MỤC LỤC
LỜI NÓI ĐẦU i
MỤC LỤC iii
DANH MỤC HÌNH VẼ v
THUẬT NGỮ VIẾT TẮT vii
CHƯƠNG I: GIỚI THIỆU VỀ KHUẾCH ĐẠI QUANG 1
1.1.Giới thiệu chung 1
1.2. Nguyên lý bộ khuếch đại quang 1
1.3.Phân loại khuếch đại quang 3
1.4. Hệ số độ lợi 3
1.5. Băng thông độ lợi 5
1.6. Công suất ngõ ra bão hoà 5
1.6.1. Độ lợi bão hoà 5
1.6.2. Công suất ngõ ra bão hoà 6
1.7. Hệ số nhiễu 7
1.8. Ứng dụng bộ khuếch đại quang 7
Kết luận chương I 9
CHƯƠNG II:BỘ KHUẾCH ĐẠI RAMAN 10
2.1.Tán xạ Raman 10
2.1.1.Ánh sáng 10
2.1.2.Tương tác của ánh sáng và môi trường 10
2.1.3.Sợi quang 11
2.1.4.Quá trình truyền ánh sáng trong sợi quang 13
2.1.5.Tính chất phi tuyến của sợi quang 16
2.1.6.Tán xạ ánh sáng 18
2.1.7.Tán xạ Raman 19
2.2. Ưu điểm của khuếch đại Raman 21
2.2.1.Cải thiện hệ số nhiễu 21
2.2.2. Cải thiện hệ số phẳng 23
2.3.Nguyên lý hoạt động bộ khuếch đại Raman 26
2.4.Bơm và phương trình tín hiệu 27
2.4.1. Phổ độ khuếch đại Raman. 29
2.4.2.Bộ khuếch đại Raman đơn bơm. 34
2.4.3 Khuếch đại Raman đa bơm. 43
2.5.Nguồn nhiễu trong bộ khuếch đại Raman 47
2.6.Phân loại các bộ khuếch đại Raman 49
2.6.1.Khuếch đại Raman phân bố DRA (Distributed Raman Amplifier) 49
2.6.2.Khuếch đại Raman tập trung LRA (Lumped Raman Amplifier) 51
2.6.3.Bộ khuếch đại quang lai ghép Raman/EDFA 51
Kết luận chương II 52
CHƯƠNG 3 :ỨNG DỤNG CỦA BỘ KHUẾCH ĐẠI RAMAN 53
3.1.Ứng dụng trong hệ thống WDM 53
3.2. Ứng dụng vào thiết bị khuếch đại quang OPTera Long Haul 1600G – CQ40Gbit/s Nortel 54
3.2.1. Giới thiệu chung hệ thống OPTera Long Haul 1600 54
3.2.1.1 1600 Amplifier 56
3.2.1.2.MOR Plus Amplifier 57
3.2.1.3.Wavelength Combiner 57
3.2.1.4.Wavelength Translator 57
3.2.1.5.Dense Regenerator 58
3.2.1.6.Optical Dedicated Protection Ring 58
3.2.2. Sơ đồ nguyên lý của một trạm có khuếch đại Raman 58
3.2.3. Chức năng các thành phần. 60
3.2.3.1.Các bộ khuếch đại Raman Dra-A và Dra-B: 60
3.2.3.2.Card phân tích phổ quang OSA 62
3.2.3.3.Bộ bù tán sắc và suy hao MSA 63
3.2.3.4.Card kênh dịch vụ quang OSC đơn chiều UniOSC 63
3.2.3.5.Card khuếch đại kép ( Dual Amplifier Circuit Pack ) 64
3.2.3.6.Card khuếch đại Booster 65
Kết luận chương III 66
KẾT LUẬN 67
TÀI LIỆU THAM KHẢO 68
76 trang |
Chia sẻ: lethao | Lượt xem: 4679 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Khuếch đại Raman trong hệ thống thông tin quang, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
nh thì công suất sóng Stoke sẽ tăng lên rất nhanh theo hàm mũ. Nguyên nhân gây ra hiện tượng này là quá trình tán xạ Raman kích thích.
2.2. Ưu điểm của khuếch đại Raman
Trong phần này, ta xét hai ưu điểm của khuếch đại Raman trong hệ thống truyền dẫn. Trước hết nó có thể được sử dụng như thế nào để cải thiện hệ số nhiễu của hệ thống; thứ hai là mẫu độ khuếch đại phẳng có thể đạt được như thế nào. Tất cả ưu điểm có thể áp dụng cho bất kỳ sợi quang truyền dẫn nào.
2.2.1.Cải thiện hệ số nhiễu
Hệ số nhiễu(NF) của bộ khuếch đại là tỷ số của SNR tín hiệu đầu vào và SNR tín hiệu đầu ra. Nó là thước đo để biết bộ khuếch đại suy giảm tín hiệu như thế nào. Trong hệ thống khuếch đại Raman, hệ số nhiễu tương đương (NFeq), biểu diễn hệ số nhiễu một bộ khuếch đại được đặt tại cuối bộ thu của băng truyền dẫn, không có bộ khuếch đại Raman, để cung cấp cùng SNR đạt được như khi sử dụng bộ khuếch đại Raman phân bố. Hai hệ thống tương đương được chỉ ra trong sơ đồ hình 2.8. Suy hao trong băng hình 2.8b là ; do đó độ lợi là G = ()-1, và hệ số nhiễu của băng không bơm là (không thêm nhiễu vì NF = Pin/ Pout). Biểu thức đã biết cho hệ số nhiễu cho hai bộ khuếch đại bậc đưa ra là NFsys = NF1 + (NF2 – 1)/ G1. Trong đó NF1(NF2) là hệ số nhiễu của bộ khuếch đại đầu tiên (thứ hai) và G1 là độ lợi của bộ khuếch đại đầu tiên. Cho hệ thống tương đương trong hình 2.8b:
NFsys = NFeq (2.19)
Phương trình hệ số nhiễu của hệ thống khuếch đại Raman cũng giống hệ thống tương đương, ta thấy rằng:
NFeq = hoặc NF = NF - (), (2.20)
trong đó chỉ số trên dB cho biết biến đã được biểu diễn bằng dB.
Hình 2.8: Sơ đồ của hệ thống khuếch đại Raman phân bố (a) và hệ thống tương đương của băng truyền dẫn và bộ khuếch đại sợi Er pha tạp (b)
Từ phương trình (2.20) ta thấy rằng NF có thể bé hơn 0. Như là một bộ khuếch đại không được thực hiện về mặt vật lý, nhưng bộ khuếch đại Raman phân bố có hiệu năng tốt hơn mặc dù không được ghép với một bộ khuếch đại rời rạc đặt sau băng. Rõ ràng, khuếch đại luôn luôn làm tăng thêm nhiễu cho tín hiệu, làm giảm SNR của nó. Trong trường hợp tốt nhất, nếu tín hiệu lan truyền dọc theo sợi cáp mà không có suy hao và không có khuếch đại, SNR của nó sẽ bằng giá trị đầu vào và bằng NF. Trường hợp xấu nhất là tín hiệu bị suy hao toàn bộ và sau đó được khuếch đại. Đây là trường hợp xấu nhất vì độ lợi yêu cầu từ bộ khuếch đại tại điểm cuối của băng đã được tăng lên; bởi vì nhiều nguồn bơm đã được yêu cầu, nhiều khuếch đại bức xạ tự phát(ASE) được sinh ra trong bộ khuếch đại. Thêm nữa công suất tín hiệu đầu vào cho bộ khuếch đại được giảm bớt. Công suất tín hiệu thấp hơn có nghĩa là ASE có thể chiếm ưu thế hơn với tín hiệu cho độ lợi trong bộ khuếch đại. Hai hệ số phối hợp cho SNR đầu ra thấp hơn và tăng NF. Nếu băng truyền dẫn được xét cho một loạt bộ khuếch đại rời rạc, sau đó các độ lợi đều được phân bố dọc theo cáp, thì độ lợi ít nhất được yêu cầu từ mỗi bộ khuếch đại riêng lẻ và công suất tín hiệu cao hơn được yêu cầu trong mỗi bộ khuếch đại đó. Đây là lý do tại sao khuếch đại phân bố cung cấp hiệu năng được cải thiện hơn so với khuếch đại rời rạc. Thêm nữa, nó cũng giải thích tại sao mỗi khi khuếch đại Raman làm việc, độ khuếch đại đều được phân bố dọc theo chiều dài sợi quang, cải thiện hiệu năng tốt hơn là cung cấp bởi hệ thống khuếch đại phân bố. Mục đích của nhiều cuộc thảo luận sau này là làm tăng độ khuếch đại bằng việc phân bố đều dọc theo sợi quang.
2.2.2. Cải thiện hệ số phẳng
Trong hệ thống viễn thông đa bước sóng một điều quan trọng là tất cả các bước sóng tín hiệu có nguồn quang tương tự nhau. Sự biến thiên trong độ lợi của mỗi bước sóng khác nhau sau khi đi qua một bộ khuếch đại đều được tham chiếu đến độ lợi phẳng. Nếu tín hiệu tại một bước sóng không tỷ lệ với khuếch đại, khi nó đi qua một vài bộ khuếch đại, nó sẽ tăng tương đối với kênh khác làm giảm độ lợi cho kênh khác. Tuy nhiên hệ thống sẽ bị giới hạn bởi kênh với độ khuếch đại thấp nhất. Kết quả, sau mỗi bộ khuếch đại phổ khuếch đại nói chung là phẳng. Gần như là chèn phần tử tổn hao vào bước sóng phụ thuộc trong bộ khuếch đại với mẫu phổ tương ứng. Khuếch đại Raman đưa ra khả năng đạt được điều này mà không cần phần tử tổn hao.
Trong khuếch đại Raman một mẫu phổ phẳng có thể nhận được bằng sử dụng nhiều bước sóng bơm. Xét cho một sợi quang, độ khuếch đại Raman chuẩn chỉ phụ thuộc vào bước sóng bơm, độ lớn của độ khuếch đại tỷ lệ với công suất bơm, và dạng biểu đồ của độ khuếch đại không phụ thuộc bước sóng bơm. Vì thế, nếu đa bơm được sử dụng một mẫu phổ khuếch đại phẳng có thể đạt được.
Bước sóng bơm và độ khuếch đại được yêu cầu tại mỗi bước sóng có thể xác nhận bằng phép cộng logarit mẫu độ khuếch đại tại bước sóng bơm riêng lẻ. Hình 2.9 chỉ ra mẫu độ khuếch đại riêng lẻ theo xếp chồng logarit. Ta có thể thấy rằng phần lớn độ khuếch đại là do bước sóng bơm lớn nhất. Tuy nhiên, công suất bơm yêu cầu không thể đạt được một cách dễ dàng từ sự tính toán số lượng nguồn bơm cần thiết để sinh ra một giá trị của độ khuếch đại Raman. Đó là bởi vì trong khuếch đại Raman bơm liên kết thì bơm bước sóng ngắn khuếch đại bơm bước sóng dài. Tác động này cũng chỉ ra trong hình 2.9, mà đường cong đánh dấu là “bơm – bơm” dốc hơn 3 dB trong phổ khuếch đại khi khuếch đại Raman bơm liên kết được xét.
Hình 2.9: Độ khuếch đại được tổng hợp từ các bước sóng riêng lẻ ( 1420, 1435, 1450, 1465, và 1480nm), xếp chồng logarit của nó, và tổng hợp biểu đồ độ khuếch đại với sự tương tác bơm tới bơm cho băng 25km của sợi quang dịch tán sắc. Công suất bơm tương ứng là 61, 55, 48,47 và 142 mW.
Sự tương tác bơm – bơm cũng tác động vào sự phát triển công suất bơm như chỉ ra trong hình 2.10. Nó chỉ ra sự giảm của công suất bơm trong băng 25km của sợi quang dịch tán sắc khi công suất là 100mW tại mỗi bước sóng bơm. Ban đầu công suất tại bước sóng bơm lớn nhất tăng khi nó nhận độ khuếch đại Raman từ bước sóng bơm khác. Do đó, việc phân bố công suất bơm điển hình như trong hình 2.11. Mặc dù hầu hết độ khuếch đại được cung cấp bởi bước sóng dài nhưng công suất bơm tại bước sóng này tương đối kém. Như bước sóng và công suất bơm đã chỉ ra trong hình 2.11, độ khuếch đại 12 dB có thể thu được với độ khuếch đại biến thiên ít hơn 0,5 dB từ 1525 tới 1595nm.
Hình 2.10:Các công suất bơm khác nhau trong một hệ thống khuếch đại Raman.
Hình 2.11: So sánh giữa công suất bơm phát và độ khuếch đại cung cấp bởi mỗi bước sóng bơm.
2.3.Nguyên lý hoạt động bộ khuếch đại Raman
Khuếch đại Raman dựa trên hiện tượng tán xạ Raman kích thích (Stimulated Raman Scattering). Tán xạ Raman kích thích là hiện tượng một nguyên tử hấp thụ năng lượng của một photon, sau đó tạo ra một photon có năng lượng khác. Vì vậy, tán xạ Raman kích thích được định nghĩa là hiện tượng photon thứ cấp được sinh ra do nguồn bên ngoài.
Để có khuếch đại Raman thì phải tạo ra sự nghịch đảo nồng độ. Điều này đạt được bằng cách cung cấp năng lượng cho các nguyên tử của sợi quang từ một laser bơm có bước sóng thấp hơn bước sóng của tín hiệu. Khi đó, các nguyên tử của sợi quang sẽ hấp thụ năng lượng bơm có năng lượng cao(bước sóng ngắn) và chuyển lên mức cao hơn. Khi có tín hiệu đến, nó sẽ kích thích các nguyên tử đang ở mức năng lượng cao chuyển sang trạng thái năng lượng thấp hơn và giải phóng ra một năng lượng dưới dạng photon ánh sáng có cùng bước sóng (dài hơn bước sóng bơm) và cùng pha với tín hiệu đến. Do đó, tín hiệu đã được khuếch đại
Hình 2.12:Sơ đồ chuyển năng lượng trong khuếch đại Raman
Dựa trên giản đồ năng lượng trên, tần số ánh sáng bơm fbơm và tần số ánh sáng được khuếch đại fkhuếch đại được tính như sau
fbơm= E3-E1 (2.21)
fkhuếch đại= (E2-E1)/h (2.22)
Trong đó: h là hằng số Plank;E1, E2, E3 là năng lượng của các trạng thái năng lượng cao(transition state), trạng thái năng lượng trung gian (vibration state) và trạng thái năng lượng thấp (ground state) của các nguyên tử trong sợi quang.
Trong khuếch đại Raman, tín hiệu quang được khuếch đại dọc theo toàn bộ chiều dài của sợi quang silic bình thường. Cấu trúc của một bộ khuếch đại Raman được minh họa trong hình 2.13
Hình 2.13: Cấu trúc bộ khuếch đại Raman
Sợi quang: là nơi xảy ra quá trình khuếch đại. Sợi quang này cũng là sợi quang truyền tín hiệu như sợi SMF, DCF..
Bộ ghép(Coupler): dùng để ghép các bước sóng tín hiệu vào sóng bơm
Laser bơm(Pump Laser):dùng để cung cấp năng lượng cho các nguyên tử của sợi quang chuyển lên trạng thái kích thích giúp tạo ra sự nghịch đảo nồng độ
Bộ cách ly(Isolator):Đặt ở hai đầu của bộ khuếch đại quang để ngăn chặn tín hiệu phản xạ ở hai đầu bộ khuếch đại. Đồng thời nó cũng giúp loại trừ nhiễu ASE theo hướng ngược về phía đầu vào có thể gây ảnh hưởng đến tín hiệu đầu vào.
2.4.Bơm và phương trình tín hiệu
Trong bất kỳ phần tử môi trường nào, tán xạ Raman tự phát có thể chuyển một phần nhỏ năng lượng ( thông thường < 10-6 ) từ một miền quang tới một miền quang khác mà tần số của nó bị dịch xuống bởi một đại lượng được xác định bằng kiểu dao động của môi trường. Hiện tượng này đã được tìm ra bởi Raman trong năm 1928 và được biết như tác động Raman. Như trong hình 2.14, nó có thể được nhìn dưới dạng cơ học lượng tử như tán xạ của một photon có năng lượng h tạo ra một phần tử có năng lượng photon tần số thấp hơn h. Phonon quang có năng lượng khác nhau được sinh ra trong suốt quá trình này, đó là do phần tử này chuyển tới trạng thái dao động kích thích. Thực vậy, ánh sáng tới tác động như một bơm cho phát sinh sự dịch bức xạ RED gọi là dòng Stokes. Bộ phận dịch BLUE được biết như là dòng phản Stokes, nó cũng được sinh ra nhưng cường độ của nó yếu hơn nhiều so với dòng Stokes bởi vì quá trình phản Stokes yêu cầu trạng thái dao động xác định ban đầu của một phonon phải đúng năng lượng và động lượng. Trong phần sau chúng ta bỏ qua quá trình phản Stokes coi như nó chạy ảo không có vai trò trong khuếch đại quang.
Hình 2.14:Sơ đồ minh họa của quá trình tán xạ Raman từ quan điểm cơ học lượng tử. Một photon Stokes năng lượng giảm hωs được tạo tức thời khi một photon bơm có năng lượng hωp được nâng lên tới mức ảo như đường nét đứt.
Mặc dù tán xạ Raman tự phát xảy ra trong bất kỳ phần tử môi trường nào, nhưng nó đủ yếu để có thể bỏ qua khi một chùm tín hiệu quang lan truyền qua một sợi quang. Nó đã được quan sát trong năm 1962 cho trường quang cường độ lớn, hiện tượng phi tuyến của SRS có thể xảy ra trong đó sóng Stokes tăng nhanh bên trong môi trường giống như hầu hết công suất chùm ánh sáng bơm truyền qua nó. Kể từ năm 1962, SRS đã được nghiên cứu rộng rãi trong nhiều môi trường phần tử và đã tìm ra một số ứng dụng. SRS đã được quan sát trong sợi quang silica năm 1972; sớm sau đó, suy hao lớn nhất của sợi quang đã được giảm tới mức có thể chấp nhận được. Kể từ đó, đặc điểm của quá trình tán xạ Raman đã được lượng tử hóa cho nhiều gương quang trong cả dạng sợi và dạng khối.
Thực tế, SRS không dễ dàng quan sát trong sợi quang sử dụng chùm ánh sáng bơm CW bởi vì giá trị ngưỡng của nó tương đối cao ( ~ 1W). Tuy nhiên, nếu một chùm ánh sáng Stokes với tần số đúng được bơm cùng với chùm ánh sáng bơm như trong hình 2.15 nó có thể được khuếch đại đáng kể khi sử dụng một chùm ánh sáng bơm CW với mức công suất ~ 100mW. Bơm và tín hiệu có thể được bơm trong hướng đối nhau bởi vì bản chất gần như đẳng hướng của SRS. Trong thực tế, cấu hình bơm nghịch lại được ưu tiên bởi vì nó làm hiệu năng bộ khuếch đại Raman tốt hơn. Mặc dầu, bộ khuếch đại Raman sợi quang cơ sở thu hút sự chú ý đáng kể suốt những năm 1980, nhưng nó chỉ có giá trị với laser bơm thích ứng trong cuối những năm 1990.
Hình 2.15:Bộ khuếch đại Raman sợi quang cơ sở trong cấu hình bơm thuận.
2.4.1. Phổ độ khuếch đại Raman.
Đặc tính quan trọng nhất của bộ khuếch đại Raman là hệ số khuếch đại Raman gR. Nó mô tả công suất Stokes tăng như công suất bơm được truyền qua nó thông qua SRS như thế nào. gR được liên hệ với phần ảo của độ nhạy phi tuyến cấp 3. Một cách gần đúng, thỏa mãn điều kiện CW hoặc chuẩn – CW, sự gia tăng ban đầu của tín hiệu quang yếu được điều chỉnh bằng:
(2.23)
trong đó được liên hệ với gR, biểu diễn dịch Raman, và và là tần số quang liên hệ với trường bơm và tín hiệu có cường độ tương ứng là Ip và Is.
Phổ độ khuếch đại Raman được đo cho thủy tinh silica cũng như sợi quang silica cơ bản. Hình 2.16 chỉ ra hệ số khuếch đại Raman cho khối silica như một hàm của dịch tần số Ω khi bơm và tín hiệu không phân cực (nét liền ) hoặc phân cực vuông góc (nét đứt). Độ khuếch đại đỉnh được chuẩn hóa tới 1 trong trường hợp không phân cực vì thế biểu đồ tương đương có thể được sử dụng cho bước sóng bơm bất kỳ . Giá trị đỉnh tỷ lệ nghịch với và bằng khoảng 6 10 – 14 m/W cho bơm gần 1,5.
Đặc điểm quan trọng nhất của phổ khuếch đại Raman cho sợi quang silica là độ khuếch đại tồn tại qua một băng tần rộng (lên tới 40THz) với vị trí bề rộng cao nhất gần 13,2THz. Có được trạng thái này là vì đặc tính không kết tinh của thủy tinh silica. Trong những vật liệu vô định hình như silica hỗn hợp, tần số dao động phần tử lan truyền trong băng tần lập và tạo ra dải liên tục. Kết quả là, tương phản với hầu hết môi trường phân tử, mà độ khuếch đại Raman xảy ra tại tần số dễ xác định đặc biệt, nó kéo dài liên tục qua băng rộng trong sợi quang silica. Sợi quang có thể hoạt động như bộ khuếch đại Raman băng rộng bởi những đặc điểm này. Đặc điểm quan trọng khác của hình 2.16 là sự phụ thuộc phân cực của độ khuếch đại Raman; độ khuếch đại gần như triệt tiêu khi bơm và tín hiệu phân cực vuông góc.
Hình 2.16: Phổ độ khuếch đại Raman cho khối silica được đo khi bơm và tín hiệu không phân cực (nét liền) hoặc phân cực vuông góc (nét đứt). Độ khuếch đại đỉnh được chuẩn hóa tới 1 trong trường hợp không phân cực.
Trong sợi quang đơn mode, mẫu không gian của cả bơm và chùm tín hiệu được cưỡng bức bằng thiết kế sợi quang và không biến đổi dọc theo chiều dài toàn bộ sợi quang. Cũng vì lẽ ấy, nó thường xử lý tổng công suất quang xác định như sau:
Pj (z) = , (2.24)
Trong đó j = p hoặc s. Phương trình (2.23) có thể được viết lại trong điều kiện của nguồn quang như sau:
, (2.25)
Trong đó diện tích lõi hiệu dụng được xác định như sau:
Aeff = (2.26)
Biểu thức phức tạp này rút gọn đáng kể nếu chúng ta giả sử rằng mẫu trường mode F(x,y) gần giống nhau cho cả hai bơm và Stokes. Trong điều kiện của mẫu mode này, Aeff có thể được viết như sau:
Aeff = (2.27)
Nếu chúng ta ước chừng mẫu mode bởi một hàm Gaussian của dạng F(x,y) = exp[ - (x2 + y2)/ω2], trong đó ω là bán kính trường mode, và sử dụng phép tính tích phân trong phương trình (2.27), chúng ta có được kết quả đơn Aeff . Từ đó bán kính trường mode ω được thiết lập cho bất kỳ sợi quang nào, Aeff là tham số đã biết mà giá trị có thể thay đổi trong khoảng 10 tới 100µm2 phụ thuộc và thiết kế của sợi quang; giá trị thấp của Aeff xảy ra cho sợi quang bù tán sắc (DCF) cho đường kính lõi tương đối nhỏ.
Hình 2.17 chỉ ra gR /Aeff ( đôi khi được gọi là hiệu suất độ khuếch đại Raman) cho một DCF, một sợi quang tán sắc khác không (NZDF), và một sợi quang miền siêu rộng (SLA)tương ứng với Aeff = 15, 55 và 105µm2. Trong tất các trường hợp, sợi quang được bơm tại bước sóng 1,45µm và được cung cấp độ khuếch đại tại bước sóng gần 1,55µm. Một điểm chú ý chính là DCF gần như gấp 10 lần hiệu dụng cho khuếch đại Raman. Tăng 7 lần khi diện tích lõi hiệu dụng giảm. Phần tăng còn lại vì mức pha tạp cao hơn của germania trong DCF( Những phân tử GeO2 biểu hiện độ khuếch đại Raman đỉnh rộng hơn gần 13,1THz). Phổ thay đổi như hình 2.17 cho 3 sợi quang do mức pha tạp GeO2.
Hình 2.17: Phổ độ khuếch đại Raman được chỉ định cho 3 loại sợi quang bơm tại 1,45µm. Diện tích lõi hiệu dụng và mức pha tạp GeO2 khác nhau cho 3 loại.
Rõ ràng từ hình 2.17 thấy rằng, khi một chùm ánh sáng bơm được bơm vào sợi quang khác nhau với một chùm tín hiệu yếu, nó sẽ được khuếch đại bởi vì độ khuếch đại Raman chỉ cần tần số khác nhau Ω = trong phạm vi băng tần của phổ độ khuếch đại Raman. Độ khuếch đại tín hiệu phụ thuộc đáng kể vào tần số khác nhau Ω và là lớn nhất khi chùm tín hiệu kém tần số bơm 13,2THz (khoảng 100nm trong dải 1,5µm). Độ khuếch đại Raman tồn tại trong tất cả dải phổ; tức là sợi quang có thể được sử dụng cho khuếch đại bất kỳ tín hiệu nào cung cấp một nguồn bơm thích ứng được sử dụng. Đặc điểm đáng chú ý của bộ khuếch đại Raman này khá khác so với bộ khuếch đại sợi quang pha Eribium, chỉ có thể khuếch đại tín hiệu có bước sóng không biến đổi xảy ra tại bước sóng gần 1,53µm.
Đặc tính không đều của phổ độ khuếch đại Raman trong hình 2.17 liên quan đến hệ thống sóng quang ghép kênh phân chia theo bước sóng (WDM) bởi vì các kênh khác nhau sẽ được khuếch đại bằng giá trị khác nhau. Vấn đề này được giải quyết trong thực tiễn bằng sử dụng đa bơm tại các bước sóng yếu khác nhau. Mỗi bơm cung cấp độ khuếch đại không đều nhưng phổ độ khuếch đại được kết hợp từ bơm khác nhau. Với một lựa chọn thích ứng của bước sóng và công suất cho mỗi laser bơm, nó có thể thực hiện mẫu độ khuếch đại gần phẳng qua một băng bước sóng rộng đáng kể. Ta sẽ xét hệ thống đơn bơm trước, để đưa ra khái niệm cơ bản trong phương pháp đơn bơm, và sau đó tập trung vào cấu hình đa bơm của khuếch đại Raman.
2.4.2.Bộ khuếch đại Raman đơn bơm.
Xét trường hợp chùm ánh sáng bơm CW đơn được bơm vào một sợi quang sử dụng cho khuếch đại một tín hiệu CW. Ngay cả trong trường hợp này, phương trình (2.25) nên thay đổi bao gồm suy hao sợi quang trước khi nó có thể được sử dụng. Hơn nữa, công suất bơm còn lại thay đổi dọc theo sợi quang. Khi có những tác động, quá trình khuếch đại Raman phụ thuộc vào hai phương trình sau:
, (2.28)
, (2.29)
trong đó và giải thích cho độ suy hao của sợi quang theo thứ tự bước sóng Stokes và bước sóng bơm. Tham số lấy giá trị phụ thuộc vào cấu hình bơm; dấu trừ khi bơm nghịch.
Phương trình (2.28) và (2.29) có thể được suy ra chính xác từ phương trình Maxwell. Chúng có thể được viết theo hiện tượng logic bằng chú ý quá trình xuyên qua mà photon xuất hiện hoặc không xuất hiện trong mỗi chùm sóng ánh sáng. Tỷ lệ tần số xuất hiện trong phương trình (2.29) bởi vì những photon tín hiệu và bơm có năng lượng khác nhau. Chúng có thể chứng minh trong trường hợp không có suy hao:
(2.30)
Chú ý rằng Pj/ωj liên hệ với dòng photon tại tần số ωj, đây là phương trình chỉ biểu diễn bảo toàn tổng số photon suốt quá trình SRS.
Phương trình (2.28) và (2.29) không dễ dàng giải theo phép giải tích bởi tính chất phi tuyến của chúng. Thực tế trong nhiều trường hợp, công suất bơm lớn hơn so với công suất tín hiệu do đó sự cạn bơm có thể được bỏ qua bằng cách đặt gR = 0 trong phương trình (2.29), sau đó được giải dễ dàng. Như ví dụ, PP(z) = P0exp(- αPz) trong trường hợp bơm thuận (), trong đó P0 là năng lượng đầu vào tại z = 0. Nếu chúng ta thay thế nghiệm này vào phương trình (2.28), chúng ta nhận được:
. (2.31)
Phương trình này có thể dễ dàng tích phân để được:
PS(L) = PS(0)exp(gRP0Leff - αSL) G(L)PS(0) (2.32)
trong đó G(L) là độ khuếch đại tín hiệu, L là độ dài bộ khuếch đại, và Leff là độ dài hiệu dụng được định nghĩa:
Leff = [1- exp(- αPL)]/αP. (2.33)
Nghiệm (2.32) chỉ ra rằng, do sự hấp thụ bơm, nên độ dài khuếch đại hiệu dụng được giảm từ L tới Leff.
Trường hợp bơm nghịch có thể được xét trong một hàm đồng dạng. Trong trường hợp này, phương trình (2.29) có thể được giải với gR = 0 và sử dụng điều kiện bờ PP(L) = P0; kết quả là PP(z) = P0exp[- αP(L – z)]. Tích phân của phương trình (2.28) sinh ra nghiệm giống như đưa ra trong phương trình (2.32), chứng tỏ rằng công suất tín hiệu khuếch đại tại mức bơm đã đưa ra là giống nhau trong cả cấu hình bơm thuận và bơm nghịch.
Trường hợp bơm hai hướng phức tạp hơn không đáng kể bởi vì hai laser bơm được đặt đối diện nhau cuối sợi quang. Công suất bơm trong phương trình (2.28) bây giờ biểu diễn tổng PP = Pf + Pb, trong đó Pf và Pb tìm được bằng cách giải phương trình( vẫn bỏ qua sự cạn kiệt của bơm):
dPf/dz = - αPPf , dPb/dz = αPPb . (2.34)
Giải những phương trình này chúng ta tìm được công suất bơm PP(z) tại khoảng cách z như sau:
PP(z) = P0{rf exp (- αPz) + (1- rf) exp[ - αP ( L – z)]} , (2.35)
trong đó P0 là tổng công suất bơm và rf = PL/PR là tỷ lệ của công suất bơm đã bơm trong hướng thuận. Tích phân phương trình (2.28) thu được độ khuếch đại tín hiệu:
G(z) = (2.36)
Hình 2.18 chỉ ra công suất tín hiệu thay đổi thế nào dọc theo chiều dài 100km của bộ khuếch đại Raman phân bố với rf khác nhau từ 0 tới 1. Trong tất cả các trường hợp, tổng công suất bơm được chọn giống như độ khuếch đại Raman đủ để bù cho suy hao sợi quang, đó là: G(L) = 1.
Hình 2.18:Sự biến thiên của công suất tín hiệu trong bơm hai chiều, bộ khuếch đại Raman có chiều dài 100km với bơm thuận thay đổi từ 0 đến 100%. Phần giới hạn bởi đường thẳng là trường hợp sợi quang thụ động không có độ khuếch đại Raman.
Có thể đặt câu hỏi cấu hình bơm nào là tốt nhất cho hệ thống. Câu trả lời không đơn giản khi nó phụ thuộc vào nhiều hệ số. Bơm thuận là tốt hơn khi xét tới nhiễu. Cho một hệ thống tầm xa giới hạn bởi sợi quang phi tuyến, bơm nghịch có thể đưa ra hiệu năng tốt hơn bởi vì trong trường hợp này công suất tín hiệu qua chiều dài đường dẫn là nhỏ nhất. Tổng tích lũy dịch pha phi tuyến được gây ra bởi sự tự điều pha (SPM) có thể tìm được:
(2.37)
trong đó là tham số phi tuyến gây ra SPM. Dịch pha phi tuyến tăng vì khuếch đại Raman có thể lượng tử hóa qua tỷ số:
RNL = . (2.38)
Hình 2.19: Sự cải thiện trong hiệu ứng phi tuyến phụ thuộc độ khuếch đại trong chiều dài 100km, bơm hai chiều, bộ khuếch đại Raman phân bố với bơm thuận thay đổi từ 0 đến 100%. Đường dọc chỉ ra trường hợp mà độ khuếch đại Raman bù tổng suy hao sợi quang.
Hình 2.19 chỉ ra tỷ số này thay đổi phụ thuộc độ khuếch đại G(L) cho bộ khếch đại Raman phân bố kéo dài 100km cho hệ thống khác nhau của bơm thuận và bơm nghịch. Rõ ràng, ảnh hưởng phi tuyến là bé nhất trong trường hợp bơm nghịch và tăng hơn 10dB khi bơm thuận được sử dụng.
Đại lượng G(L) biểu diễn độ khuếch đại tín hiệu mạng và có thể bằng <1(mạng suy hao) nếu độ khuếch đại Raman không đủ để bù suy hao sợi quang. Rất có lợi khi đưa vào khái niệm độ khuếch đại Raman bật - tắt sử dụng định nghĩa:
GA = (2.39)
Rõ ràng, GA biểu diễn tổng số độ khuếch đại phân bố qua một chiều dài Leff. Nếu chúng ta sử dụng giá trị đặc trưng của gR = 3W-1/km cho một DCF từ hình 2.17 cùng với Leff = 1km, tín hiệu có thể được khuếch đại bằng 20dB cho P0 1,5W. Hình 2.20 chỉ ra biến thiên của GA với P0 quan sát trong thí nghiệm năm 1981 mà sợi cáp chiều dài 1,3km được sử dụng để khuếch đại tín hiệu 1,064µm bằng cách sử dụng bơm 1,017µm. Hệ số khuếch đại GA tăng lũy thừa với P0 ban đầu, như dự báo bởi phương trình (2.39) nhưng lệch hơn P0 > 1W. Đó là vì độ khuếch đại bão hòa xảy ra vì cạn kiệt bơm. Kết quả là phù hợp hoàn toàn với dữ liệu và thỏa mãn phương trình (2.28) và (2.29) cho mô hình khuếch đại Raman.
Hình 2.20:Sự biến thiên của độ khuếch đại bộ khuếch đại GA với công suất bơm P0.
Biểu thức gần đúng cho độ khuếch đại bão hòa Gs trong bộ khuếch đại Raman có thể nhận được bằng cách giải phương trình (2.28) và (2.29) phân tích với giả định . Phép tính gần đúng này không luôn luôn đúng nhưng nó có thể đảm bảo cho sợi cáp quang trong vùng 1,55µm. Giả thiết bơm thuận () và làm phép biến đổi Pj = ωjFjexp( - αz) với j = s hoặc p, chúng ta nhận được hai phương trình đơn:
, . (2.40)
Chú ý rằng FP(z) + FS(z) = C, trong đó C là một hằng số, phương trình vi phân cho FS có thể được tích hợp qua chiều dài bộ khuếch đại nhận được kết quả sau:
GS = . (2.41)
Sử dụng C = FP(0) + FS(0) trong phương trình trước, độ khuếch đại bão hòa của bộ khuếch đại được cho bởi:
GS = , (2.42)
trong đó r0 liên hệ với tỷ số công suất bơm tín hiệu tại đầu vào sợi quang như sau:
r0 = (2.43)
và GA = exp(gRP0Leff) là độ khuếch đại chưa bão hòa được đưa vào trong phương trình (2.39). Thông thường , PS(0) << PP(0). Ví dụ, r0 < 10-3 khi PS(0) < 1mW trong khi PP(0) ~ 1W. Dưới nhiều điều kiện, độ khuếch đại bão hòa của bộ khuếch đại có thể xấp xỉ:
GS =. (2.44)
Độ khuếch đại bị giảm 2 hoặc 3 dB khi bộ khuếch đại Raman được bơm đủ mạnh khi r0GA = 1. Điều này có thể xảy ra cho r0 = 10-3 khi độ khuếch đại Raman bật – tắt đến gần 30 dB. Chính xác chúng ta có thể quan sát trong hình 2.20.
Hình 2.21 chỉ ra đặc điểm bão hòa bằng biểu diễn GS/GA phụ thuộc GAr0 với một vài giá trị của GA. Độ khuếch đại bão hòa bị giảm 2 lần khi GAr0 1. Điều kiện này được thỏa mãn khi công suất tín hiệu được khuếch đại bắt đầu đến gần công suất bơm đầu vào P0.
Hình 2.21: Đặc điểm độ khuếch đại bão hòa của bộ khuếch đại Raman với một vài giá trị của độ khuếch đại bộ khuếch đại chưa bão hòa GA.
Trong thực tế, P0 là đơn vị đo tốt của công suất bão hòa bộ khuếch đại Raman. Vì thông thường P0 > 1W, nên công suất bão hòa của bộ khuếch đại Raman lớn hơn nhiều so với bộ khuếch đại quang sợi Erbium.
Như trong hình 2.20, bộ khuếch đại Raman có thể khuếch đại một tín hiệu vào lên 1000 lần (độ khuếch đại 30 dB) khi công suất bơm vượt quá 1W. Hầu hết các thí nghiệm gần đây đều sử dụng cho bơm một laser Nd:YAG hoạt động tại 1,06µm bởi vì nó có thể cung cấp mức năng lượng như CW. Laser này cũng có thể hoạt động tại bước sóng 1,3
Các file đính kèm theo tài liệu này:
- Khuếch đại Raman trong hệ thống thông tin quang.doc