Bức xạ gamma là bức xạ điện từ, có khả năng xuyên sâu rất lớn. Bức xạ gamma phát ra năng
lượng xác định và năng lượng rất lớn có thể tới 8-10 MeV.
Khi đi qua vật chất bức xạ gamma bị mất năng lượng do các quá trình: quang điện, Compton
và sự tạo cặp. Bức xạ gamma là bức xạ mạnh và có khả năng xuyên sâu lớn nên có thể gây nguy
hiểm đáng kể ở những khoảng cách khá xa nguồn.
Các tia tán xạ gamma cũng gây nguy hiểm do đó phải che chắn theo mọi hướng, vì nó gây tổn
thương lên các mô lành của cơ thể dẫn đến tổn hại đến cơ thể.
77 trang |
Chia sẻ: maiphuongdc | Lượt xem: 4532 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Luận văn Thiết kế các bài thí nghiệm cho phòng thí nghiệm vật lý hạt nhân trường đại học sư phạm thành phố Hồ Chí Minh, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
hành đo alpha cần lưu ý: hạt alpha có khả năng đâm xuyên khá thấp trong số các bức
xạ ion hóa. Do đó khi đo các nguồn alpha người ta thiết kế khay đặt nguồn sát đầu dò.
2.1.2.4. Khảo sát sự phân bố số đếm theo hàm phân bố Possion
Trong thí nghiệm hạt nhân thì mẫu nghiên cứu chứa rất nhiều hạt nhân phóng xạ nhưng hệ đo
chỉ ghi nhận được một phần nhỏ các hạt phóng xạ. Với điều kiện
p << 1 và n lớn. Trong đó p là xác suất xảy ra tức là xác suất để hạt nhân phóng xạ phát ra từ nguồn
và được ghi nhận bằng detector còn n là số hạt nhân phóng xạ phát ra từ nguồn.
Trong đo lường phóng xạ, sự phân rã hạt nhân tuân theo quy luật thống kê Poisson.
n nn .e
P(n)
n!
(2.9)
Số đếm trung bình trong k lần đo
k
i
i 1
n
n
k
(2.10)
Và xác suất xảy ra số đếm ni trong một lần đo với thời gian t tuân theo quy luật phân bố
Poisson, đường biểu diễn phân bố Poisson không đối xứng.
in n
i
i
n .e
P(n )
n !
(2.11)
Các bước tiến hành
Bước 1: Mở hệ đo lên và sấy máy khoảng 30 phút.
Bước 2: Đặt nguồn chuẩn 238 234 234 234U, U, Th, Pa vào khay để đo với thời gian mỗi lần đo là 2
giây.
Bước 3: Chọn chế độ chỉ đo số đếm beta và thời gian đo.
Bước 4: Sau đó xử lý số liệu và vẽ đồ thị phân bố Possion.
2.1.2.5. Khảo sát số đếm theo phân bố Gauss
Khi tốc độ đếm tăng, xác suất để có tốc độ đếm ni trong 1 lần đo tuân theo phân bố Gauss.
2in n
2n
i
1
P(n ) e
2 n
(2.12)
Các bước tiến hành
Bước 1: Tiến hành giống như khảo sát số đếm theo phân bố Possion.
Bước 2: Thời gian cho mỗi phép đo là 30 giây và đo 200 lần.
Bước 3: Sau đó xử lý số liệu và tiến hành vẽ đồ thị phân bố Gauss.
2.1.2.6. Tối ưu hóa thời gian đo
Là xác định tỷ lệ thời gian đếm nguồn và phông tối ưu nhằm cực tiểu hóa độ lệnh chuẩn.
Xác định thời gian đo tối ưu áp dụng theo nguyên lý truyền sai số.
Gọi S là tốc độ đếm thật từ một nguồn phóng xạ và B là tốc độ đếm phông.
Phép đo tốc độ đếm thật thường được thực hiện bằng cách đo số đếm tổng của nguồn kèm
phông trong khoảng thời gian TS+B, sau đó đo riêng phông trong khoảng thời gian TB. Tốc độ đếm
thật của riêng nguồn được xác định như sau:
1 2
S B B
N N
S
T T
(2.13)
Trong đó N1 là số đếm tổng nguồn và phông, N2 là số đếm phông
Theo định luật truyền sai số ta có:
1 2
2 2
N N
S
S B BT T
(2.14)
1 2
S 2 2
S B B
N N
T T
(2.15)
S
S B B
S B B
T T
(2.16)
Để xác định điều kiện cực tiểu của S , bình phương và lấy vi phân phương trình (2.16), ta
được:
S S S B B2 2
S B B
S B B
2 d dT dT
T T
(2.17)
Với một khoảng thời gian không đổi, T = TS+B+TB = const, thì dTS+B+dTB = 0.
Đặt Sd 0 , ta thu được điều kiện tối ưu cho tỉ lệ thời gian đo như sau:
S B
B
T S B
T B
(2.18)
Đặt S
S
là độ lệch chuẩn tỷ đối của tốc độ đếm thực từ nguồn. Chuyển TS+B và TB về thời
gian tổng T, ta được hệ thức giữa T và
2
2
2
1 S
T ( S B B)
(2.19)
Công thức (2.19) xác định thời gian cần thiết với một độ chính xác định trước ( )
Các bước tiến hành
Bước 1: Đặt chế độ làm việc: để nút chỉnh cao thế ở cực tiểu, bật cao thế, cho hệ đo ổn định
trong 30 phút.
Bước 2: Sau đó xác định cao thế làm việc của máy.
Xác định độ lệch chuẩn tương đối
Tiến hành 10 phép đo phông trong điều kiện như nhau trong khoảng thời gian TB=30 s cho 1
phép đo và được dãy số đếm phông. Tính số đếm phông trung bình.
Tiến hành 10 phép đo với nguồn phóng xạ cùng điều kiện hình học giống như đo phông trong
khoảng thời gian 30s cho 1 phép đo để có dãy số đếm Ni. Tính số đếm trung bình.
Tính tốc độ đếm thật trung bình S của nguồn và độ lệch chuẩn S suy ra độ lệch chuẩn tỷ đối
1 tương ứng.
Xác định tỷ lệ thời gian
Dùng công thức (2.19) xác định tỷ số S B
B
T
T
tối ưu, suy ra TS+B và TB sao cho TS+B+TB= 60
giây.
Thực hiện lại các phép đo với thời gian đã tối ưu
Tính tốc độ đếm trung bình S của nguồn và độ lệch chuẩn S suy ra độ lệch chuẩn tỷ đối 2
tương ứng.
So sánh 2 giảm mấy lần so với 1 .
2.2. Hệ đo gamma đơn kênh
2.2.1. Giới thiệu máy Ludlum Model 2200 Scaler Ratemeter
Máy đơn kênh Ludulum Model 2200 là thiết bị được dùng cho việc phân tích phổ năng lượng
gamma cùng với detector nhấp nháy, ống đếm Geiger-Muller và Ống đếm tỷ lệ. Số đếm được hiển
thị trên đèn LED và máy có thể kết nối với máy vi tính thông qua cổng RS-232 và có phần mềm xử
lý kết quả đo.
2.2.1.1. Mặt trước của máy
Hình 2.3: Mặt trước của máy
Bao gồm:
Đèn đếm (count Lamp): số đếm hiện thị bằng đèn LED (có màu đỏ) gồm có 6 số.
Công tắc đếm (count Switch): để xóa và khởi động đếm, quá trình đếm sẽ tự động tắc khi kết
thúc thời gian đã đặt trước.
Thời gian đếm (count Time): thời gian sử dụng để đo với đơn vị là phút từ 0-999 với công tắc
chỉnh X0.1 và X1.
Số phút (MINUTES): cài đặt thời gian có thể điều chỉnh bằng tay có núm 3 số thập phân dùng
để đặt trước thời gian đếm.
Công tắc chọn chức năng (Ratemeter Function Selector): có 3 vị trí được cài đặt sẵn RATE,
HV, BAT. Chức năng của công tắc này (RATE) là cho phép điều khiển tốc độ đếm của đồng hồ,
HV cài đặt điện thế và BAT kiểm tra tình trạng làm việc của pin trên đồng hồ.
Ngưỡng (THRESHOLD): Là một nút được chia ra làm 10 vạch nhỏ với 10 vòng dùng đề lựa
chọn xung phù hợp với thang đo. Thiết bị điều khiển này thì có giá trị tăng từ thế từ 1.00 đến 10.00.
Nếu dưới 1.00 thì sẽ bị ảnh hưởng của tiếng ồn hay nhiễu do đó sẽ không ghi nhận được xung một
cách chính xác.
Cửa sổ (WINDOW): là một nút gồm có 10 vạch giống như Threshold được sử dụng để điều
chỉnh độ rộng cửa sổ. Nó được điều chỉnh ngưỡng sao cho một vòng quay của việc điều chỉnh cửa
sổ tương đương với một vòng quay điều chỉnh ngưỡng.
Tắt mở (ON-OFF): là công tắc bằng nút, mở hoặc đóng cửa sổ.
Đầu nối vào detector (Detector input connection): đầu nối đồng trục nối tiếp “C”. Nó là đầu
điều chỉnh không có chỉ số chỉ thị, cho phép chọn điểm làm việc mà không vượt ra khỏi mạch tuyến
tính của mạch Threshold/ Window.
Công tắc nguồn ( Power Switch) :công tắc có 3 vị trí:
OFF: tắt nguồn.
LINE: cung cấp điện cho nguồn từ 85- 265 V và tần số từ 50-60 Hz.
BAT: cáp nguồn từ 4 pn loại “D”.
DISCR: có 1 với đồng hồ điện thế để thiết lập phạm vi ngưỡng cho điện thế.
Công tắc chọn khoảng (RANGE Selector Switch): có 4 vị trí công tắc sắp xếp theo hệ số nhân
của 10 là X1, X10, X100, X1K ứng với thang đo của số đếm từ 0-500 counts-per-minute(cpm), 0-
5000, 0-50000, 0-500,000 cpm.
Công tắc ZERO (ZERO Switch): khi ấn vào nút công tắc thì tụ điện tích hợp phóng điện để
đưa đồng hồ đo về mức 0.
Nút Fast- Slow (F-S Response): công tắc với 2 vị trí chỉ thị để điều chỉnh ở mức độ nhanh ở
vị trí “F” đồng hồ sẽ chỉ từ 0 đến 90% toàn bộ thang đo trong 4 giây, còn ở vị trí “S” đồng hồ thang
đo sẽ chỉ từ 0 đến 90% toàn bộ thang đo trong 22 giây.
HV (Cao thế): nút chỉnh gồm có 10 vòng được chia làm 10 vạch điều chỉnh cao thế từ 200 V
đến 2500 V.
Việc tiến hành đo của detector và thiết bị được quyết định bởi cao thế HV và ngưỡng cài đặt
THRESHOLD, ta phải điều chỉnh ngưỡng đo sao cho thích hợp để sự ảnh hưởng có phông tự nhiên
và tiếng ồn là nhỏ nhất.
2.2.1.2. Đặc trưng kỹ thuật
- Nguồn nuôi: 85-265V sử dụng dòng điện xoay chiều, tần số 50-60 Hz.
- Pin: 4 pin với thời gian làm việc là 120 giờ được đặt trong thiết bị.
- Độ nhạy của thiết bị: độ nhạy điện thế cho các detector .
- Cao thế: điều chỉnh bằng núm xoay 10 vòng từ 200V đến 2500 V.
- Bộ tốc độ đo: máy đếm với 4 tốc độ đếm là: 0-500 cpm, 0-5000 cpm, 0-50000 cpm, 0-500000
cpm (cpm: số đếm trên phút).
- Thời gian đếm là từ 0 đến 999 với các thang nhân X0.1 và X1.
- Độ chính xác thời gian: được quyết định bằng tinh thể với độ chính xác là 0.2 % số đếm
đọc trên núm điều chỉnh.
- Đồng hồ đo: 1mA, thang dài 2.5 inch với cơ chế DC tự động.
- Độ chính xác của tốc độ đếm: 10% giá trị tham chiếu.
- Điều kiện môi trường làm việc: chỉ được để trong phòng thí nghiệm, với nhiệt độ cho phép từ
20oC50oC, độ ẩm tương đối nhỏ hơn 95%.
Cách vận hành
- Nguồn nuôi: Có thể sử dụng nguồn nuôi bằng cách sử dụng lưới điện hoặc dùng pin bằng
công tắc nguồn.
- Vận hành bằng nguồn điện lưới (LINE OPERATION): nối thiết bị với nguồn lưới 85-265 V,
50-60Hz, bật công tắc về LINE
- Vận hành bằng nguồn pin: các ổ pin nằm ở mặt sau của thiết bị. Đặt 4 pin loại “D” vào với
cực dương hướng ra ngoài. Bật công tắc về BAT, kiểm tra tình trạng pin bằng cách chọn BAT
trên đồng hồ RATE-HV-BAT.
- Kiểm tra hoạt động của thiết bị bằng cách ấn vào nút COUNT lúc này đèn đếm sẽ phát sáng,
máy bắt đầu đếm.
Cách sử dụng phần mềm
- Bật về OFF cả máy tính và thiết bị Model 2200.
- Nối một đầu cáp RS232 vào Model 2200 và đầu kia của cổng chưa sử dụng để sau máy tính
(cổng chưa sử dụng này có thể ký hiệu là COM1, COM2, COM3, COM4).
Cài đặt phần mềm
- Đưa đĩa phần mềm LMFM2200 vào ổ đĩa nhấn double click lên file “setup.exe” trên đĩa để
tiến hành cài đặt.
- Trước khi bắt đầu khởi động máy thì đảm bảo rằng Model 2200 nằm trong mode “PC” và thời
gian đếm được đặt tại “000”
Chức năng của các nút chỉnh
Hình 2.4: Phần mềm Model 2200
- Start/Stop Count: nhấn vào nút này để bắt đầu đếm, nhấn vào nó một lần nữa sẽ dừng đếm
Model 2200 tự động hiển thị số đếm trên màn hình khi thời gian đếm mà ta cài đặt chấm dứt.
- Read Count: nhấn vào nút này để đọc số đếm hiện tại khi đó sẽ lập tức hiển thị trên màn hình
Model 2200.
- Set Count Time: nhấn vào nút này để đặt thời gian đếm. Thời gian đếm chắc chắn được đặt ở
“000”.
- Read Count Time Left: nhấn vào nút này để đọc thời gian còn lại trong quá trình đếm. Nếu số
đếm không hiện lên thì nó sẽ trả về “0”.
- Start Logging: nhấn vào nút này để bắt đầu lấy ra một dãy số đếm thời gian. Số lượng của các
số đếm được lấy có thể được điều chỉnh như 10 số đếm, 100 số đếm, 200 số đếm hoặc một giá
trị khác được mặc định.
- Sau khi logging đã dừng, dữ liệu được lưu trữ dưới dạng file Excel có đuôi là “csv”.
- Log 1 Count: chỉ cho phép xuất hiện một số đếm.
- Comment 1/ Comment 2: có thể được dùng để lưu trữ những chú thích.
Bảo quản thiết bị
- Để thiết bị hoạt động ổn định và có hiệu suất cao ta cần phải đảm bảo tất cả các phép đặt và
điều chỉnh đúng.
- Model 2200 có thể lau chùi bằng vải ẩm, không nhúng thiết bị vào bất cứ chất lỏng nào. Lưu ý
bật công tắc thiết bị về OFF và tháo dây nguồn ra.
- Sấy máy từ 1-2 phút trước khi bắt đầu đo.
2.2.2. Đầu dò nhấp nháy MODEL 44-10
2.2.2.1. Giới thiệu
Model 44-10 đầu dò NaI nhấp nháy sử dụng cho việc đo bức xạ gamma có năng lượng trong
khoảng 60 keV - 2 MeV. Đầu dò bao gồm: tinh thể NaI đường kính 2” (5,1cm) bề dày 2” (5,1cm)
được nối với ống nhân quang điện và được bao bọc bằng một lớp nhôm mỏng 0,062”
Hình 2.5: Đầu dò nhấp nháy Model 44-10
Đầu dò Model 44-10 dùng để xác định độ nhạy, phân tích phổ năng lượng được sử dụng cho
máy đếm đơn kênh.
2.2.2.2. Đặc trưng kỹ thuật
- Chất nhấp nháy: tinh thể NaI.
- Độ nhạy : 900 cpm ( đối với nguồn 137Cs ).
- Dụng cụ tương thích với mọi thiết bị.
- Dây điện trở Dynode: 60 M .
- Điện thế hoạt động : 500-1200 Volt.
- Kết nối cổng “C”.
- Nhiệt độ là từ 20oC-50oC.
- Kích thước: đường kính 2,6’’ (6,6 cm) chiều dài là 11’’ (27,94 cm).
- Thiết bị nặng: 1,04 kg.
Cách vận hành
- Kết nối đầu dò với máy đếm bằng cáp.
- Kiểm tra detector.
- Bảo đảm cao thế (HV) phù hợp với detector .
- Sau khi kiểm tra an toàn thì có thể tiến hành đo.
Cách bảo quản máy
Về mặt an toàn
- Đặt nơi khô ráo, không đặt nơi quá cao.
- Nhiệt độ trong khoảng 20oC đến 50oC.
- Độ ẩm tương đối không quá 95%.
Vệ sinh máy
- Dùng vải thấm ướt bằng nước để lau detector. Khi lau chùi cần chú ý:
- Tắt máy
- Cho máy nghỉ 2 phút.
- Tháo cáp và lau detector.
2.2.3. Nguồn chuẩn
Hình 2.6: Hộp đựng nguồn chuẩn RSS-8
Bộ nguồn chuẩn RSS-8 gồm có 8 nguồn đồng vị phát gamma với năng lượng 32 keV đến
1332 keV.
Bảng 2.1: Một số nguồn chuẩn trong phòng thí nghiệm
Nguồn Hoạt độ 1/2T Tia Năng lượng (MeV)
133Ba 1 Ci 10,8 năm
0,081; 0,276; 0,303; 0,365;
0,384
109Cd 1 Ci 463 ngày 0,022; 0,025; 0,088
57Co 1 Ci 272 ngày 0,122; 0,136
60Co 1 Ci 5,27 năm , 1,173; 1,332
137Cs 1 Ci 30,2 năm , 0,662
54Mn 1 Ci 313 ngày , 0,835
22Na 1 Ci 2,6 năm 0,511; 1,275
65Zn 1 Ci 244 ngày 1,115
Hình 2.7: Nguồn chuẩn RSS-8
2.2.4. Bố trí thí nghiệm
2.2.4.1. Khảo sát vùng plateau
Cao thế làm việc của detector là điện thế tại đó detector hoạt động hiệu quả nhất. Đường đặc
trưng biễu diễn sự phụ thuộc của tốc độ đếm vào điện thế cung cấp cho detector. Đoạn plateau càng
dài và độ dốc càng nhỏ thì detector làm việc ổn định nhất.
Các bước tiến hành
- Đặt cửa sổ ON-OFF tại OFF.
- Cài đặt thời gian tại nút công tắc “X0.1” và Thời gian đo (MINUTES) ở công tắc “001”.
- Đặt ngưỡng (Threshold) tại 1.0.
- Cửa sổ (Window) đóng.
- Lên cao thế ở 130V và ghi số đếm lấy khoảng 3 lần số đếm. Mỗi lần tăng cao thế khoảng
10V.
- Vẽ đồ thị sự phụ thuộc số đếm vào cao thế.
2.2.4.2. Khảo sát sự suy giảm số đếm theo quy luật tỷ lệ nghịch với bình phương
khoảng cách.
0
2
I
I
d
(2.20)
Hoạt độ phóng xạ và suất liều của một nguồn phóng xạ thì tỷ lệ theo khoảng cách. Trong thí
nghiệm này sẽ tìm ra quy luật suy giảm tỷ lệ nghịch với bình phương khoảng cách.
Hình 2.8: Sự suy giảm chùm tia gamma theo bình phương khoảng cách
Lấy log 2 vế ta được: 20I I d
0log I log I 2 logd (2.21)
Đặt 0 0y log I, y log I , x logd
Phương trình có dạng : 0y y 2x (2.22)
d
I
Hình 2.9: Đồ thị dạng log của sự suy giảm chùm tia gamma theo bình phương khoảng cách
Dạng tổng quát của phương trình là :
y b ax (2.23)
Xác định hệ số a và b
b y ax (2.24)
y : tính trung bình của log I
x : tính trung bình của logd
Hệ số a tính theo công thức sau :
2
x x y y
a
x x
(2.25)
Các bước tiến hành
- Đặt cửa sổ ON-OFF tại OFF.
- Cài đặt thời gian tại nút công tắc “X0.1” và Thời gian đo (MINUTES) ở công tắc “001”.
- Lên cao thế ở 400V.
- Đặt ngưỡng (Threshold) tại 1.0.
- Cửa sổ (Window) đóng.
- Sử dụng nguồn 137Cs .
Hình 2.10: Nguồn chuẩn 137Cs
- Đặt nguồn trong 137Cs trong hộp chì đựng nguồn.
log d
log I
Hinh 2.11: Chì dùng đựng nguồn
- Đặt nguồn trước detector và di chuyển theo khoảng cách.
Hình 2-12 Bố trí thí nghiệm cho sự suy giảm số đếm tỷ lện nghịch bình phương khoảng cách
- Sau đó lập bảng như sau:
d
(cm)
Số đếm y = logI x = logd x x y y
x x y y
2
x x
y = x =
2.2.4.3. Xác định hệ số suy giảm tuyến tính và suy giảm khối, bề dày một nửa HVT
trong nhôm, chì, đồng, nhựa, giấy.
Quy luật suy giảm của tia gamma khi đi qua vật liệu
x
0I I e
(2.26)
Ta có thể sử dụng mật độ bề mặt d (g/cm2) với d x
Thay vào phương trình (2.27)
d/
0I I e
(2.27)
Trong đó tỷ số
được gọi là hệ số suy giảm khối và được ký hiệu: m (cm
2/g).
Ta có : x0I I e
Vì đại lượng I tỷ lệ với số đếm N nên:
x
0N N e
(2.28)
Lấy ln 2 vế :
0
N
ln x
N
(2.29)
Do đó 0
N
ln
N
phụ thuộc tuyến tính vào x
Phương trình có dạng y = ax+b
x là bề dày
a là hệ số giảm tuyến tính
2
(x x)(y y)
a
(x x)
(2.30)
Xác định bề dày một nửa 1/2x
Bề dày giảm một nửa 1/2x là bề dày vật chất mà chùm tia đi qua bị suy giảm cường độ 2 lần,
nghĩa là còn một nửa cường độ ban đầu. Bề dày 1/2x liên hệ với hệ số suy giảm tuyến tính như
sau :
1/2
0,693
x
(2.31)
Hình 2.13: Sự suy giảm cường độ chùm tia gamma theo bề dày 1/2x
Các bước tiến hành
- Đặt cửa sổ ON - OFF tại OFF.
- Cài đặt thời gian tại nút công tắc “X0.1” và khi đó thời gian đo (MINUTES) ở công tắc “001”.
- Lên cao thế ở 400V
- Đặt ngưỡng (Threshold) tại 1.0
- Cửa sổ (Window) đóng.
- Sử dụng nguồn 137Cs .
+ Đối với nhôm
Chuẩn bị 12 tấm, bề dày mỗi miếng : 1mm
Hình 2.14: Các miếng nhôm
Hình 2.15: Bố trí thí nghiệm với các miếng nhôm
Bề dày N
BI N N
y = ln(I/I0) x x y y (x x)(y y)
2(x x)
x y
N là số đếm nguồn
NB là số đếm phông
+ Đối với nhựa
Chuẩn bị 20 tấm, bề dày mỗi tấm 1 mm
Hình 2.16: Các miếng nhựa
Hình 2.17: Bố trí thí nghiệm với các miếng nhựa
+ Đối với chì
Chuẩn bị 15 miếng chì, bề dày mỗi miếng : 1mm
Hình 2.18: Các tấm chì
Hình 2.19: Bố trí thí nghiệm với các miếng chì
+ Đối với Giấy
Chuẩn bị 210 tờ giấy
Hình 2.20: Các tấm giấy
Hình 2.21: Bố trí thí nghiệm với giấy
+ Đối với Đồng
Chuẩn bị 14 tấm đồng, bề dày mỗi tấm 1,2 mm
Hình 2.22: Các miếng đồng
Hình 2.23: Bố trí thí nghiệm đối với đồng
2.3. Máy đo Gamm-Ray 8K
2.3.1. Giới thiệu
Phổ kế gamma 8K là máy dùng cho việc phân tích phổ gamma.
Bao gồm: chất nhấp nháy, ống nhân quang điện, bộ xử lý xung, phầm mềm để điều khiển, kết
nối thông tin với máy tính
Hình 2.24: Phổ kế MCA 8K
2.3.1.1. Đặc trưng kỹ thuật
- Detector nhấp nháy NaI hình trụ với kích thước là 76x76 mm nối liền với tiền khuếch đại.
- Bộ biến đổi xung thành số với khối khuếch đại và máy phân tích biên độ đa kênh.
- Thiết bị làm việc với mọi điện thế cung cấp
- Có phần mềm chuyên dụng cài đặt sẵn trong máy tính.
- Kết nối giữa máy Gamma – Ray với máy tính qua cổng USB. Có thể kết nối với Internet để
truy cập thông tin cần thiết cho máy.
Các tiêu chuẩn của máy
- Mức năng lượng máy đo được : 10 đến 3000 keV.
- Độ phân giải < 7 % FWHM với đỉnh năng lượng 662 keV < 5% FWHM với đỉnh năng lượng
1,33 MeV.
- Tốc độ đếm là 200,00 cps (số đếm trên giây).
- Công suất là 750 mW.
- Cao thế là 556 V có thể lên cao thế khoảng 1000V.
- 113 Sintillation Preamplifier: cài đặt điện dung đầu vào khoảng 200 pF thì xung đầu ra sẽ rõ
ràng.
- 575A Amplifier: thời gian hình thành xung là 0,5 s . Mạch khuếch đại sẽ được điều chỉnh
trong suốt quá trình thí nghiệm.
- MCA: máy phân tích biên độ đa kênh
2.3.1.2. Cách vận hành
- Khởi động máy tính cùng phần mềm ADMCA.
- Đặt nguồn cần đo trước đầu dò detector.
- Điều chỉnh thời gian đếm thích hợp.
- Nhấn Start cho máy bắt đầu đếm.
- Khi máy ngừng đếm tiến hành lưu phổ vào phần cứng của máy.
2.3.1.3. Bức xạ gamma
Bức xạ gamma là bức xạ điện từ, có khả năng xuyên sâu rất lớn. Bức xạ gamma phát ra năng
lượng xác định và năng lượng rất lớn có thể tới 8-10 MeV.
Khi đi qua vật chất bức xạ gamma bị mất năng lượng do các quá trình: quang điện, Compton
và sự tạo cặp. Bức xạ gamma là bức xạ mạnh và có khả năng xuyên sâu lớn nên có thể gây nguy
hiểm đáng kể ở những khoảng cách khá xa nguồn.
Các tia tán xạ gamma cũng gây nguy hiểm do đó phải che chắn theo mọi hướng, vì nó gây tổn
thương lên các mô lành của cơ thể dẫn đến tổn hại đến cơ thể.
2.3.1.4. Dạng phổ bức xạ gamma
Hình 2.25: Dạng phổ gamma đa kênh đo bằng phổ kế nhấp nháy
Đỉnh 1 có dạng phân bố Gauss gọi là đỉnh hấp thụ toàn phần, xuất hiện khi bức xạ gamma hấp
thụ toàn bộ năng lượng trong tinh thể.
Vùng 2 là nền Compton liên tục ứng với các xung điện lối vào khối phân tích có biên độ tỷ lệ
với năng lượng bị hấp thụ và nằm trong khoảng.
E
0 E
1 2E (1 cos )
(2.32)
E : năng lượng ban đầu của tia gamma
E : là năng lượng gamma sau khi tán xạ
Năng lượng hao phí là:
eE E E (2.33)
Trong đó là góc tán xạ
Đỉnh 3 là đỉnh tán xạ ngược bị hấp thụ hoàn toàn trong tinh thể. Biên độ xung lối vào khối
phân tích tỉ lệ với năng lượng gamma tán xạ ngược.
Vùng 4 là giới hạn của nền Compton liên tục. Do tán xạ nhiều lần trong tinh thể nên có những
bức xạ gamma tán xạ trong tinh thể lại tiếp tục tương tác với tinh thể. Kết quả là hao phí năng lượng
toàn bộ của bức xạ gamma lớn hơn eE . Vì vậy giới hạn của nền Compton không nhọn như Vùng 2.
Phần 5 là phần lõm xuống khá sâu so với nền Compton liên tục. Khi bức xạ gamma tán xạ
nhiều lần, gamma cuối cùng bay ra khỏi tinh thể. Vùng 5 tương ứng với các xung lối vào khối phân
tích tương ứng với năng lượng hao phí nằm trong khoảng 1E đến E . Xác suất bức xạ gamma có
năng lượng nhỏ bay ra khỏi tinh thể là rất nhỏ do đó mà vùng 5 lõm xuống so với vùng 2.
Trong trường hợp ghi nhận bức xạ gamma có năng lượng lớn hơn 1,02 MeV trên phổ còn có
xuất hiện đỉnh thoát đơn và đỉnh thoát đôi. Positron được tạo ra trong quá trình tạo cặp, sau đó kết
hợp với electron trong tinh thể tạo thành 2 bức xạ gamma có năng lượng là 0,511MeV.
2.3.2. Bố trí thí nghiệm
2.3.2.1. Đường chuẩn năng lượng
Đường cong mô tả sự phụ thuộc năng lượng bức xạ gamma đã biết vào số kênh của đỉnh hấp
thụ toàn phần tương ứng gọi là đường chuẩn năng lượng và thường có dạng đường thẳng.
Dựa vào đường chuẩn năng lượng có thể xác định được năng lượng của các tia gamma khác
mà vị trí đỉnh hấp thụ toàn phần đã xác định. Thông thường thì đường chuẩn năng lượng được xây
dựng trước.
Đường chuẩn năng lượng dạng đường thẳng
y = ax + b (2.34)
Trong đó y E và x = K
Với k ix K và k iy E
Xác định hệ số a và b bằng phương pháp làm khớp bình phương tối thiểu :
N N
k k k k
k 1 k 1
2N N
2
k k
k 1 k 1
N x y x y
a
N x x
(2.35)
N N N N
2
k k k k k
k 1 k 1 k 1 k 1
2N N
2
k k
k 1 k 1
x y x x y
b
N x x
(2.36)
Nguồn sử dụng 60 137Co, Cs
Hình 2.26: Nguồn phóng xạ 60Co
Hình 2.27: Nguồn phóng xạ 137Cs
Các bước tiến hành
- Đặt nguồn 60Co là nguồn kín với năng lượng gamma là : 2 đỉnh năng lượng là 1173 và 1332
keV cách 2 cm so với tinh thể NaI (Tl).
Hình 2.28: Đặt nguồn 60Co trước detector để chuẩn bị đo
- Mở phần mềm ADMCA nhấp vào nút Cancel để tiến hành cài đặt trước khi đo.
- Sau đó nhấp vào biểu tượng
Hình 2.29: Bảng sử dụng phần mềm
- Chọn thẻ MCA
Hình 2.30: Thẻ MCA
- Trong thẻ MCA: chọn số kênh, thời gian đo, kênh bắt đầu đếm.
- Thẻ Shaping: chọn ngưỡng, thời gian đếm xung.
- Thẻ Gain và Pole Zero: Khếch đại (Gain)
- Coarse: có tác dụng dời phổ để cho tiện việc quan sát phổ và xử lý
- Fine: độ sắt nét của phổ.
- Thẻ Mics: Tín hiệu đầu ra (Analog out) chọn dạng xung (Shape pulse)
- Điện thế đầu ra:101 mV.
Hình 2.31: Bố trí thí nghiệm
Hình 2.32: Phổ năng lượng của
60Co
- Tiến hành đo phổ năng lượng của nguồn 137Cs
Hình 2.33: Phổ năng lượng
137Cs
Đỉnh năng lượng Năng lượng (MeV) Số kênh
Đỉnh cao nhất 1,33
Đỉnh cao nhất 1,17
Đỉnh cao nhất 0,662
2.3.2.2. Độ phân giải năng lượng
Độ phân giải năng lượng là khả năng phân biệt được 2 đỉnh năng lượng khá gần nhau. Đối với
detector nhấp nháy thì độ phân giải năng lượng được tính như sau :
E
R 100%
E
(2.37)
Trong đó R là độ phân giải năng lượng theo %
E : bề rộng một nửa chiều cao của đỉnh năng lượng (FWHM) và đo theo số kênh.
E: là số kênh ứng với năng lượng đỉnh cao nhất.
Nguồn E E R
137Cs (662 keV)
60Co (1173 keV)
60Co (1332 keV)
2.3.2.3. Xác định năng lượng của nguồn gamma chưa biết
Sử dụng đường chuẩn năng lượng để xác định năng lượng của nguồn phóng xạ 22Na
Hình 2.34: Nguồn phóng xạ
22 Na
2.3.2.4. Xác định đường cong hiệu suất ghi theo khoảng cách.
N
(%)
TA
(2.38)
1/20,693t /T
0A A e
là hoạt độ nguồn chuẩn tại thời điểm đo
0A là hoạt độ nguồn chuẩn tại thời điểm sản xuất
t là thời gian từ lúc sản xuất nguồn đến thời điểm đo
T1/2 chu kỳ bán rã của nguồn chuẩn
là hiệu suất phát tia gamma ở năng lượng tương ứng
T là thời gian đo.
Các bước tiến hành
- Đặt nguồn 137Cs cách 1 cm so với tinh thể NaI.
- Sau đó ghi lại số đếm tổng và số đếm thực
- Di chuyển nguồn tăng thêm 2 cm đo số đếm.
- Sử dụng phần mềm Ecxel để xử lý.
CHƯƠNG 3. BÁO CÁO KẾT QUẢ THỰC NGHIỆM
3.1. Đo hoạt độ nguồn phát alpha
Ngày đo: 12/4/2010
Nguồn: 238 234U, U Hoạt độ: 30,7 Bq
Sai số của hoạt độ ( ): 7% Thời gian đo: 300 giây
3.1.1. Xác định hiệu suất ghi của detector
Lần Số đếm
1 2879
2 2954
3 3051
4 2927
5 3024
Tốc độ đếm trung bình
k
i
i 1
k
i
i 1
N
1
n
k
t
Thời gian mỗi lần đo: 300 giây
Thời gian đo phông là 1000 giây cho 1 lần đo, với k = 5.
n = 9,890.
Hiệu suất ghi của detector
n 9,890
0,322
A 30,7
Vậy hiệu suất 32%
Tốc độ đếm thực: S Bn n n
Do số đếm phông của alpha rất nhỏ nên Bn = 0
Sai số của tốc độ đếm:
1/ 2
S B
S B
n n
S(n) 1,96
t t
S(n) = 0,159
Sai số tuyệt đối hiệu suất ghi
S(n)
A
A
0,028
Sai số tương đối của hiệu suất ghi
0
0,028
0,322
0,086
Kết quả: 0,322 0,028
3.1.2. Hoạt độ của nguồn phóng xạ phát alpha
STT Số đếm
1 2983
2 2861
3 3008
4 2969
5 2996
6 2914
7 3070
8 2942
9 2970
10 3014
11 2935
12 2998
13 2994
14 3006
15 3043
16 2985
17 3114
18 2973
19 2988
20 2880
21 3003
22 2946
23 2986
24 2974
25 3092
Tốc độ đếm
k
i
i 1
k
i
i
Các file đính kèm theo tài liệu này:
- LVVLVLNT021.pdf