PHỤ LỤC
PHẦN MỞ ĐẦU 1
CHƯƠNG I. TỔNG QUAN VỀ LÝ THUYẾT VÀ YÊU CẦU CỦA ĐỀ TÀI 2
1.1. Tổng quan về mạng máy tính 2
1.1.1 Sự hình thành của mạng máy tính 2
1.1.2 Các yếu tố của mạng máy tính 3
1.1.2.1. Đường truyền vật lý 3
1.1.2.2. Kiến trúc mạng 3
1.1.3 Phân loại mạng máy tính 4
1.1.3.1. Phân loại theo khoảng cách địa lý 4
1.1.3.2. Phân loại theo kĩ thuật chuyển mạch 4
1.1.3.3. Phân loại theo cơ chế hoạt động 6
1.1.4 Mạng diện rộng WAN 6
1.1.4.1 Định nghĩa về mạng diện rộng WAN 6
1.1.4.2 Các công nghệ trong mạng WAN 7
1.2. Công nghệ ISDN 7
1.2.1. Giới thiệu về ISDN 7
1.2.2. Các chuẩn ISDN và phương pháp truy cập 8
1.2.3. Các hoạt động trong ISDN 10
1.2.4. Các điểm liên kết trong ISDN 11
1.2.5. Các loại ISDN switch 12
1.3. Công nghệ Frame Relay 13
1.3.1. Giới thiệu về Frame Relay 13
1.3.2. Các thuật ngữ của Frame Relay 15
1.3.3. Đóng gói Frame Relay 18
1.3.4. Băng thông và điều khiển luồng trong Frame Relay 18
1.3.5. Ánh xạ địa chỉ và mô hình mạng trong Frame Relay 20
1.3.6. Frame Relay LMI 22
1.4. Vì sao công nghệ ISDN và Frame Relay lại được ứng dụng phổ biến vậy? 23
1.5. Yêu cầu thực tiễn của đề tài 24
CHƯƠNG II. THIẾT BỊ VÀ CÔNG CỤ HỖ TRỢ 25
2.1. Công cụ hỗ trợ 25
2.2. Thiết bị 26
CHƯƠNG III. THIẾT KẾ VÀ XÂY DỰNG MÔ HÌNH MÔ PHỎNG MẠNG TRUYỀN DẪN GIỮA 2 MIỀN BẮC – NAM 27
3.1 Mô hình 27
3.2 Cấu hình mô hình mô phỏng mạng truyền dẫn giữa 2 miền 28
3.2.1 Cấu hình cho mạng tổng thể kết nối giữa 2 miền 28
3.2.2 Cấu hình cho các mạng LAN của từng vùng 30
CHƯƠNG IV. THỬ NGHIỆM VÀ ĐÁNH GIÁ MÔ HÌNH 38
4.1. Thử nghiệm mô hình 38
4.2. Kết luận 39
4.2.1. Những vấn đề đạt được 39
4.2.2. Những vấn đề chưa đạt được 40
4.3. Hướng phát triển mô hình 40
TÀI LIỆU THAM KHẢO 41
BẢNG CHÚ THÍCH CÁC CỤM TỪ VIẾT TẮT 42
PHỤ LỤC 43
44 trang |
Chia sẻ: maiphuongdc | Lượt xem: 2344 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Thiết kế và xây dựng mô hình mô phỏng mạng truyền dẫn giữa hai miền Bắc – Nam viện Công nghệ thông tin bằng Frame Relay và ISDN, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
huẩn ISDN định nghĩa hai loại kênh chính, mỗi loại có tốc độ truyền khác nhau. Kênh B, 64kb/s, được sử dụng để truyền mọi dữ liệu số với chế độ truyền song công. Loại thứ 2 được gọi là kênh D.
Khi thiết lập một kết nối TCP bên trao đổi các thông tin điều khiển để thiết lập kết nối. Các thông tin điều khiển này truyền kênh mà sau đó cũng được sử dụng để truyền dữ liệu. Thông tin điều khiển và dữ liệu chia sẻ cùng một kênh truyền. Dạng truyền như vậy được gọi là in-band signaling. ISDN thì không thực hiện truyền như vậy, mà sử dụng 1 kênh riêng chính là kênh D, để truyền tín hiệu điều khiển. Dạng truyền như vậy gọi là out – of – band signaling.
ISDN định nghĩa hai phương pháp truy cập chuẩn là BRI và PRI. Một cổng BRI hay PRI cung cấp một kênh D và nhiều kênh B.
Hình 1.5. Mô hình BRI và PRI
BRI sử dụng 2 kênh B 64Kb/s và một kênh D 16Kb/s. BRI hoạt động được trên nhiều Cisco router và đôi khi được ký hiệu là 2B+D.
Kênh B có thể được sử dụng để truyền thoại. Khi đó tín hiệu thoại được mã hóa theo cách đặc biệt. Khi kênh B được sử dụng để truyền số liệu thì thông tin được đóng thành frame, sử dụng giao thức đóng gói HDLC hoặc PPP ớ lớp 2. PPP phức tạp hơn HDLC vì nó cung cấp cơ chế xác minh, thỏa thuận cấu hình kết nối và giao thức phù hợp.
ISDN được xem là một kết nối chuyển mạch. Kênh D mang các thông điệp điều khiển để thiết lập cuộc gọi ngắt cuộc gọi và điều khiển cuộc gọi cho kênh B. Lưu lượng trên kênh D sử dụng giao thức LAPD. LAPD là một giao thức lớn hơn liên kết dữ liệu dựa trên cơ sở của HDLC.
Ở Bắc Mĩ và Nhật, PRI cung cấp 23 kênh B 64Kb/s và một kênh D 64Kb/s. Một PRI này cung cấp dịch vụ tương đương với một kết nối T hay DSL. Ở Châu âu và phần còn lại trên thế giới, PRI cung cấp 30 kênh B và một kênh D, tương đương với một kết nối E1. PRI sử dụng CSU/DSU cho kết nối T1/E1.
Các hoạt động trong ISDN
Có nhiều hoạt động trao đổi thông tin diễn ra khi một router sử dụng ISDN để kết nối đến router khác. Kênh D được sử dụng để thiết lập kết nối giữa router và ISDN switch. Tín hiệu SS7 được sử dụng giữa các switch trong mạng của nhà cung cấp dịch vụ.
Kênh D giữa router và ISDN switch luôn luôn trong trạng thái hoạt động. Q.921 mô tả tiến trình hoạt động của LAPD ở lớp 2 của mô hình OSI. Kênh D được sử dụng để truyền tín hiệu khiển như thiết lập cuộc gọi kết thúc cuộc gọi điều khiển cuộc gọi. Những chức năng này định nghĩa trong giao thức Q.931 ở lớp 3 của mô hình OSI.Q.931 định nghĩa kết nối mạng giữa thiết bị đầu cuối và ISDN switch nhưng không định nghĩa kết nối đầu cuối- đến - đầu cuối. Có nhiều ISDN switch đã được phát triển trước khi Q.931 được chuẩn hoá, do đó có nhiều nhà cungcấp dịch vụ ISDN và nhiều loại ISDN switch triển khai Q.931 khác nhau. Cũng chính vì không có chuẩn chung cho loại ISDN switch nên trong cấu hình router phải có câu lệnh khai báo ISDN switch mà router kết nối đến.
Hình 1.6. Cấu hình ISDN
Sau đây là thứ tự các bước diễn ra trong quá trình thiết lập một cuộc gọi BRI hoặc PRI
1. Kênh D gửi số cần gọi đến cho ISDN switch nội bộ
2. Switch nội bộ sử dụng giao thức tín hiệu SS7 để thiết lập đường truyền và chuyển số cần gọi cho ISDN switch đầu xa
3. ISDN switch đầu xa chuyển tín hệu đến cho máy đích trên kênh D
4. Thiết bị đích ISDN NT – 1 gửi thông điệp kết nối cuộc gọi cho ISDN switch đầu xa
5. ISDN switch đầu xa sử dụng SS7 để gửi thông điệp kết nối cuộc gọi cho switch nội bộ
6. ISDN switch nội bộ thực hiện kết nối một kênh B, kênh B còn lại dành cho kết nối mới. Cả hai kênh B cũng có thể được sử dụng đồng thời.
Hình 1.7. Trao đổi dữ liệu trên 2 kênh B, D
Các điểm liên kết trong ISDN
Chuẩn ISDN định nghĩa các nhóm chức năng là các nhóm thiết bị phần cứng cho phép người dùng truy cập dịch PRI. Các hãng sản xuất có thể tạo ra một thiết bị phần cứng thực hiện một hoặc nhiều chức năng. Chuẩn ISDN cũng định nghĩa bốn điểm liên kết giữa các thiết bị ISDN.
Để kết nối các thiết bị khác nhau với các chức năng khác nhau các điểm giao tiếp giữa hai thiết bị phải được chuẩn hoá. Các điểm giao tiếp bên phía khách hàng trong kết nối ISDN bao gồm những điểm sau:
• R – là điểm liên kết giữa thiết bị đầu cuối loại 2 (TE2) không tương thích với ISDN và thiết bị chuyển đổi TA.
• S – là điểm kết nối vào thiết bị chuyển mạch của khách hàng NT2 và cho phép thực hiện cuộc gọi giữa nhiều loại thiết bị khác nhau của khách hàng.
• T - Tương tự như giao tiếp S về mặt tín hiệu điện. Đây là điểm kết nối từ NT2 vào mạng ISDN hay cho NT1.
• U – là điểm kết nối giữa NT1 và mạng ISDN của nhà cung cấp dịch vụ.
Điểm giao tiếp S và T tương tự nhau về mặt tín hiệu điện nên có nhiều cổng giao tiếp dán nhãn là S/T. Mặc dù hai giao tiếp này thực hiện chức năng khác nhau nhưng do tương tự nhau về mặt tín hiệu điện nên có thể dùng chung cho cả hai chức năng.
Bảng thiết bị và chức năng của từng loại:
Thiết bị
Loại thiết bị
Chức năng của thiết bị
TE1
Terminal Equipment 1 -
Thiết bị đầu cuối loại 1
Thiết bị đầu cuối có cổng tương thích với ISDN, ví dụ như ISDN router, điện thoại ISDN
TE2
Terminal Equipment 2 -
Thiết bị đầu cuối loại 2
Thiết bị đầu cuối không có cổng tương thích với ISDN. Để kết nối loại thiết bị đầu cuối này vào mạng ISDN thì cần phải có thiết bị chuyển đổi TA
TA
Terminal Adapter -
Thiếtbị chuyển đổi
Chuyển đổi tín hiệu EIA/TIA – 232, V.35 và các loại tín hiệu khác sang tín hiệu BRI
NT2
Network Termination 2
- Thiết bị kết cuối mạng
loại 2
Là điểm tập trung mọi đường dây ISDN phia khách hang và thực hiện chuyển mạch giữa các thiết bị đầu cuối bằng switch của khách hang
NT1
Network Termination 1
- thiết bị kết cuối mạng
loại 1
Điều khiển kết cuối về mặt vật lý và tín hiệu điện phía khách hang
Chuyển đổi tín hiệu BRI dây sang tín hiệu 2dây
Hình 1.8. Mô hình các điểm liên kết
Các loại ISDN switch
Router cần phải có được khai báo loại switch mà nó giao tiếp. Có rất nhiều loại ISDN switch khác nhau tuỳ theo từng nơi. Do sự triển khai Q.931 khác nhau nên giao thức tín hiệu kênh D trên mỗi loại switch của mỗi hãng cũng khác nhau.
Dịch vụ được cungcấp bởi các nhà cung cấp dịch vụ ISDN rất khác nhau theo từng quốc gia và từng vùng trên thế giới. Giống như modem mỗi loại switch hoạt động khác nhau và có yêu cầu thiết lập cuộc gọi khác nhau. Trước khi router có thể kết nối vào dịch vụ ISDN nó cần phải được khai báo loại switch đang được sử dụng ở tổng đài của nhà cung cấp dịch vụ. Thông tin này phải được khai báo khi cấu hình router sau đó router có thể giao tiếp với switch để thiết lập cuộc gọi và gửi dữ liệu.
Hình 1.9. Sử dụng các kiểu Switch trên một số nước
Ngoài việc xác định loại switch của nhà cungcấp dịch vụ, chúng ta còn phải biết số SPID là chỉ số được cung cấp bởi nhà cung cấp dịch vụ ISDN, được dùng để xác định cấu hình dịch vụ BRI cho mỗi kết nối. SPID cho phép thực hiện nhiều thiết bị ISDN cùng chia sẻ một kết nối. Switch DMS – 100 và National ISD- 1 thường yêu cầu phải có số SPID.
SPID chỉ được sử dụng ở Bắc Mỹ và Nhật. Nhà cung cấp dịch vụ ISDN cung cấp số SPID để xác định cấu hình dịch vụ ISDN trên mỗi kết nối. Do đó trong nhiều trường hợp chúng ta cần phải nhập số SPID khi cấu hình router.
Mỗi số SPID tương ứng với một cấu hình cho một kết nối. Số SPID bao gồm nhiều ký tự thường hay giống như số điện thoại. Mỗi số SPID xác định một kênh B cho switch ở tổng đài trung tâm. Một khi đã được xác định, switch sẽ cung cấp dịch vụ cho kết nối. Các bạn nên nhớ ISDN là loại kết nối quay số. Số SPID được xử lý khi router thiết lập kết nối với ISDN switch. nếu loại switch này yêu cầu phải có số SPID mà số SPID lại không được khai báo đúng thì quá trình thiết lập kết nối sẽ không thực hiện được, dịch vụ ISDN cũng không sử dụng được.
Công nghệ Frame Relay
Giới thiệu về Frame Relay
Frame Relay là chuẩn của ITU-T và ANSI. Frame Relay là dịch vụ WAN chuyển mạch gói theo hướng kết nối. Frame Relay hoạt động ở lớp liên kết dữ liệu của mô hình OSI. Frame Relay sử dụng 1 phần giao thức HDLC làm giao thức LAPF. Frame Relay thực hiện truyền frame giữa thiết bị của người dùng DTE và thiết bị DCE tại ranh giới của mạng WAN
Hình 1.10. Kết nối DTE và DCE
Ban đầu Frame Relay được thiết kế để cho phép thiết bị ISDN có thể truy vào dịch vụ chuyển mạch gói trên kênh B. Nhưng bây giờ Frame Relay đã là một công nghệ hoàn toàn độc lập.
Mạng Frame Relay có thể thuộc sở hữu riêng của người dùng nhưng thông thường là được cung cấp bởi các công ty dịch vụ viễn thông.
Frame Relay thường được để sử dụng để kết nối các mạng LAN. Mỗi Router biên giới của một mạng LAN là một DTE. Một kết nối nối tiếp, ví dụ: E1/T1 sẽ kết nối vào Frame Relay switch gần nhất của nhà cung cấp dịch vụ. Frame Relay switch chính là thiết bị DCE.
Hình 1.11. Xác định DTE và DCE
Thiết bị máy tính không nằm trong một mạng LAN cũng có thể gửi dữ liệu qua mạng Frame Relay. Thiết bị máy tính này sử dụng thiết bị truy cập Frame Relay làm DTE.
Các thuật ngữ của Frame Relay
Kết nối giữa hai DTE qua mạng Frame Relay được gọi là kết nối ảo (VC). Các kết nối ảo chuyển mạch (SVC) có thể được thiết lập tự động bằng cách gửi đi các thông điệp báo hiệu. Tuy nhiên SVC không được sử dụng phổ biến lắm. Kết nối ảo cố định PVC được sử dụng phổ biến hơn với cấu hình định trước của nhà cung cấp dịch vụ. Trên mỗi Frame Relay switch có lưu giữ sơ đồ ánh xạ giữa port vào và port ra tương ứng với mỗi VC. Do đó mỗi kết nối VC được thiết lập từ 1 điểm cuối thông qua các switch đến điểm cuối được xác định duy nhất.
Hình 1.12. Sơ đồ kết nối các mạng ảo
Frame Relay được thiết kế để hoạt động trên đường truyền số chất lượng cao, Frame Relay không có cơ chế khắc phục lỗi. Nếu thiết bị nào trên đường truyền phát hiện frame bị lỗi thì hủy bỏ frame đó mà không cần thông báo lỗi.
Mỗi router kết nối ảo vào mạng Frame Relay đều có thể có nhiều kết nối ảo đến nhiều điểm cuối khác nhau. Mỗi kết nối đầu cuối chỉ cần có một cổng vật lý và một kết nối vật lý, trên đó thiết lập được nhiều kết nối ảo đến nhiều điểm đích khác nhau. Do đó mạng Frame Relay giảm được nhiều chi phí lắp đặt vì không cần tạo mạng hình lưới với nhiều đường truyền vật lý. Hơn nữa chúng ta còn tiết kiệm được tiền thuê bao vì dung lượng của đường truyền vật lý phụ thuộc vào băng thông trung bình của các VC thay vì phụ thuộc vào chu cầu tổng băng thông tối đa.
Các kết nối VC trên cùng một đường truyền vật lý vẫn được phân biệt với nhau vì mỗi VC có một chỉ số DLCI riêng. Chỉ số DLCI được ghi trong mỗi frame dữ liệu truyền đi. Chỉ số DLCI chỉ có ý nghĩa nội bộ, có nghĩa là nó chỉ duy nhất đối với kênh vật lý mà nó thuộc về mà thôi. Do đó thiết bị ở đầu bên kia có thể sử dụng một chỉ số khác để quy ước cho cùng một kết nối ảo VC.
Hình 1.13. Chỉ số DLCI ( Data Link Connection Identifier )
Đóng gói Frame Relay
Đóng gói Frame Relay thực hiện theo phân lớp như sau:
+ Nhận đóng gói dữ liệu từ lớp Mạng, ví dụ: gói IP hay IPX.
+ Đóng gói thành frame của Frame Relay.
+ Chuyển frame xuống lớp vật lý để truyền xuống đường truyền.
Lớp vật lý thường là EIA/TIA-232, 449 hay 530, V.35, X.21. Frame của Frame Relay sử dụng một phần định dạng của frame HDLC. Do đó cũng có phần cờ 01111110. Phần FCS được sử dụng để kiểm tra lỗi của frame. Giá trị FCS được tính ra trước khi truyền frame đi và được ghi vào phần FCS của frame. Thiết bị nhận frame cũng tính lại giá trị FCS và so sánh với giá trị ghi trong frame nhận được. Nếu hai giá trị giống nhau thì frame được tiếp xúc xử lý. Nếu hai giá trị khác nhau thì có nghĩa frame đó bị lỗi, lập tức frame bị hủy bỏ và không hề thông báo lại cho thiết bị nguồn. Việc kiểm soát lỗi được giao cho các lớp trên mô hình OSI đảm trách.
Hình 1.14. Đóng gói Frame Relay trong mô hình OSI
Băng thông và điều khiển luồng trong Frame Relay
Tốc độ đường truyền nối tiếp trong mạng Frame Relay chính là tốc độ truy cập hay tốc độ port. Tốc độ port thường nằm trong khoảng từ 64kb/s đến 4Mb/s. Một số nhà cung cấp dịch vụ còn cung cấp tốc độ đạt tới 45Mb/s.
Trên một đường truyền vật lý hoạt động đồng thời có nhiều kết nối ảo PVC, mỗi PVC có một lượng băng thông riêng nhất định. Băng thông này chính là băng thông cam kết của nhà cung cấp dịch vụ, gọi là CIR. Nhà cung cấp dịch vụ đồng ý chấp nhận lượng bit này trên mỗi VC.
Mỗi CIR có giá trị nhỏ hơn tốc độ port. Nhưng tổng các CIR trên một port lại lớn hơn tốc độ port, thường là lớn hơn khoảng 2 hay 3 lần, vì các kênh ảo hoạt động với dung lượng khác nhau tại mỗi thời điểm và không đồng thời sử dụng tối đa băng thông của mình.
Khi truyền frame, mỗi bit được phát đi với tốc độ port. Do đó nếu lượng bit trung bình trên VC đã bằng CIR thì sẽ phải có khoảng thời gian nghỉ giữa 2 frame.
Frame Relay switch cũng chấp nhận frame được gửi đi từ DTE với tốc độ cao hơn CIR. Như vậy mỗi VC có thể sử dụng băng thông theo nhu cầu lên đến mức tối đa là tốc độ port. Một số nhà cung cấp có thể quy ước mức độ tối đa này thấp hơn tốc độ port. Mức chênh lệch giữa CIR và mức độ tối đa gọi là ERI.
Khoảng thời gian để tính tốc độ được gọi là Tc. Số lượng bít trong 1 chu kì được gọi là Bc. Số lượng bít chênh lệch giữa Bc và mức tối đa (là tốc độ vật lý của đường truyền) được gọi là Be.
Mặc dù switch vẫn chấp nhận các frame được truyền với tốc độ cao vượt quá CIR, nhưng mỗi frame vượt tiêu chuẩn này được switch đánh đấu bằng cách đặt bít DE của frame lên 1.
Switch có 1 đồng hồ đếm bít tương ứng với mỗi VC. Khi switch nhận vào, nếu frame này vượt quá số lượng Bc thì frame sẽ được đánh dấu bít DE. Khi frame nhận vào sẽ bị hủy bỏ số lượng bit vượt quá Bc + Be. Cuối mỗi chu kì Tc switch sẽ khởi động lại đồng hồ đếm bit.
Frame sau khi nhận vào switch sẽ được xếp hàng đợi chuyển ra. Tuy nhiên nếu số lượng frame quá nhiều sẽ làm tràn hàng đợi, thời gian trễ sẽ tăng lên. Một số giao thức lớp trên có yêu cầu truyền lại khi không nhận được dữ liệu sau 1 thời gian nhất định. Nhưng do thời gian trễ quá lớn, yêu cầu truyền lại không thể thực hiện được. Trường hợp này sẽ làm tụt giảm thông lượng mạng nghiêm trọng.
Để tránh sự cố này, Frame Relay switch có chính sách hủy bớt frame trong hàng đợi để giữ hàng đợi không quá dài. Những frame nào có bit DE sẽ được đặt lên hủy bỏ trước tiên.
Khi switch nhận hàng đợi của nó đang tăng lên thì nó sẽ cố gắng tìm cách làm giảm dòng truyền frame từ DTE tới nó. Switch thực hiện đặt bit báo nghẽn ECN vào phần địa chỉ của frame mà switch sẽ truyền lại cho DTE.
Bit FECN được cài đặt vào mỗi frame mà switch sẽ gửi ra đường truyền đang bị nghẽn để thông báo nghẽn cho các thiết bị kế tiếp. Bit BECN được cài đặt trong mỗi frame mà switch sẽ gửi ngược lại cho thiết bị trước nó. DTE sẽ nhận được các frame có bit ECN được cài đặt trong đó và sau đó giảm dòng truyền frame lại cho đến khi không còn nghẽn mạch nữa.
Nếu nghẽn mạch xảy ra trên đường kết nối giữa các switch thì DTE bên dưới cũng có thể nhận được thông báo nghẽn mạch mặc dù nó không phải là thiết bị gây ra nghẽn mạch.
Các bit DEM, FECN, BECN là những bit nằm trong phần địa chỉ của frame LAPP.
Hình 1.15. Điều khiển băng thông trong Frame Relay
Ánh xạ địa chỉ và mô hình mạng trong Frame Relay
Khi chúng ta cần liên kết nhiều mạng với nhau thì chúng ta cần quan tâm đến mô hình kết nối giữa các mạng.
Nếu chúng ta chỉ cần kết nối hai mạng với nhau bằng kết nối điểm – nối – điểm thì lợi thế chi phí thấp của Frame Relay không đáng kể. Frame Relay sẽ có lợi về mặt chi phí nếu chúng ta liên kết nhiều mạng với nhau.
WAN thường được liên kết với nhau theo cấu trúc hình sao. Dịch vụ chính được đặt ở một mạng trung tâm và mỗi mạng ở xa cần truy cập dịch vụ thì kết nối vào mạng trung tâm. Với cách kết nối hình sao như vậy cho đường thuê riêng, chi phí sẽ được giảm tối đa.
Hình 1.16. Mô hình Frame Relay Hub and Spoke Topology
Nếu chúng ta kết nối mạng hình sao cho Frame Relay, mỗi mạng ở xa sẽ có một kết nối đám mây Frame Relay với một kết nối VC. Mạng trung tâm cũng có một kết nối vào đám mây Frame Relay nhưng trên đó có nhiều VC kết nối đến các mạng xa. Tiền cước của mạng Frame Relay không tính theo khoảng cách kéo cáp nên vị trí địa lý của mạng trung tâm không nhất thiết phải đặt ở giữa.
Hình 1.17. Mô hình Frame Relay Full Mesh Topology
Chúng ta nên chọn mô hình mạng hình lưới nếu các điểm truy cập dịch vụ bị phân tán về mặt địa lý và đường truy cập có yêu cầu cao về độ tin cậy. Với mạng lưới, mỗi mạng lưới phải có đường kết nối tới tất cả các mạng còn lại. Tuy nhiên, không giống như đường truyền thuê riêng, chúng ta có thể triển khai mạng hình lưới trong Frame Relay mà không cần phải tăng thêm nhiều VC trên một đường truyền vật lý và có thể nâng cấp mạng hình sao thành mạng hình lưới. Khi ghép nhiều kênh VC vào một đường truyền, chúng ta cũng tận dụng băng thông đường truyền tốt hơn so với việc chỉ cấu hình một VC.
Frame Relay LMI
Frame Relay được thiết kế để truyền dữ liệu chuyển mạch gói với thời gian trễ tối thiểu. Bất kỳ yếu tố nào góp phần vào thời gian trễ đều được bỏ qua. Nhưng khi các hãng muốn triển khai Frame Relay như là một công nghệ độc lập chứ không còn là một thành phần của ISDN nữa, thì nó quyết định rằng DTE cần được cung cấp thông tin động về trạng thái hoạt động của mạng. Cơ chế này không có trong thiết kế ban đầu của Frame Relay và LMI đã được thêm vào sau này để truyền thông tin về trạng thái hoạt động của mạng.
Phần DLCI 10bit cho phép xác định VC từ 0 đến 1023. Trong đó có dành riêng lại một số chỉ số làm giới hạn của VC giảm xuống. Các thông điệp LMI được trao đổi giữa DTE và DCE và sử dụng những chỉ số DLCI dành riêng này.
Bảng địa chỉ DLCI:
Chỉ số VC
Loại VC
0
LMI (ANSI, ITU)
1…15
Để dành cho việc sử dụng ở tương lai
992…1007
CLLM
1008…1022
Để dành cho việc sử dụng ở tương lai (ANSI, ITU)
1019…1020
Multicasting (Cisco)
1023
LMI (Cisco)
LMI bao gồm:
+ Cơ chế keepalive để kiểm tra một vòng VC còn hoạt động.
+ Cơ chế multicast
+ Điều khiển luồng
+ Có DLCI nào được gán thành giá trị toàn cục hay không
+ Trạng thái VC
Có nhiều loại LMI khác nhau và các loại này không tương thích với nhau. Do đó chúng ta cần cấu hình loại LMI tên router phù hợp với loại LMI mà nhà cung cấp dịch vụ đang sử dụng. Sau đây là 3 loại LMI mà Cisco router có hỗ trợ:
+ Cisco – LMI gốc
+ ANSI – theo chuẩn ANSI T1.617 phụ chương D
+Q933a – theo chuẩn ITU Q933 phụ chương A
Thông điệp LMI được lồng trong frame LAPF. Trong đó có thêm 4 phần nằm trong phần Header của frame để có thể tương thích với frame LAPD sử dụng trong ISDN, trong đó phần thứ 4 cho biết loại thông điệp LMI.
Theo sau phần Header là một hoặc nhiều thông tin khác nhau, bao gồm:
+ 1 byte chứa chỉ số danh định của thông tin
+ Phần cho biết chiều dài của phần thông tin tương ứng
+ Một hoặc nhiều byte chứa thông tin thực sự về trạng thái của một DLCI
Thông điệp trạng thái giúp kiểm soát kết nối logic và vật lý. Những thông tin này rất quan trọng trong môi trường định tuyến vì các giao thức định tuyến quyết định dựa trên những thông tin về trạng thái đường kết nối.
Vì sao công nghệ ISDN và Frame Relay lại được ứng dụng phổ biến vậy?
Truyền nhiều loại lưu lượng khác nhau bao gồm dữ liệu thoại và video
ISDN sử dụng một kênh riêng được gọi là kênh D để truyền tín hiệu điều khiển. Khi cần thiết lập cuộc gọi thuê bao số cần gọi. Khi tất cả các chữ số được nhận đầy đủ thì cuộc gọi được thực hiện. ISDN truyền các số này trên kênh D do đó thời gian thiết lập cuộc gọi nhanh hơn.
Mỗi kênh B có thể kết nối đến một điểm khác nhau trong mạng ISDN. PPP có thể hoạt động cả trên kết nối đồng bộ và bất đồng bộ do đó đường truyền ISDN có thể sử dụng kết hợp với đóng gói PPP.
Frame Relay đảm bảo chất lượng dịch vụ cung cấp, tiết kiệm chi phí về thiết bị, chi phí sử dụng. Đơn giản, tiết kiệm, linh hoạt trong nâng cấp, Frame Relay nâng cao hiệu quả sử dụng mạng và phạm vi cung cấp dịch vụ rộng.
Bằng khả năng cung cấp tốc độ truyền thông cam kết CIR, Frame Relay cho phép khách hàng đảm bảo và kiểm soát chất lượng dịch vụ được cung cấp.
Tiết kiệm chi phí về thiết bị: Cho phép thiết lập nhiều đường kết nối ảo thông qua một kênh vật lý duy nhất, điều này làm giảm thiểu chi phí thiết bị so với hệ thống mạng dùng các kênh kết nối trực tiếp.
Tiết kiệm chi phí sử dụng: Bên cạnh việc tiết kiệm chi phí sử dụng kênh nội hạt do việc sử dụng một kênh kết nối vật lý duy nhất tại mỗi điểm kết nối mạng, khách hàng có thể được lợi do sử dụng một mức giá cố định hàng tháng.
Với nhiều tốc độ CIR cung cấp khách hàng hoàn toàn có thể điều chỉnh chi phí sử dụng mạng thích hợp nhất với nhu cầu trao đổi dữ liệu của mình.
Frame Relay nâng cao hiệu quả sử dụng mạng: Frame Relay cho phép tích hợp nhiều ứng dụng khác nhau sử dụng các công nghệ truyền thông khác nhau trên một mạng lưới duy nhất (Voice, Data, Video,...). Frame Relay hỗ trợ khả năng tích hợp và tương thích với các tiêu chuẩn kỹ thuật khác nhau(X25, TCP/IP, SNA, ATM....).
Cung cấp khả năng quản lý mạng và bảo mật an toàn mạng lưới.
Phạm vi cung cấp dịch vụ rộng, giao dịch cung cấp dịch vụ trên toàn quốc.
Cung cấp dịch vụ "một cửa" - One Stop Shop: Đáp ứng mọi nhu cầu của khách hàng.
Khả năng sử dụng dịch vụ: Trong nước và quốc tế.
Yêu cầu thực tiễn của đề tài
Tìm hiểu về công nghệ ISDN và Frame Relay, ứng dụng của chúng vào ngành công nghệ thông tin của Việt Nam.
Nghiên cứu luôn khả năng truyền tải thông tin trong mạng qua mô hình truyền dẫn của Viện Công nghệ thông tin.
Nhờ công nghệ ISDN và Frame Relay quản lý tập trung tất cả các phòng ban chi nhánh của theo mô hình mô phỏng hệ thống mạng truyền dẫn của Viện Công nghệ thông tin.
Làm chủ được công nghệ mới, nâng cao được khả năng truyền dẫn ở tốc độ cao. Quản lý một cách dễ dàng và thuận tiện nhất.
CHƯƠNG II. THIẾT BỊ VÀ CÔNG CỤ HỖ TRỢ
Công cụ hỗ trợ
Hệ điều hành WinXP, Win Vista hay Win7
Phần mềm Microsoft Visio 2007 hỗ trợ vẽ mô hình mạng
Hiện nay có rất nhiều công cụ hỗ trợ mô phỏng hệ thống mạng, đó là:
+ Packet Tracer
+ GNS3
+ Dynamic
+ Boson Netsim
Công vụ Packet Tracer là công cụ mới với giao diện dễ sử dụng nhưng một số câu lệnh vẫn chưa được hoàn chỉnh dẫn đến việc cấu hình khó khăn.
Công cụ GNS3 và Dynamic là công cụ hiện đại và thuận tiện nhất bây giờ nhưng nó đòi hỏi cấu hình máy tính cao, bộ nhớ Ram phải lớn. Là sản phẩm mới nên nó đáp ứng được hết các khả năng của router bây giờ. Nếu như mô hình mô phỏng của tôi chỉ một đến hai router thì máy sẽ chạy rất tốt, nhưng với mô hình của tôi thì cần có một máy tính cấu hình cực mạnh mới đáp ứng đủ yêu cầu.
Công cụ Boson netsim là một công cụ không phải quá mới của sản phẩm mô phỏng. Boson tạo ra các gói dữ liệu cá nhân được định tuyến và chuyển mạch thông qua mạng lưới mô phỏng, cho phép Boson Netsim để xây dựng một bảng định tuyến thích hợp ảo cho mỗi giao thức. Cài đặt và cấu hình Boson Netsim cũng không cần đòi hỏi mấy cấu hình cao vì giao diện chương trình nhẹ nhưng lại đầy đủ chức năng giống như GNS3, Dynamic.
Boson Netsim còn cho phép tôi có thể thiết kế và quy hoạch mạng lưới lớn thông qua các thiết bị ảo có sẵn trên Boson. Điều này vượt xa hầu hết các công cụ, trong đó tôi thực sự có thể tạo các cấu hình router đó sẽ được sử dụng, tiết kiệm các cấu hình, và cấu hình lên chúng các giao thức định tuyển như IGRP, EIGRP, RIP, hoặc OSPF thực sự giúp chúng có thể thông lẫn nhau.
Nếu cấu hình thực trên các thiết bị thật với 1 mạng lưới lớn gặp những rủi ro, những hỏng hóc, và việc sửa chữa bảo trì mạng đó có thể là một điều rất đáng sợ và bực bội đối với những người như tôi. May mắn thay, tôi có thể tạo một bản sao ảo của mạng của tôi với Boson Designer, và khắc phục những vấn đề mà không cần lấy gỡ bỏ các thiết bị mạng thật cũng xuống để cấu hình đi cấu hình lại.
Tóm lại, Boson NetSim là một sản phẩm linh hoạt và mạnh mẽ trong các công cụ mà tôi nêu trên, có thể giúp tôi trở thành các quản trị mạng đích thực, và có thể trợ giúp trong thiết kế và xử lý sự cố của các mạng lưới phức tạp.
Thiết bị
Trong mô hình mạng Frame Relay, ISDN thực tế mà nhiều nước vẫn sử dụng để lắp đặt hiện nay thì việc các thiết bị bao gồm:
+ Frame Relay Switch
+ Các router đầu cuối
+ Các switch nhỏ
Trong mô hình mô phỏng của tôi làm trên Boson Netsim cũng bao gồm các thiết bị được tạo thật nhưng chạy trên nền ảo. Mô hình mạng của tôi bao gồm:
+ 16 Router 3620 ảo làm nhiệm vụ định tuyến và kết nối với các Frame Relay và ISDN.
+ 13 Switch 12 port ảo làm nhiệm vụ chia nhỏ các port trong mỗi vùng mạng LAN nhỏ.
+ 13 PC chạy hệ điều hành Win98 là các máy tính dùng trong các văn phòng đặt tại các quận, huyện thuộc các chi nhánh.
CHƯƠNG III. THIẾT KẾ VÀ XÂY DỰNG MÔ HÌNH MÔ PHỎNG MẠNG TRUYỀN DẪN GIỮA 2 MIỀN BẮC – NAM
Mô hình
Sau khi tìm hiểu tại Viện Công nghệ thông tin - Bộ quốc phòng tôi xin đưa ra mô hình mô phỏng mạng truyền dẫn bẳng công nghệ Frame Relay – ISDN như sau:
Ở miền Bắc: Có 2 vùng đó là Hà Nội và Hải Phòng được kết nối với nhau bằng Frame Relay 4. Trong đó Hà Nội có 5 quận tôi bố trí đặt router tại 5 điểm trên quận đó và kết nối với nhau bằng Frame Relay 1. Với Hải Phòng có 4 quận, huyện tôi cũng kết nối Frame Relay 2 tập trung quản lý dễ dàng.
Ở miền Nam: Có T.p Hồ Chí Minh gồm 4 quận trung tâm tôi kết nối chúng với nhau bằng Frame Relay 3. Còn 2 miền Bắc và Nam đặt tại 2 điểm đầu
Các file đính kèm theo tài liệu này:
- 26985.doc