Luận văn Nghiên cứu sự tạo phức đơn, đa phối tử của một số nguyên tố đất hiếm nặng với L- Methionin và axetylaxeton bằng phương pháp chuẩn độ đo pH

MỤC LỤC

Trang

MỞ ĐẦU . 1

Chƣơng I: TỔNG QUAN TÀI LIỆU . 3

1.1. Sơ lược về các NTĐH . . 3

1.1.1. Đặc điểm chung của các NTĐH . . 3

1.1.1.1.Tính chất vật lý và trạng thái tự nhiên của các NTĐH. . 4

1.1.1.2. Sơ lược tính chất hóa học của NTĐH. . 5

1.1.2. Sơ lược về một số hợp chất chính của NTĐH ở trạng thái hoá trị III. . 6

1.1.2.1.Oxit của các NTĐH. . 6

1.1.2.2. Hiđroxit của NTĐH . 6

1.1.2.3. Các muối của NTĐH. . 6

1.2. Sơ lược về methionin, axetyl axeton . 7

1.2.1. Sơ lược về methionin . 7

1.2.2. Sơ lược về axetyl axeton . 10

1.3. Sơ lược về phức chất của NTĐH . 11

1.3.1. Đặc điểm chung . 11

1.3.2. Tính chất biến đổi tuần hoàn - tuần tự các phức chất của NTĐH . 12

1.3.3. Phức chất của các NTĐH với các amino axit . 13

1.3.3.1. Khả năng tham gia liên kết của các nhóm chức trong các amino axit . 13

1.3.3.2. Một số kết quả nghiên cứu sự phối trí trong phức chất của các NTĐH

với amino axit . 13

1.4 . Cơ sở của phương pháp chuẩn độ đo pH . 18

1.4.1. Phương pháp xác định hằng số bền của phức đơn phối tử . 19

1.4.2. Phương pháp xác định hằng số bền của phức đa phối tử. . 20

Chƣơng II: THỰC NGHIỆM . 22

2.1. Hoá chất và thiết bị. . . 22

2.1.1. Chuẩn bị hoá chất . . 22

2.1.1.1. Dung dịch KOH 1M . 22

2.1.1. 2. Dung dịch đệm pH = 4,2 (CH

3COONH4, CH

3COOH) . 22

2.1.1.3. Dung dịch thuốc thử asenazo (III) 0,1% . 22

2.1.1.4. Dung dịch DTPA 10-3M . 22

2.1.1.5. Các dung dịch muối Ln(NO3)3 10-2M (Ln: Ho, Er, Tm, Yb, Lu). . 22

2.1.1.6. Dung dịch L-Methionin 10-2M và axetyl axeton 10-1M . 23

2.1.1.7. Dung dịch KNO3 1M . 23

2.1.2. Thiết bị . 23

2.2. Nghiên cứu sự tạo phức đơn phối tử của các ion đất hiếm (Ho3+, Er3+, Tm3+, Yb3+, Lu3+) với L- Methionin và với axetyl axeton . 23

2.2.1. Xác định hằng số phân li của L-Methionin . 23

2.2.2. Xác định hằng số phân li của axetyl axeton . .26

2.2.3. Nghiên cứu sự tạo phức đơn phối tử của các ion đất hiếm (Ho3+, Er3+, Tm3+, Yb3+, Lu3+) với L-Methionin . 29

2.2.4. Nghiên cứu sự tạo phức đơn phối tử của các ion đất hiếm (Ho3+, Er3+,Tm3+, Yb3+, Lu3+) với axetyl axeton . 36

2.3. Nghiên cứu sự tạo phức đa phối tử của các ion đất hiếm (Ho3+, Er3+, Tm3+, Yb3+, Lu3+) với L- Methionin và axetyl axeton: . 41

2.3.1. Nghiên cứu sự tạo phức đa phối tử của các ion đất hiếm (Ho3+, Er3+, Tm3+, Yb3+, Lu3+) với L- Methionin và axetyl axeton theo tỉ lệ các cấu tử 1:1:1 . 41

2.3.2. Nghiên cứu sự tạo phức đa phối tử của các ion đất hiếm (Ho3+, Er3+, Tm3+, Yb3+, Lu3+) với L-Methionin và axetyl axeton theo tỉ lệ các cấu tử 1:2:2. . 46

2.3.3.Nghiên cứu sự tạo phức đa phối tử của các ion đất hiếm (Ho3+, Er3+, Tm3+, Yb3+, Lu3+) với axetyl axeton và L-Methionin theo tỉ lệ các cấu tử 1:4:2 . 50

KẾT LUẬN . .57

TÀI LIỆU THAM KHẢO . 58

pdf68 trang | Chia sẻ: maiphuongdc | Lượt xem: 2631 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu sự tạo phức đơn, đa phối tử của một số nguyên tố đất hiếm nặng với L- Methionin và axetylaxeton bằng phương pháp chuẩn độ đo pH, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
hức của histidin nhỏ hơn glixin. Đã có nhiều công trình nghiên cứu về sự tạo phức trong dung dịch của NTĐH với các aminoaxit như L-Phenylalanin, L-Glutamic, L-Tryptophan, L-Lơxin, L - Histidin [1], [10], [16], [17], [18]. Tác giả Nguyễn Quốc Thắng [16] khi nghiên cứu sự tạo phức giữa các ion NTĐH với một amino đicacboxylic là axit L-Glutamic trong dung dịch và trong phức rắn lại cho thấy: sự tạo phức xảy ra tốt ngay trong khoảng pH trung tính với sự tham gia đồng thời của nhóm amino và nhóm cacboxyl. Các kết quả nghiên cứu cho thấy, sự tạo phức xảy ra tốt trong vùng pH từ 5,5 ÷ 7,5 đối với các ion NTĐH nhẹ và từ 5,2 ÷ 7,2 đối với các ion NTĐH nặng; phức chất rắn thu được có thành phần H[Ln(Glu)2(H2O)3] (Ln: La ÷ Er, trừ Pm) và trong các phức chất mỗi ion Glu2- chiếm 3 vị trí phối trí, liên kết của phối tử với ion đất hiếm được thực hiện qua nguyên tử nitơ của nhóm amin (-NH2) và hai nguyên tử oxi của hai nhóm cacboxyl (COO-). Tác giả Csoergh.I (Thụy Điển) [23] đã tổng hợp được phức rắn của Honmi với axit L-Aspatic ứng với thành phần Ho(L-Asp)Cl2.6H2O. Phân tích cấu trúc của phức chất, tác giả đã chỉ ra ion Ho3+ có số phối trí là 8 với các liên kết qua 5 nguyên tử oxi của nước (H2O) và 3 nguyên tử oxi của ba nhóm aspactat. Trong khi đó, nhiều tác giả khác lại chỉ ra sự tham gia đồng thời của cả hai nhóm chức vào việc hình thành phức chất. Tác giả Ibrahim S.A (Ai Cập) [24] đã tổng hợp và nghiên cứu tính chất của các phức chất Ce(III) với một số amino axit như L-Alanin, L-Aspactic và L-Glutamic. Bằng các phương pháp phân tích hoá học, phổ hồng ngoại và đo độ dẫn điện đã chỉ ra sự phối trí giữa các amino axit với Ce3+ thực hiện qua nguyên tử oxi của nhóm cacboxyl và nguyên tử nitơ của nhóm amin. Tác giả Nguyễn Trọng Uyển và cộng sự [19], [20] đã tổng hợp 5 phức rắn của một số ion đất hiếm với L-Tryptophan với công thức H3[Ln(Trp)3(NO3)3].3H2O Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15 (Ln: Sm, Gd, Tb) và H3 [Pr (Trp)3 (NO3)3 ].2H2O. Mỗi phân tử L-Tryptophan chiếm hai vị trí trong cầu nội phức chất, liên kết giữa phối tử và các ion đất hiếm được thực hiện qua nguyên tử nitơ của nhóm amin (-NH2) và nguyên tử oxi của nhóm cacboxyl (COO - ), mỗi nhóm nitrat chiếm một vị trí phối trí trong các phức chất và liên kết với các ion Ln3+ qua một trong những nguyên tử oxi của ion nitrat. Tác giả Lê Hữu Thiềng [17] đã tiến hành tổng hợp 12 phức rắn của ion Ln 3+ và L-Phenylalanin với cùng điều kiện. Các phức chất này có công thức H3[Ln(Phe)3(NO3)3].nH2O (Ln: La ÷ Lu trừ Ce, Pm và Yb; n: 2÷ 3). Trong các phức chất, L-Phenylalanin đã tham gia phối trí với ion Ln3+ qua nguyên tử oxi của nhóm cacboxyl và nguyên tử nitơ của nhóm amin, mỗi nhóm nitrat chiếm một vị trí phối trí trong các phức chất và liên kết với các ion Ln3+ qua một trong những nguyên tử oxi của ion nitrat; số phối trí của Ln3+ trong các phức chất bằng 9. Nhóm tác giả [22] khi nghiên cứu sự tạo phức của La3+, Pr3+, Nd3+ với các aminoaxit (L-Phenylalanin, L-Lơxin, L-Tryptophan) trong dung dịch bằng phương pháp chuẩn độ đo pH đã xác định được hằng số bền của phức chất tạo thành trong cùng điều kiện. Kết quả cho thấy phức chất của La3+, Pr3+, Nd3+ vơí L-Phenylalanin bền hơn so với L-Lơxin, phức chất của La3+, Pr3+, Nd3+ với L-Lơxin bền hơn so với L-Tryptophan. Với phối tử L-Methionin, nhóm tác giả [21] đã tổng hợp được phức rắn của europi với L-Methionin có thành phần H3[Eu(Met)3(NO3)3]. Phức chất tổng hợp được là phức vòng. Mỗi phân tử L-Methionin chiếm hai vị trí phối trí trong cầu nội liên kết với Eu3+ được thực hiện qua nguyên tử nitơ ở nhóm amin (-NH2) và qua nguyên tử oxi của nhóm cacboxyl (-COOH). Tác giả [5] khi nghiên cứu sự tạo phức đơn, đa phối tử của các NTĐH (La, Ce, Pr, Nd, Sm, Eu, Gd) với L-Methionin và axetyl axeton trong dung dịch bằng phương pháp chuẩn độ đo pH đã xác định được: Hằng số bền của các phức đơn phối tử tạo thành giữa Ln3+ (Ln: La, Ce, Pr, Nd, Sm, Eu, Gd) với L-Methionin và axetyl axeton ở điều kiện thí nghiệm 30 ± 10C, I = 0,1 theo tỉ lệ mol Ln3+: H2Met + = 1:2; Ln 3+ : HAcAc = 1:2. Các phức chất tạo thành của Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16 Ln 3+ với H2Met + có dạng LnMet2+ và của Ln3+ với HAcAc có dạng LnAcAc2+ và Ln(AcAc) + 2. Sự tạo phức xảy ra tốt trong khoảng pH từ 6 ÷ 8. Hằng số bền của các phức đơn phối tử tăng dần theo trật tự sau: La 3+ < Ce 3+ < Pr 3+ < Nd 3+ < Sm 3+ < Gd 3+ < Eu 3+ Hằng số bền của các phức đa phối tử tạo thành giữa La3+, Ce3+, Pr3+, Nd3+,Sm3+, Eu3+, Gd 3+ với L-Methionin và axetyl axeton ở 30 ± 10C, I = 0,1 theo các tỉ lệ mol : Ln 3+ : HAcAc: H2Met =1: 2 : 2 Ln 3+ : HAcAc: H2Met = 1: 4 : 2. Phức chất tạo thành giữa các cấu tử lấy theo tỉ lệ mol là 1:2:2 có dạng LnAcAcMet + và lấy theo tỉ lệ mol là 1:4:2 có dạng Ln(AcAc)2Met. Sự tạo phức xảy ra tốt trong khoảng pH từ 7 ÷ 9. Giá trị hằng số bền của các phức chất giảm theo trật tự sau: La3+ > Ce3+ > Pr3+ > Nd3+ > Sm3+ > Eu3+ > Gd3+ Phức đa phối tử của các NTĐH với L-Methionin và axetyl axeton theo các tỉ lệ mol 1: 4: 2 bền hơn phức chất có tỉ lệ mol 1: 2: 2. Phức đa phối tử bền hơn phức đơn phối tử. Các ion đất hiếm điện tích lớn nên chúng có khả năng tạo thành phức chất đa phối tử không những với phối tử có dung lượng phối trí thấp mà cả phối tử có dung lượng phối trí cao. Trong nhiều trường hợp phối tử có dung lượng phối trí cao nhưng không lấp đầy toàn bộ cầu phối trí của những ion đất hiếm và những vị trí còn lại đang được chiếm bởi phân tử nước thì các vị trí đó có thể bị các nguyên tử ―cho‖ của một phối tử khác nào đó thay thế. Vào những năm 1960 người ta đã phát hiện ra phức chất đa phối tử của ion đất hiếm với phối tử thứ nhất là etylen điamin triaxetic (EDTA) và phối tử thứ hai là: axit hiđroxi etylenđiamintriaxetic (HEDTA), axit xyclohexan điamin tetraaxetic (XDTA), axit nitrilotriaxetic (NTA), axit xitric, axit tactric [31]. Trong những năm gần đây đã có rất nhiều tác giả quan tâm nghiên cứu phức chất đa phối tử. Kết quả cho thấy có sự tạo thành phức chất của một số NTĐH với phối tử thứ nhất là các amino axit như L-Alanin, L-Phenylalanin, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17 L-Lơxin và phối tử thứ hai là các hợp chất như 1,1- bipyridin, axetyl axeton, EDTA. Từ đó xác định được hằng số bền của phức chất với tỉ lệ các cấu tử khác nhau. Ở nước ta đã có một số công trình nghiên cứu phức chất đa phối tử. Tác giả [10] đã tổng hợp phức rắn của một số NTĐH và kiềm thổ với benzoylaxeton, o - phenantrolin và nghiên cứu khả năng thăng hoa của chúng trong chân không. Nhiều tác giả nghiên cứu sự tạo phức đa phối tử trong dung dịch bằng phương pháp trắc quang [12], [13], [14], kết quả cho thấy phức đa phối tử của một số ion đất hiếm với 4-(2-piridilazo)-rezioxin (PAR)-axit mono cacboxylic có hằng số bền và hệ số hấp thụ mol cao hơn hẳn phức đơn phối tử. Một số tác giả khác [8], [18] đã nghiên cứu sự tạo phức đa phối tử của NTĐH với các amino axit và axetyl axeton trong dung dịch bằng phương pháp chuẩn độ đo pH, ví dụ phức đa phối tử giữa ion đất hiếm với axetyl axeton và L - Histidin theo các tỉ lệ mol 1: 2: 2 và 1: 4: 2 ở cùng nhiệt độ có giá trị hằng số bền của giảm dần theo trật tự sau: La3+ > Ce3+ > Pr3+ > Sm3+ > Eu3+ > Gd3+. Các kết quả nghiên cứu cho thấy các amino axit khác nhau có độ bền khác nhau, khả năng tạo phức khác nhau do gốc hiđrocacbon của các phối tử khác nhau, phức đa phối tử bền hơn nhiều so với phức chất đơn phối tử [1], [8], [18]. Phức của NTĐH với các amino axit trong dung dịch được nhiều tác giả nghiên cứu, người ta đã khảo sát tỉ lệ giữa các cấu tử theo tỉ lệ khác nhau: 1:1; 1:2; 1:3; các nghiên cứu cho thấy ion đất hiếm với phối tử có tỉ lệ 1:1 thuận lợi hơn 1:2; tỉ lệ 1:2 thuận lợi hơn 1:3, tuy nhiên nghiên cứu tỉ lệ tạo phức 1:2 cho thấy thuận lợi hơn, với tỉ lệ này loại trừ được các phức phụ, chẳng hạn phức hyđroxo. Trong luận văn này chúng tôi nghiên cứu sự tạo phức đơn phối tử của các NTĐH (Ho, Er, Tm, Yb, Lu) với L–Methionin và với axetyl axeton trong dung dịch bằng phương pháp chuẩn độ đo pH theo các tỉ lệ mol: Ln3+: H2 Met + =1:2; Ln 3+ : HAcAc = 1:2 và nghiên cứu sự tạo phức đa phối tử của các NTĐH (Ho, Er, Tm, Yb, Lu) với axetyl axeton và L–Methionin theo các tỉ lệ mol: Ln 3+ : HAcAc: H2 Met + = 1:1:1 và 1:2:2 và 1:4:2. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18 1.4. Cơ sở của phương pháp chuẩn độ đo pH Có nhiều phương pháp khác nhau để nghiên cứu sự tạo phức trong dung dịch như: phương pháp quang phổ, phương pháp trao đổi ion, phương pháp điện thế, phương pháp cực phổ, phương pháp đo độ tan,… Trong đề tài này chúng tôi sử dụng phương pháp chuẩn độ đo pH để nghiên cứu sự tạo phức. Giả thiết M là ion tạo phức, HL là phối tử khi có sự tạo phức giữa ion kim loại với phối tử có sự giải phóng ion H+: M + HL ML + H + (bỏ qua sự cân bằng điện tích) Do đó khi xác định được nồng độ ion H+ có thể xác định được mức độ tạo phức của hệ. Phối tử là axit yếu thường được chuẩn độ bằng dung dịch bazơ mạnh có mặt chất điện li trơ ở nồng độ thích hợp để duy trì lực ion. Lực ion có ảnh hưởng lớn đến sự tạo phức. Vì vậy cần lựa chọn nồng độ thích hợp của ion kim loại và phối tử để sự đóng góp của các dạng điện tích của chúng cũng như dạng phức tích điện tạo thành vào lực ion tổng cộng không vượt quá 10 ÷ 12 % [12]. Để điều chỉnh lực ion người ta thường dùng các chất điện li trơ như KCl, KNO3, NaClO4,... Lực ion được tính theo công thức sau: I = 2 1 1 2 n i i i C Z   Trong đó: I là lực ion Ci, Zi là nồng độ và điện tích của ion thứ i Tiến hành chuẩn độ dung dịch phối tử khi không và có mặt ion đất hiếm, xây dựng đường cong chuẩn độ biểu diễn sự phụ thuộc của pH vào số đương lượng bazơ kết hợp với một mol axit, từ đó dựa vào sự khác nhau của hai đường cong đó để kết luận về sự tạo phức trong dung dịch. Đường cong chuẩn độ hệ khi có mặt ion đất hiếm thấp hơn đường cong chuẩn độ phối tử tự do thì có sự tạo phức, đường cong chuẩn độ phối tử khi có mặt ion đất hiếm thường càng thấp so với đường cong chuẩn độ của phối tử tự do thì sự tạo phức càng mạnh, bởi vì khi đó lượng ion H+ giải phóng ra càng nhiều làm giảm pH của dung dịch [4]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19 1.4.1. Phương pháp xác định hằng số bền của phức đơn phối tử Giả sử M là ion trung tâm, L là phối tử, giả thiết phức chất tạo thành từng bậc như sau: M + L  ML ; k1 ML + L  ML2 ; k2 ........................…............... MLn-1 + L  MLn ; kn Trong đó: k1, k2,…, kn là các hằng số bền từng bậc của các phức tương ứng. Giá trị của các hằng số bền từng bậc được xác định theo các công thức sau: k1= ]][[ ][ LM ML ; k2= ]][[ ][ 2 LML ML ; ... ; kn = ]][[ ][ 1 LML ML n n  (1.1) Có nhiều phương pháp để xác định hằng số bền của phức chất. Trong đề tài này chúng tôi chọn phương pháp Bjerrum [8]. Theo Bjerrum, hằng số bền của phức tạo thành được xác định thông qua nồng độ của phối tử tự do.  n = M L C LC ][ (1.2) Trong đó: CL, CM là nồng độ chung của phối tử và kim loại trong dung dịch . [L] là nồng độ phối tử tại thời điểm cân bằng. p[L] = -lg[L] là chỉ số nồng độ của phối tử.  n là nồng độ phối tử tự do còn gọi là số phối tử trung bình (hệ số trung bình các phối tử) liên kết với một ion kim loại ở tất cả các dạng phức . Theo (1.2) ta được: ][...][][ ][...][2][ 2 n n MLMLM MLnMLML n     Kết hợp với (1.1) ta có : n n n LkkLkkLk LkknkLkkL n ]...[...][][1 ][......][2][k 21 2 211 21 2 211     (1.3) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20  1][... )( ...][ )2( ][ )1( 21 2 211        n n Lkkk n nn Lkk n n Lk n n Thay các đại lượng đã biết vào phương trình (1.3) ta sẽ tính được k1, k2… kn . 1.4.2. Phương pháp xác định hằng số bền của phức đa phối tử Theo [6] phương pháp xác định hằng số bền của phức đa phối tử sẽ là: Giả sử M là ion trung tâm, L và A là hai phối tử. Giả thiết các phản ứng tạo phức xảy ra từng bậc trong dung dịch như sau: M +L  ML ; k01 ML + L  ML2 ; k02 M + A  MA ; k10 MA + A  MA2 ; k20 MA + L  MAL ; k MA 111 ML + A  MAL ; k ML 111 MA2 + L  MA2L ; k 2 121 MA MAL + A  MA2L ; kMAL 121 ML2 + A  MAL2 ; k 2 112 ML MAL + L  MAL2 ; k MAL 112 ……………… MLn-1 + L  MLn ; k0n MAm-1 + A  MAm ; k0m MLn + A  MALn ; k nML n11 M A Ln-1 + L  MALn ; k 1 11 nMAL n MAm + L  MAmL ; k mMA m11 MAm -1L + A  MAmL ; k LMA m m 1 11  Trong đó: k ML 111 , k MA 111 , k 2 121 MA , k 2 112 ML , k01, k02, k10, k20 là các hằng số bền từng bậc của các phức chất. Theo các cân bằng tạo phức trên ta có: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21 k01= ]][[ ][ LM ML ; k02 = ]][[ ][ 2 LML ML ; ... ; kon = ]][[ ][ 1 LML ML n n  k10 = ]][[ ][ AM MA ; k20 = ]][[ ][ 2 AMA MA ; ... ; kmo = ]][[ ][ 1 AMA MA m m  k ML 111 = ]][[ ][ AML MAL ; k MA 111 = ]][[ ][ LMA MAL ; k 2 121 MA = ]][[ ][ 2 2 LMA LMA k MAL 121 = ]][[ ][ 2 AMAL LMA ; kMAL 112 = ]][[ ][ 2 LMAL MAL ; k 2 112 ML = ]][[ ][ 2 2 AML MAL k nML n11 = ]][[ ][ AML MAL n n ; k 1 11 nMAL n = ]][[ ][ 1 LMAL MAL n n  ; k mMA m11 = ]][[ ][ LMA LMA m m ; k LMA m m 1 11  = ]][[ ][ 1 ALMA LMA m m  Áp dụng định luật bảo toàn nồng độ ban đầu và định luật bảo toàn điện tích cho các cân bằng trong hệ để thiết lập các phương trình. Biểu diễn các phương trình trên qua nồng độ của các phối tử và ion kim loại. Từ đó sẽ xác định được các giá trị hằng số bền từng bậc. Hằng số bền tổng cộng  và các hằng số bền từng bậc k liên hệ với nhau theo phương trình: lg111 = lgk10 + lg k MA 111 hoặc lg111 = lgk01 + lg k ML 111 lg121 = lgk10 + lgk20 + lg k 2 121 MA hoặc lg121 = lg k10 + lgk MA 111 + lgk MAL 121 lg112 = lgk01 + lg k02 +lg k 2 112 ML hoặc lg112 = lgk01 + lgk ML 111 + lgk MAL 112 ……………………….. với 111, 121 , 112 … là hằng số bền tổng cộng của phức chất. Các phương trình tính toán cụ thể chúng tôi sẽ trình bày ở phần thực nghiệm. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 22 CHƢƠNG 2 THỰC NGHIỆM 2.1. HOÁ CHẤT VÀ THIẾT BỊ 2.1.1. Chuẩn bị hoá chất Các hoá chất được sử dụng trong quá trình thí nghiệm đều có độ tinh khiết PA . 2.1.1.1. Dung dịch KOH 1M Dung dịch KOH được pha từ ống chuẩn, hoà tan bằng nước cất hai lần, định mức đến thể tích cần thiết. Từ dung dịch gốc này có thể pha các dung dịch KOH khác có nồng độ cần thiết. 2.1.1.2. Dung dịch đệm pH = 4,2 (CH3COONH4, CH3COOH) Lấy 3,99ml CH3COOH 60,05%, d = 1,05g/ml hoà tan vào 150 ml nước cất hai lần trong bình định mức 250ml. Lấy 0,5ml NH3 25%, d = 0,88 g/ml hoà tan trong 40ml nước cất hai lần rồi cho vào bình định mức trên, thêm nước cất hai lần đến vạch định mức ta được dung dịch đệm có pH = 4,2 ( kiểm tra lại bằng máy đo pH) 2.1.1.3. Dung dịch asenazo (III) 0, 1% Cân một lượng chính xác asenazo (III) trên cân điện tử bốn số. Dùng nước cất hai lần hoà tan sơ bộ, nhỏ từng giọt Na2CO3 0,1% cho đến khi dung dịch có màu xanh tím. Đun nóng hỗn hợp ở 600C, tiếp theo nhỏ từng giọt axit HCl loãng cho đến khi dung dịch có màu tím đỏ và định mức đến thể tích cần thiết. 2.1.1.4. Dung dịch DTPA 10-3 M Cân một lượng DTPA (M = 393,35) chính xác trên cân điện tử bốn số, hoà tan bằng nước cất hai lần, định mức đến thể tích cần thiết. 2.1.1.5. Các dung dịch muối Ln(NO3)3 10 -2 M (Ln: Ho, Er, Tm, Yb, Lu) Các dung dịch Ln3+ được chuẩn bị từ oxit đất hiếm tương ứng Ln2O3 (Ln: Ho, Er, Tm, Yb, Lu) của hãng WaKo (Nhật Bản), độ tinh khiết 99,99%. Nồng độ chính xác của các dung dịch Ln(NO3)3 được xác định lại bằng dung dịch DTPA 10-3 M, chỉ thị asenazo (III ) 0,1% và dung dịch đệm pH = 4,2. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 23 2.1.1.6. Dung dịch L-Methionin 10-2M, dung dịch axetyl axeton 10-1M Dung dịch L- Methionin được chuẩn bị từ lượng cân chính xác trên cân điện tử bốn số, sau đó hoà tan và định mức bằng nước cất hai lần đến thể tích cần thiết. Dung dịch axetyl axeton được chuẩn bị từ dung dịch tinh khiết (hãng Merck). 2.1.1.7. Dung dịch KNO3 1M Dung dịch KNO3 được chuẩn bị từ lượng cân chính xác trên cân điện tử bốn số. Sau đó hoà tan và định mức bằng nước cất hai lần đến thể tích cần thiết. 2.1.2. Thiết bị Máy đo pH meter MD-220 (Anh) có độ chính xác ± 0,1; máy khuấy từ, cân điện tử bốn số, pipet, buret... 2.2. Nghiên cứu sự tạo phức đơn phối tử của các ion đất hiếm (Ho3+, Er3+, Tm 3+ , Yb 3+ , Lu 3+ ) với L- Methionin và với axetyl axeton. 2.2.1. Xác định hằng số phân li của L-Methionin Chuẩn độ 50ml dung dịch H2Met + , bằng dung dịch KOH 5.10-2M ở nhiệt độ phòng (30 ± 1 0 C). Mỗi lần thêm 0,2ml dung dịch KOH và tiến hành đo pH. Lực ion trong các dung dịch nghiên cứu đều là 0,1 (dùng dung dịch KNO3 1M để điều chỉnh lực ion). Kết quả chuẩn độ được chỉ ra ở bảng 2.1 và hình 2.1. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 24 Bảng 2.1 Kết quả chuẩn độ dung dịch H2Met + 2.10 -3M bằng dung dịch KOH 5.10 -2M ở 30 ±10C; I = 0,1 VKOH (ml) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 pH 2,8 2,82 2,89 2,97 3,05 3,16 3,30 3,52 4,1 5,66 7,37 VKOH (ml) 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 a 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 pH 8,15 8,47 8,69 8,83 8,98 9,07 9,36 9,48 9,64 9,85 10,02 a là số đương lượng gam KOH kết hợp với một mol L - Methionin 2 4 5 6 7 8 9 10 11 0.0 0.5 1.0 1.5 2.0 2.5 Hình 2.1 Đường cong chuẩn độ dung dịch H2Met + 2.10 -3 M bằng dung dịch KOH 5.10-2M ở 30 ±10C; I= 0,1 pH a Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 25 Quá trình phân li của L-Methionin được mô tả bởi các cân bằng sau: H2Met +  H+ + HMet ; K1 HMet  H+ + Met- ; K2 Trong đó : K1 = 2 [ ][ ] [ ] H HMet H Met   (2.1) K2= [ ][ ] [ ] H Met HMet   (2.2) Từ hình 2.1 chúng tôi nhận thấy đường cong chuẩn độ L-Methionin có hai miền đệm rõ rệt nằm cách xa nhau, vì vậy có thể tính được K1 và K2 dựa vào phương trình (2.1) và (2.2). *Ở miền đệm thứ nhất: a = 0 ÷ 0.5 Theo định luật bảo toàn nồng độ ban đầu và định luật bảo toàn điện tích ta có: 2H Met C  = [H2Met + ] + [HMet] (2.3) [K + ] +[H + ] + [H2Met + ] = [OH - ] + 2H Met C  (2.4) Trong đó: 2H Met C  là nồng độ chung của L - Methionin, 2H Met C  thay đổi trong quá trình chuẩn độ và được tính theo công thức sau: 2H Met C  = 2 2 2 0 0 0 H Met H Met KOHH Met C V V V     (2.5) 2 0 H Met C  , 2 0 H Met V  là nồng độ và thể tích của dung dịch L-Methionin trước khi chuẩn độ. C 0 KOH , VKOH là nồng độ ban đầu và thể tích của dung dịch KOH cho vào trong quá trình chuẩn độ. Gọi a là số đương lượng gam KOH kết hợp với một mol L -Methionin a = 2 2 0 0 0 . . KOH KOH H Met H Met C V C V  (2.6) Từ (2.3) ÷ (2.6) ta có [K+] = a. 2H Met C  Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 26 Phương trình (2.3), (2.4) có thể viết thành: [HMet] = 2H Met C  – [H2Met + ] [H2Met + ] = (1-a). 2H Met C  – [H+] + [OH-] Thay [HMet] và [H2Met +] vào phương trình (2.1) ta được: K1 = 2 2 [ ] . [ ] [ ] (1 ). [ ] [ ] H Met H Met H a C H OH a C H OH                (2.7) *Ở miền đệm thứ hai: a = 1.5 ÷ 2.0 Tương tự như trên, theo định luật bảo toàn nồng độ ban đầu và định luật bảo toàn điện tích ta có: 2H Met C  = [HMet] + [Met - ] (2.8) [H + ] + a 2H Met C  = [Met - ] + [OH - ] + 2H Met C  (2.9) Từ (2.2), (2.8), (2.9) ta được: K2 = 2 2 [ ] ( 1). [ ] [ ] (2 ). [ ] [ ] H Met H Met H a C H OH a C H OH                 (2.10) Sử dụng số liệu ở bảng 2.1; các công thức (2.6), (2.7), (2.10) và dùng phần mềm Excel để tính các giá trị pK1, pK2 . Kết quả sau khi xử lí thống kê được chỉ ra ở bảng 2.3. 2.2.2. Xác định hằng số phân li của axetyl axeton Chuẩn độ 50ml dung dịch HAcAc 2.10 -3 M bằng dung dịch KOH 5.10 -2 M ở 30 ± 1 0C. Lực ion trong dung dịch nghiên cứu là 0,1 (dùng dung dịch KNO3 1M để điều chỉnh lực ion). Kết quả chuẩn độ được chỉ ra ở bảng 2.2, hình 2.2. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 27 Bảng 2.2 Kết quả chuẩn độ dung dịch HAcAc 2.10-3 M bằng dung dịch KOH 5.10 -2M ở 30 ± 10C; I = 0,1. a 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 pH 2,92 2,94 2,97 3,01 3,06 3,13 3,29 3,81 4,48 6,08 7,6 a 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 pH 8,5 8,81 9,01 9,22 9,39 9,56 9,73 9,81 9,89 9,95 10,02 2 3 4 5 6 7 8 9 10 11 0.0 0.5 1.0 1.5 2.0 2.5 Hình 2.2 Đường cong chuẩn độ dung dịch HAcAc 2.10-3M bằng dung dịch KOH 5.10-2M ở 30 ± 10C; I = 0,1. pH a pH Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 28 Quá trình phân li trong dung dịch của axetyl axeton như sau: CH3 – C - CH2 – C – CH3 CH3 – C – CH = C – CH3 + H + ; KA O O O O - [ ][ ] [ ] A H AcAc K HAcAc    (2.11) Theo định luật bảo toàn nồng độ ban đầu và định luật bảo toàn điện tích ta có: HAcAc C = [HAcAc] + [AcAc - ] (2.12) [H + ] + a HAcAcC = [AcAc - ] + [OH - ] + HAcAcC (2.13) Từ (2.3.11), (2.3.12) và (2.3.13) ta có: KA = AcAc [ ] ( 1). [ ] [ ] (2 ) [ ] [ ] HAcAc H H a C H OH a C H OH              Sử dụng số liệu ở bảng 2.2 và dùng phần mềm Excel để tính giá trị KA từ đó tính ra pKA. Sau khi xử lí thống kê thu được kết quả pKA. Kết quả tính toán pKA đưa ra cùng các giá trị pK1 và pK2 ở bảng 2.3 như sau: Bảng 2.3 Các giá trị pK của L- Methionin và axetyl axeton ở 30 ± 10C ; I = 0,1. (-) không xác định. * Nhận xét: Kết quả bảng 2.3 cho thấy với giá trị pK1, pK2 của H2Met + và pKA của HAcAc là khá phù hợp so với các tài liệu [2], [22]. Từ đó chứng tỏ phương pháp nghiên cứu và thiết bị thí nghiệm là tin cậy. Phối tử pK1 pK2 pKA L-Methionin 2,28 9,29 — Axetyl axeton — — 9,35 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 29 2.2.3. Nghiên cứu sự tạo phức đơn phối tử của các ion đất hiếm (Ho3+, Er 3+ , Tm 3+ , Yb 3+ , Lu 3+ ) với L - Methionin Chuẩn độ 50ml dung dịch L-Methionin đã axit hoá khi không có và có riêng rẽ các ion đất hiếm (Ho3+, Er3+, Tm3+, Yb3+, Lu3+), lấy theo tỉ lệ mol Ln 3+ : H2Met + = 1:2, với nồng độ ion Ln3+ là 10-3M bằng dung dịch KOH 5.10 -2 M. Các thí nghiệm được tiến hành ở nhiệt độ 30 ± 10C. Lực ion trong tất cả các thí nghiệm đều là 0,1 (dùng dung dịch KNO3 1M để điều chỉnh lực ion). Kết quả được chỉ ra ở các bảng 2.4, hình 2.3. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 30 Bảng 2.4 Kết quả chuẩn độ H2Met + và các hệ Ln3+: H2Met + = 1: 2 bằng dung dịch KOH 5.10-2M ở 30 ±10C; I = 0,1 VKOH (ml) a pH của hệ H2Met + và các hệ Ln3+: H2Met + (Ln 3+ : Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ , Lu 3+ ) H2Met + Ho 3+ Er 3+ Tm 3+ Yb 3+ Lu 3+ 0,0 0,0 2,8 2,9 2,87 2,88 2,8 2,69 0,2 0,1 2,82 2,93 2,91 2,91 2,81 2,74 0,4 0,2 2,89 3,01 2,97 2,97 2,87 2,8 0,6 0,3 2,97 3,1 3,06 3,05 2,93 2,89 0,8 0,4 3,05 3,21 3,16 3,15 2,99 2,99 1,0 0,5 3,16 3,35 3,28 3,27 3,07 3,12 1,2 0,6 3,3 3,5 3,45 3,43 3,16 3,28 1,4 0,7 3,52 3,7 3,6 3,55 3,33 3,53 1,6 0,8 4,1 4,01 3,9 3,85 3,66 3,83 1,8 0,9 5,66 4,6 4,55 4,5 4,3 4,53 2,0 1,0 7,37 5,2 5,15 5,1 4,95 5,15 2,2 1,1 8,15 6,12 5,9 5,75 5,5 5,65 2,4 1,2 8,47 6,2 6,07 5,9 5,6 5,75 2,6 1,3 8,69 6,28 6,12 5,98 5,72 5,85 2,8 1,4 8,83 6,39 6,3 6,12 5,8 5,95 3,0 1,5 8,98 6,49 6,32 6,23 5,9 6,05 3,2 1,6 9,07 6,62 6,46 6,3 6,0 6,15 3,4 1,7 9,36 6,73 6,55 6,42 6,1 6,3 3,6 1,8 9,48 6,89 6,63 6,5 6,2 6,35 3,8 1,9 9,64 6,99 6,74 6,6 6,3 6,41 4,0 2,0 9,85 7,25 6,9 6,71 6,41 6,49 4.2 2.1 10,02 7,35 7,12 6,8 6,47 6,61 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 31 2 3 4 5 6 7 8 9 10 11 0.0 0.5 1.0 1.5 2.0 2.5 Hình 2.3 Đường cong chuẩn độ hệ H2Met + và các hệ Ln3+ : H2Met + = 1 : 2 bằng dung dịch KOH 5.10-2M ở 30 ± 10C; I = 0,1. Trong đó: 1: đường cong chuẩn độ hệ H2Met + 2: đường cong chuẩn độ hệ Ho3+: H2Met + 3: đường cong chuẩn độ hệ Er3+: H2Met + 4: đường cong chuẩn độ hệ Tm3+: H2Met + 5: đường cong chuẩn độ hệ Lu3+: H2Met + 6: đường cong chuẩn độ hệ Yb3+: H2Met + pH a 3 5 6 2 4 1 Số hóa bởi Trung tâm Học li

Các file đính kèm theo tài liệu này:

  • pdfLV2010_SP_NguyenThuyVan.pdf
Tài liệu liên quan