này có một số đặc điểm khác biệt so với các serotype E. coli khác: - Nhạy cảm với nhiệt độ, không phát triển được ở nhiệt độ 44 – 44,50C (Jay, 2000). - Không có khả năng lên men D-sorbitol trong 24 giờ. Trong khi đó có đến 75 – 94% những dòng E. coli khác lại lên men sorbitol. Do đó, người ta thay thế môi trường MacConkey có lactose bằng SMAC chọn lọc chứa 1% sorbitol để phân lập (Smith và Scotland, 1993). - Không biểu hiện hoạt tính b-D-glucuronidase (GUD): Điểm khác biệt về sinh hóa của dòng O157:H7 là không cho GUD dương tính, trong khi đó khoảng 90 – 95% chủng E. coli cho GUD dương tính. Và người ta dựa vào đặc tính này để phân biệt O157:H7 với các dòng E. coli khác (Monday và ctv, 2001). GUD là enzyme xúc tác sự thủy phân b-D-glucuronide thành rượu và glucuronate. Mặc dù không biểu hiện GUD nhưng các serotype O157:H7 vẫn mang đoạn gen uid hoàn chỉnh (gồm cả vùng điều hòa) trên nhiễm sắc thể. Kiểu hình đặc trưng này là do đã xảy ra các đột biến trên gen uid. Hầu hết các đột biến trên uid ở O157:H7 là đột biến thoái hóa, ví dụ như đột biến điểm thay thế T bằng G ở vị trí 92 so với E. coli thuộc chủng hoang dại (wild-type) (Feng và Lampel, 1994) hay đột biến do sự chèn thêm hai base G-G ở vị trí +686 trên uid ở serotype O157:H7 (Monday và ctv, 2001). Tóm lại, những đột biến này có thể ảnh hưởng đến khả năng hoạt động của GUD, O157:H7 vẫn sản sinh GUD nhưng GUD bị bất hoạt, không thực hiện chức năng thủy phân của nó được. Và điều này vẫn chưa được làm sáng tỏ hoàn toàn. - Kháng kháng sinh: cefixime, sulfivoxazol, tetracycline, streptomycine và các tác nhân ức chế khác như potassium tellurite (ức chế các VSV thông thường) (Kim và ctv, 1994). - Tính kháng acid (acid resistance - AR) đóng vai trò quan trọng cho khả năng sống sót của vi khuẩn trong môi trường acid. E. coli O157:H7 có khả năng sống sót trong môi trường acid từ pH = 2 đến pH = 7. Chẳng hạn, O157:H7 sống đến 56 ngày ở pH >= 4 trong môi trường TBS (Tryptic Soybean Broth), ngoài ra nó không phát triển ít nhất 5 giờ ở pH 3 -2,5 khi nhiệt độ 37oC trong môi trường canh Luria có điều chỉnh pH bằng HCl (trích dẫn bởi Jay, 2000). Đặc tính kháng acid này do gen rpoS qui định. Có 3 hệ thống AR khác nhau (Foster, 2004): (1) Hệ thống AR1: chỉ hoạt động khi tế bào tăng trưởng trong môi trường yếm khí với sự vắng mặt của glucose. (2) Hệ thống AR2: hoạt động phụ thuộc vào sự có mặt của glutamate. (3) Hệ thống AR3: hoạt động phụ thuộc vào sự có mặt của arginine. Ba hệ thống này hoạt động suốt quá trình tăng trưởng ở pha cân bằng (stationery phase) của vi khuẩn. - Khả năng chịu mặn: Trong canh khuẩn 4,5% NaCl, vi khuẩn tăng số lượng gấp 3 lần khi tăng thời gian lên 2 lần, và không phát triển khi ³8,5% NaCl (Jay, 2000). 2.4. Kỹ thuật PCR 2.4.1. Khái niệm Phương pháp PCR (Polymerase Chain Reaction) do Kary Mullis và cộng sự phát minh năm 1985 đã và đang được sử dụng rộng rãi. Đây là một phương pháp tạo dòng in vitro, không cần sự hiện diện của tế bào. 2.4.2. Nguyên tắc Phản ứng PCR được thực hiện trên cơ sở phản ứng sinh tổng hợp DNA, là phản ứng gồm nhiều chu kì nối tiếp nhau. Mỗi chu kì gồm 3 bước: Bước 1: là giai đoạn biến tính (denaturation), nhiệt độ thường sử dụng là 94 – 950C Bước 2: là giai đoạn lai (hybridization), nhiệt độ dao động trong khoảng 400C – 700C. Bước 3: là giai đoạn kéo dài (elongation hay extension), thường ở nhiệt độ 720C. Một chu kì gồm 3 bước trên sẽ được lặp đi lặp lại nhiều lần, và sau mỗi lần lặp lại sẽ làm tăng gấp đôi lượng DNA của lần trước. Số chu kì thường theo kinh nghiệm và có thể trong khoảng 25 – 30 chu kì, tùy theo lượng của mẫu DNA lúc bắt đầu và độ nhạy mong muốn. 2.4.3. Các thành phần cần thiết của phản ứng PCR - Dung dịch đệm: thành phần của dung dịch đệm có thể thay đổi tùy loại enzyme sử dụng, quan trọng nhất là ion Mg2+. Nó hình thành một phức hợp hòa tan với dNTP, rất cần cho quá trình liên kết các dNTP, xúc tác cho enzyme polymerase, làm tăng nhiệt độ nóng chảy (Tm) của DNA mạch đôi. Nồng độ MgCl2 trong hỗn hợp phản ứng cuối cùng thường biến thiên từ 0,5 – 5 mM (Hồ Huỳnh Thùy Dương, 1998). - Các dNTP (deoxyribonucleotide triphosphate): là hỗn hợp 4 loại dATP, dTTP, dCTP, dGTP làm nguyên liệu cho phản ứng tổng hợp DNA. - Mồi (primer): là những oligonucleotide mạch đơn, có trình tự bổ sung với trình tự base của hai đầu mạch khuôn để khởi đầu quá trình tổng hợp DNA. Các chuỗi primer nên được thiết kế để nhân một đoạn DNA sao cho đạt chiều dài tối hảo là 100 – 1000 bp mặc dù trong vài trường hợp sản phẩm chỉ 10 bp. - Taq polymerase: là DNA polymerase chịu nhiệt, được chiết tách từ vi khuẩn Thermus aquaticus ở suối nước nóng. Taq không bị phá hủy ở nhiệt độ cao và xúc tác tổng hợp từ đầu đến cuối quá trình phản ứng dưới sự hiện diện của Mg2+. Hoạt lực của Taq bị ảnh hưởng rất lớn bởi nồng độ Mg2+. Nồng độ tối hảo Mg thường là 1,5 mM (Trần Thị Dân, 2001). - DNA mẫu xét nghiệm. 2.4.4. Phân tích kết quả PCR Sau khi thực hiện phản ứng PCR, tùy vào mục đích mà người ta sử dụng nhiều kỹ thuật sinh học phân tử khác nhau để phân tích sản phẩm của phản ứng PCR như đọc trình tự sản phẩm PCR, tạo dòng sản phẩm PCR … Tuy nhiên, công việc đầu tiên sau khi thực hiện phản ứng PCR là phát hiện sản phẩm PCR bằng phương pháp điện di. Sau khi điện di, các DNA trong gel sẽ hiện hình dưới tia tử ngoại (UV) nhờ ethidium bromide, chất này có khả năng gắn xen vào các base của các nucleotide và phát huỳnh quang dưới tác dụng của tia UV. Và để ước lượng kích thước DNA trên gel, người ta sử dụng một “yếu tố đánh dấu trọng lượng phân tử “ (molecular weight marker - MWN) hay còn gọi DNA ladder (thang chuẩn). 2.4.5. Multiplex – PCR Là phản ứng PCR sử dụng đồng thời nhiều cặp mồi để khuếch đại nhiều đoạn DNA trong cùng một phản ứng PCR. Phương pháp này được thử nghiệm thành công vào năm 1988 và được áp dụng vào nhiều công trình nghiên cứu. Cho đến nay, vẫn chưa có nguyên tắc chung hay thành phần chuẩn nào cho việc tối ưu hóa phản ứng multiplex – PCR. Do vậy, ứng với mỗi một điều kiện phản ứng, cần phải điều chỉnh cho phù hợp với mục đích mong muốn. 2.4.6. Ứng dụng Hiện nay, thành tựu của PCR mở ra nhiều triển vọng cho sinh học phân tử, với nhiều ứng dụng trong sinh học, y khoa, nông nghiệp, khảo cổ, pháp y và hình sự. Trong nghiên cứu genome, PCR được ứng dụng trong nhân bản vô tính, multiplex PCR, cloning cDNA bằng PCR đảo (inverse PCR), recombinant PCR,... Trong y khoa và thú y, PCR được sử dụng để chẩn đoán các mầm bệnh virus, vi khuẩn, protozoa lẫn ký sinh trùng đa bào. Trong nông nghiệp và công nghiệp thực phẩm, sử dụng PCR để phát hiện gen halothan, gen thụ thể estrogen, gen thụ thể prolactin … trong công tác chọn giống vật nuôi, phát hiện các vi khuẩn gây ngộ độc thực phẩm : E. coli, Salmonella, Staphylococcus aureus, Campylobacter, ... Phần 3. NỘI DUNG VÀ PHƯƠNG PHÁP TIẾN HÀNH 3.1.Thời gian và địa điểm thực hiện 3.1.1. Thời gian Đề tài được thực hiện từ ngày 1/03/2005 đến ngày 30/07/2005. 3.1.2. Địa điểm - Mẫu phân được lấy từ các hộ hoặc trại chăn nuôi ở Đồng Nai, TP. HCM và Tiền Giang. - Mẫu bề mặt thịt bò được lấy ở lò mổ Dĩ An-Bình Dương. - Nuôi cấy, phân lập vi khuẩn được thực hiện tại Phòng thực hành Kiểm nghiệm thú sản và Môi trường sức khỏe vật nuôi, Khoa Chăn nuôi – Thú y, Trường Đại học Nông Lâm Thành phố Hồ Chí Minh. - Xác định các gen độc lực của E. coli được thực hiện tại Trung tâm Phân tích Thí nghiệm Hóa sinh, Trường Đại học Nông Lâm Thành phố Hồ Chí Minh. 3.2. Nội dung thực hiện - Phân lập vi khuẩn E. coli trong phân bò, heo và bề mặt thịt bò. - Li trích DNA của E. coli phân lập được. - Thực hiện phản ứng multiplex – PCR để phát hiện các gen eae, ehxA, stx1, stx2 và uid của E. coli. 3.3. Phương pháp thực hiện 3.3.1. Vật liệu thí nghiệm cơ bản Dụng cụ lấy mẫu: tăm bông, đèn cồn, chai cồn, môi trường chuyên chở Carry Blair, ... Mẫu vi khuẩn đối chứng dương: EDL933. ... 3.3.2. Cách lấy mẫu và bảo quản mẫu - Dùng muỗng vô trùng lấy phần giữa cục phân (khoảng 10 -12 g) mà bò, heo vừa mới thải ra, cho vào túi nylon vô trùng, buộc kỹ, bảo quản 4 - 80C và chuyển về phòng thí nghiệm càng nhanh càng tốt. Phân tiêu chảy có thể được lấy bằng cách dùng tăm bông, cho vào môi trường chuyên chở Carry Blair, chuyển về phòng thí nghiệm. - Quét bề mặt thịt bò bằng gạc hoặc tăm bông vô trùng, cho vào ống nghiệm chứa sẵn nước pepton đệm. 3.3.2. Nuôi cấy và phân lập E. coli 3.3.2.1. Môi trường nuôi cấy Môi trường tăng sinh Do số lượng E.coli nhóm STEC, đặc biệt là E. coli gây bệnh hiện diện trong thực phẩm rất ít, cho nên trước khi phân lập chúng tôi sử dụng môi trường tăng sinh pepton đệm có bổ sung kháng sinh cefixime (0,0125mg/L) và vancomycin (8mg/L) (FDA, 2002) để ức chế các vi khuẩn gram dương và vi khuẩn sống hoại sinh khác. Môi trường phân lập Để xác định môi trường nào cho kết quả tốt khi phân lập E. coli nhóm STEC mang gen độc lực, chúng tôi sử dụng 3 loại môi trường MAC, SMAC và CT - SMAC. Môi trường phân lập là môi trường MacConkey (MAC), Sorbitol MacConkey (SMAC), và Sorbitol MacConkey (CT - SMAC) có bổ sung kháng sinh cefixime (0,05mg/L) và tellurite (2,5mg/L) (FDA, 2002). Khoảng 90% E. coli đều lên men đường lactose, trên môi trường MAC, E. coli điển hình có khuẩn lạc màu đỏ hồng. Trên môi trường SMAC và CT - SMAC, E. coli không lên men đường sorbitol nên cho khuẩn lạc màu trắng, những dòng E. coli lên men sorbitol cho khuẩn lạc màu hồng. Việc tầm soát E. coli nhóm STEC trên phân, bệnh phẩm trên thạch SMAC, CT - SMAC là công cụ ban đầu phát hiện serotype O157 thuộc nhóm STEC. 3.3.2.2. Qui trình phân lập, định tính (1) Nuôi cấy và phân lập E. coli hiện diện trong phân với số lượng lớn, nên phân heo hoặc bò sau khi thu thập và chuyển về phòng thí nghiệm được tiến hành ria trực tiếp trên môi trường thạch đĩa MAC và SMAC, ủ 370C trong 18 - 24giờ, chọn và thu khuẩn lạc điển hình, giữ gốc. Li trích DNA rồi thực hiện multiplex – PCR để phát hiện các gen độc lực. Riêng đối với mẫu bề mặt thịt, do lượng E. coli hiện diện trên bề mặt thịt thường thấp so với mẫu phân, ngoài ra những dòng E. coli gây bệnh hiện diện trong phân, thực phẩm với tần số thấp hơn nhiều so với nhóm E. coli STEC không thuộc O157 (Paton và Paton, 1998). Đây chính là trở ngại cho việc phát hiện E. coli O157:H7, nên việc phết và ria trực tiếp trên môi trường MAC, SMAC thường gặp nhiều khó khăn. Vì vậy, để cải thiện khả năng phát hiện STEC có mang gen độc lực từ thịt, sử dụng môi trường pepton đệm có bổ sung vancomycin và cefixime (PVC) nhằm hạn chế sự cạnh tranh phát triển của những vi khuẩn khác để STEC có cơ hội tăng sinh tốt hơn. Sau khi ủ 370C trong 24h, canh khuẩn này được cấy ria trở lại trên môi trường thạch CT - SMAC để chọn lọc chuyên biệt nhóm STEC. (2) Chọn khuẩn lạc E. coli Trên từng loại môi trường MAC, SMAC, CT - SMAC, chọn ngẫu nhiên 6 – 10 khuẩn lạc rời rạc đại diện cho mỗi nhóm hình thái: Khuẩn lạc hồng trên môi trường MAC được kí hiệu HM. Khuẩn lạc hồng hoặc trắng trên môi trường SMAC được kí hiệu lần lượt là HS hoặc TS. Khuẩn lạc trắng hoặc hồng trên môi trường CT - SMAC kí hiệu lần lượt là TCT hoặc HCT. Dùng que cấy chạm nhẹ trên từng khuẩn lạc rời rạc rồi chuyển vào từng ống NA riêng biệt để giữ gốc riêng lẻ. Thu phần khuẩn lạc còn lại của mỗi nhóm, gom chung vào 1 eppendorf chứa sẵn 0,4 – 0,5 ml nước cất khử ion vô trùng. (3) Thử sinh hóa Sử dụng nghiệm pháp IMViC (FAO, 1992) cho từng khuẩn lạc riêng lẻ thuộc nhóm đó để xác định E. coli . 3.3.3. Li trích DNA Theo Cebula và ctv (1995), kết hợp với ý kiến của Cerna (2003) và Botteldoorn (2003), việc ly trích DNA được thực hiện như sau: thu khoảng 6 -10 khuẩn lạc E. coli trên môi trường thạch (MAC hoặc SMAC hoặc CT - SMAC hoặc NA) cho vào eppendorf đựng sẵn 0,4 - 0,5 ml nước cất hai lần vô trùng, đun sôi 10 phút, lấy ra và chuyển vào tủ âm -700C giữ trong 10 phút. Sau khi rã đông hoàn toàn, ly tâm 13000 vòng trong 3 phút. Để yên và hút phần dung dịch ở phía trên làm DNA khuôn mẫu (DNA xét nghiệm). Mẫu Thịt Phân Pepton (vancomycin, cefixime) (37oC/24h) SMAC (37oC/24h) MAC (37oC/24h) CT - SMAC (37oC/24h) Chọn 6 - 10 khuẩn lạc đỏ hồng Chọn 6 - 10 khuẩn lạc theo từng nhóm riêng: trắng hoặc đỏ hồng hoặc cả hai Cấy từng khuẩn lạc được chọn vào từng ống thạch nghiêng NA (37oC/24h) Thử IMViC (+/-;+;-;-) Thu tất cả phần còn lại của những khuẩn lạc đã chọn theo từng nhóm riêng và mỗi nhóm cho vào mỗi eppendorf chứa sẵn 0,4 - 0,5 ml H2O cất khử ion 2 lần Ly trích DNA (DNA nhóm khuẩn lạc) (+)) (-) Ly trích DNA riêng theo từng ống NA Multiplex - PCR Loại bỏ ống NA đã giữ gốc Multiplex- PCR Sơ đồ 3.1. Qui trình phân lập, định tính và phát hiện gen độc lực E. coli 3.3.4. Qui trình multiplex – PCR (1) Trình tự các đoạn mồi sử dụng trong multiplex – PCR Bảng 3.1 Trình tự các đoạn mồi sử dụng trong phản ứng multiplex - PCR Mồi (primer) Trình tự oligonucleotide (5’"3’) Kích cỡ DNA được khuếch đại (bp) Eae – F Eae – R ATTACCATCCACACAGACGGT ACAGCGTGGTTGGATCAACCT 397 EhxA – F EhxA –R GTTTATTCTGGGGCAGGCTC CTTCACGTCACCATACATAT 158 Stx1 - F Stx1 - R CAGTTAATGTGGTGGCGAAGG CACCAGACAATGTAACCGCTG 348 Stx2 - F Stx2 - R ATCCTATTCCCGGGAGTTTACG GCGTCATCGTATACACAGGAGC 584 Uid - F Uid - R GCGAAAACTGTGGAATTGGG TGATGCTCCATCACTTCCTG 252 (Feng và Monday, 2000) (2) Các thành phần của phản ứng PCR: (Feng và Monday, 2000) Mỗi phản ứng là 25 ml, gồm các thành phần sau: PCR buffer 1,1X; MgCl2 3mM; mỗi dNTP 200 mM; mỗi loại primer 7,5 pmol; Taq 2,5 ml; DNA 2 ml; và nước cất vừa đủ 25 ml. (3) Chu kỳ nhiệt (Feng và Monday, 2000) - Tiền biến tính 950C/5 phút - Biến tính 940C/1 phút - Ủ bắt cặp 610C/1 phút 25 chu kỳ - Kéo dài 720C/1 phút - Kéo dài chuỗi 720C/7 phút Điện di, đọc kết quả Lấy 10 ml sản phẩm PCR cùng với 2 ml loading dye được điện di trên gel agarose 1,6% trong TBE. Thang chuẩn (ladder) cũng được điện di đồng thời. Thời gian điện di 30 – 35 phút ở 90 V và 250 mA. Sau khi điện di, gel được ngâm trong dung dịch ethidium bromide khoảng 30 phút. Sau đó rửa sạch bằng nước và chụp hình gel với tia UV bằng máy chụp gel (phần mềm Quality One 2000, Bio-Rad). Các sản phẩm PCR được xác định bằng cách so với các băng của đối chứng dương và thang ladder 100 bp. Phần 4. KẾT QUẢ VÀ THẢO LUẬN 4.1. Kết quả phát hiện các gen độc lực của E. coli phân lập được từ phân bò tiêu chảy Kết quả phát hiện gen độc lực của E. coli trong từng nhóm khuẩn lạc phân lập được từ phân bò tiêu chảy được ghi nhận ở bảng 4.1. Trong 10 mẫu phân bò tiêu chảy có 5/10 mẫu (50%) phát hiện E. coli mang gen độc lực thuộc nhóm stx. Gen ehxA được phát hiện với tỉ lệ cao nhất (100%); kế đến là stx2 (4/10 mẫu – 40%), stx1 (1/10 mẫu – 10%); và không phát hiện được gen uid và eae. Như vậy, phân bò tiêu chảy là nguồn lưu cữu STEC mang gen stx2. Theo Paton và Paton (1998) đã nhận định rằng những dòng STEC mang stx2 thì thường liên kết bệnh nặng hơn so với những dòng STEC chỉ mang stx1. Do kinh phí hạn chế, mỗi loại môi trường phân lập chúng tôi chỉ chọn 2 khuẩn lạc riêng lẻ nhưng có kiểu hình giống nhau để xác định gen độc lực (li trích DNA từ gốc khuẩn lạc riêng lẻ đã nhân và giữ gốc trên thạch NA), kết quả được trình bày ở bảng 4.2. Kết quả ở bảng 4.2 cho thấy: (1) Ở mẫu số 1, chọn 2 khuẩn lạc hồng rời rạc (khuẩn lạc được đánh số thứ tự số 6 – HM6 và khuẩn lạc số 8 – HM8 trong nhóm khuẩn lạc HM) trên thạch MAC, multiplex - PCR đều phát hiện được gen stx2. Tương tự, 2 khuẩn lạc hồng trên thạch SMAC và 2 khuẩn lạc trắng trên thạch SMAC cũng đều mang gen stx2. Tương tự, đối với gen ehxA đều hiện diện cho mỗi khuẩn lạc riêng lẻ này. (2) Ở mẫu số 2, chọn 2 khuẩn lạc hồng rời rạc trên thạch MAC, multiplex - PCR đều phát hiện được gen ehxA nhưng không phát hiện được gen stx. Tương tự, 2 khuẩn lạc trắng trên thạch SMAC chỉ phát hiện một mẫu mang gen ehxA lẫn stx2. (3) Đối với mẫu phân số 3, chọn 2 khuẩn lạc hồng rời rạc trên môi trường MAC, 2 khuẩn lạc trắng trên SMAC, multiplex – PCR phát hiện 100% E. coli mang gen ehxA nhưng không có gen stx. Tóm lại, nhóm khuẩn lạc (gồm 6 – 10 khuẩn lạc) có mang gen độc lực thì chưa chắc từng khuẩn lạc riêng lẻ đều mang gen độc lực đó. Cho nên chọn từng khuẩn lạc để nghiên cứu là công việc cần thiết để xác định serotype của mỗi khuẩn lạc phân lập được. Nếu mục tiêu này không được đề cập thì việc thu hết các loại khuẩn lạc với các kiểu hình khác nhau để phát hiện sự hiện diện các gen độc lực của E. coli trong mẫu khảo sát là bước đi thích hợp. Bảng 4.1 Kết quả phát hiện gen độc lực của E. coli trong từng nhóm khuẩn lạc (HM, TS, và HS) ở phân bò tiêu chảy Mẫu Loại khuẩn lạc, môi trường Gen độc lực eae ehxA stx1 stx2 uid 1 HM _ + _ + _ HS _ + _ + _ TS _ + _ + _ 2 HM _ + _ + _ HS _ + _ _ _ TS _ + _ + _ 3 HM _ + _ + _ HS _ + _ _ _ TS _ + _ + _ 4 HM _ + _ _ _ HS _ + _ _ _ HCT _ _ _ _ _ 5 HM _ + _ _ _ HS _ + _ _ _ 6 HM _ + _ _ _ HS _ + _ + _ 7 HCT _ + _ _ _ 8 HCT _ + + _ _ 9 HM _ + _ _ _ TS _ + _ _ _ 10 HM _ + _ _ _ HS _ + _ _ _ TS _ + _ _ _ Bảng 4.2 Kết quả phát hiện gen độc lực E. coli từng khuẩn lạc riêng lẻ ở phân bò tiêu chảy Mẫu Loại khuẩn lạc, môi trường Gen độc lực eae ehxA stx1 stx2 uid 1 HM6 _ + _ + _ HM8 _ + _ + _ HS4 _ + _ + _ HS6 _ + _ + _ TS4 _ + _ + _ TS5 _ + _ + _ 2 HM1 _ + _ _ _ HM3 _ + _ _ _ TS1 _ _ _ _ _ TS2 _ + _ + _ 3 HM1 _ + _ _ _ HM3 _ + _ _ _ TS3 _ + _ _ _ TS7 _ + _ _ _ 4.2. Kết quả phát hiện gen độc lực của E. coli phân lập được từ phân heo con cai sữa tiêu chảy Kết quả phát hiện gen độc lực của E. coli từ 9 mẫu phân heo cai sữa tiêu chảy được trình bày ở bảng 4.3. Bảng 4.3 cho ta thấy có 4/9 mẫu (44,4%) mang gen stx, trong đó có ¼ mẫu mang gen stx1 (25%) và ¾ mẫu mang gen stx2 (75%), không có mẫu nào mang gen uid và eae, 9/9 mẫu (100%) mang gen ehxA. Blanco và ctv (1997) kết luận rằng gen stx1 thường hiện diện tỉ lệ thấp trên heo. Có 6/25 (24%) nhóm khuẩn lạc được phân lập từ 9 mẫu phân heo cai sữa tiêu chảy, cùng lúc mang 2 gen độc lực (ehxA và stx1 hoặc ehxA và stx2). Điều này sẽ làm tăng khả năng gây bệnh của E. coli đối với heo. Người ở mọi lứa tuổi đều có thể bị nhiễm STEC với những serotype khác nhau (Beutin và ctv, 1995). Bảng 4.3 Kết quả phát hiện gen độc lực của nhóm khuẩn lạc đại diện cho E. coli trong phân heo cai sữa tiêu chảy Mẫu Loại khuẩn lạc, môi trường Gen độc lực eae ehxA stx1 stx2 uid 1 HM _ + _ _ _ HS _ + _ _ _ TS _ + _ _ _ 2 HM _ + _ _ _ HS _ + + _ _ TS _ + _ _ _ 3 HS _ + _ _ _ TS _ + _ _ _ 4 HM _ + _ _ _ HS _ + _ _ _ TS _ + _ + _ 5 HS _ + _ + _ TS _ + _ + _ 6 HM _ + _ + _ HS _ + _ _ _ TS _ + _ + _ 7 HM _ _ _ _ _ HS _ + _ _ _ TS _ + _ _ _ 8 HM _ _ _ _ _ HS _ + _ _ _ TS _ + _ _ _ 9 HM _ _ _ _ _ HS _ + _ _ _ TS _ + _ _ _ 4.3. Kết quả phát hiện các gen độc lực của E. coli phân lập được từ phân bê tiêu chảy Ban đầu, đề tài chỉ tiến hành cấy ria trực tiếp mẫu phân heo hoặc bò lên hai loại môi trường MAC và SMAC để thu các nhóm khuẩn lạc và phát hiện gen. Hướng phân lập E. coli có sử dụng PVC và CT - SMAC chỉ để áp dụng đối với mẫu bề mặt thịt. Tuy nhiên, qua thực tế khảo sát (9 mẫu phân heo tiêu chảy và 10 mẫu phân bò tiêu chảy) cho thấy tần số phát hiện E. coli mang gen stx1 hiện diện với tỉ lệ thấp (10% ở bò tiêu chảy và 11,1% ở phân heo cai sữa tiêu chảy), và chưa có mẫu phân heo hay bò tiêu chảy nào được tìm thấy eae và uid. Theo Paton và Paton (1998) thì E. coli STEC dòng O157 ít hơn 1% trong quần thể E. coli. Mặt khác, ngoài E. coli, trong phân còn có sự hiện diện của nhiều loài vi khuẩn khác như Salmonella, Shigella, Campylobacter, Staphylococcus aureus, Proteus ... Vì vậy, để tăng khả năng phát hiện những dòng E. coli STEC mang gen gây độc từ phân bê tiêu chảy, chúng tôi tiến hành phân lập theo hướng có sử dụng môi trường tăng sinh chọn lọc và môi trường thạch chọn lọc chuyên biệt CT - SMAC. Kết quả phát hiện gen độc lực được ghi nhận cụ thể ở bảng 4.4. Trong 8 mẫu phân bê tiêu chảy, có 8/8 mẫu (100%) phát hiện được E. coli mang ít nhất 1 gen độc lực, có mẫu phát hiện E. coli mang 2 -3 gen độc lực. Gen ehxA được phát hiện với tỉ lệ cao nhất (8/8 mẫu – 100%), kế đến là gen stx1 (7/8 mẫu – 87,5%), gen stx2 (1/8 mẫu – 12,5%) . Trong khi đó, không phát hiện được gen uid trong bất kì mẫu nào. Smith và Scotland (1988) và Gyles (1992) cho rằng nhiều loại gia súc mang STEC không có biểu hiện triệu chứng, một vài dòng STEC có khả năng gây tiêu chảy cho bò, đặc biệt là bê. Và 7/8 (87,5%) mẫu đều hiện diện cả gen ehxA và stx. Theo Barrett và ctv (1992), độc tố Stx là điều kiện cần chứ chưa phải là điều kiện đủ để gây bệnh tiêu chảy trên vật nuôi. Do đó, sự xuất hiện đồng thời các gen ehxA và stx có thể góp phần giải thích lý do tiêu chảy trên bê. Feng và Monday (2000) cho biết có trên 100 loại serotype STEC khác nhau có thể sản sinh các loại độc tố Stx1, Stx2, và nhiều b

Các file đính kèm theo tài liệu này:

  • docluan van.doc
  • docBIA.DOC
  • docmuc luc.doc