Research to measure the competitiveness and stability of Vietnamese commercial
banks when joining the CPTPP agreement. Most of the goals originally set out in the
research have been achieved. Specifically:
- The status of operations of Vietnamese commercial banks compared to other
countries in the CPTPP period 2010 - 2018.
- Measure the competitive competence and the impact of factors on the Competitive
capability of Vietnamese commercial banks in the context of CPTPP integration (Model
MH1): The model's estimated results show statistical significance among the above factors
in the correlation with the competitiveness of the bank. This was true to the initial
expectations and also consistent with most of the previous studies
42 trang |
Chia sẻ: honganh20 | Lượt xem: 386 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Measures the competitiveness and stability of Vietnamese commercial banks in the context of joining the CPTPP agreement, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
tive research
methods.
3.2.1. Qualitative research methods
The method and order of the study conducted by the author were as follows:
- To evaluate the current state of commercial banks, the evaluation indicators are
based on the CAMELS analysis framework - the system of monitoring and rating banks in
the US and the set of financial health indicators (Financial Soundness Indicators - FSIs)
according to IMF standards.
- To compare the positions of Vietnamese commercial banks with the rest of the
CPTPP member countries, the evaluation criteria are used macro-specific factors such as
financial capacity, profitability assessment criteria. , the level of development and the
contribution of the banking industry to the economy and network operations.
- To assess strengths, weaknesses, opportunities and challenges for Vietnamese
commercial banks when integrating into CPTPP, the thesis applies the SWOT model to
build an analytical framework, arguments and assessments based on theory. mentioned in
chapter 2; Conclusions and discussion of results are based on the hypotheses set forth in
the thesis.
- Policy implications are built on the basis of theory and research results of the topic.
12
3.2.2. Quantitative research method
The thesis uses three linear regression models with table data to measure the impact
of factors on competitiveness, bank stability, and the impact of competition on stability of
31 banks. Vietnamese trade.
3.2.2.1. Experimental research model for Vietnamese commercial banks
Competitiveness research model of Vietnamese commercial banks:
The proposed model is as follows:
Lernerit = Ф0 + Ф1Lerner it-1 + Ф2ETAit + Ф3B_SIZEit + Ф4LTAit + Ф5LLPit
+ Ф6HDVit + Ф7HHIit + Ф8GroTAit + Ф9FS1it + Ф10FS2 + Ф11GDPt
+ Ф12INFt + Ф13Originalt + eit (MH1)
Research model of stability of Vietnamese commercial banks:
The proposed model is as follows:
ZscoreMH2it = Ф0 + Ф1Zscoreit-1 + Ф2ETAit + Ф3B_SIZEit + Ф4LTAit + Ф5LLPit
+ Ф6HDVit + Ф7HHIit + Ф8GROTAit + Ф9FS1it + Ф10FS2 + Ф11GDPt + Ф12INFt
+ Ф13Originalt + eit (MH2)
Research model of the impact of competition on the stability of Vietnamese
commercial banks:
The proposed model is as follows:
ZscoreMH3it = Ф0 + Ф1Zscoreit-1 + Ф2Lerner it + Ф3ETAit + Ф4B_SIZEit +
Ф5LTAit + Ф6LLPit + Ф7HDVit + Ф8HHIit + Ф9GROTAit + Ф10FS1it + Ф11FS2 +
Ф12GDPt + Ф13INFt + Ф14Originalt + eit (MH3)
The significance of factors affecting the stability and competitiveness of Vietnamese
commercial banks
Independent variables:
Group of characteristics of banks:
EAT: Equity size
B_SIZE: Size of the bank's capital
LTA: Credit scale
13
HDV: Ability to mobilize capital
LLP: Proportion of credit risk provision expense
HHI: The ability to diversify income
GroTA: Growth rate of total assets
Group of competitive environment factors
FS1: the number of SBV on the total number of banks in Vietnam
FS2: The proportion of SBV's assets compared to the total assets of the CI system
Group of macroeconomic factors
GDP: GDP growth rate
INF: Inflation rate
Dummy variables: Original: 1 - State owned, 0 - not State owned
3.2.2.2. Procedures for implementing regression estimation of experimental model
The author estimates the empirical model regression by calculating the variables in
the model, descriptive statistics, running the model, testing the model, estimating
competitiveness and bank stability. on Stata 14.0 software include the following steps:
Step 1: Compute the variables in the experimental model
Step 2: Descriptive statistics of the variables of the experimental model
Step 3: Select regression method for the research model
Step 4: Test the estimated coefficients and the suitability of the model
Step 5: Check the defects of the model
Check the multi-collinearity phenomenon
Check the variance change phenomenon
Check for self-correlation
Check for endogenous phenomena
Step 6: Estimating the competitiveness and stability of Vietnamese commercial banks with
appropriate regression method
3.3. Research hypothesis
Based on the theoretical basis, the empirical research results presented above, the
thesis analyzed and selected to build a suitable research model to measure the
14
competitiveness and banking stability of Vietnamese commercial banks in the period 2010
- 2018, in the context of joining the CPTPP. On that basis, in order to achieve the research
objectives and answer the research questions, the thesis sets out the following research
hypotheses:
H1. Equity size is positively correlated with competitiveness and banking stability.
H2. The size of bank assets is positively correlated with bank competitiveness and stability.
H3. The ratio of lending to total assets is positively correlated with competitiveness and
opposite to banking stability.
H4. The ratio of mobilization to total assets is inversely correlated with competitiveness
and in the same direction with banking stability.
H5. The rate of provision for credit risks is inversely correlated with competitiveness and
banking risks.
H6. The ratio of capital mobilization to total assets is positively correlated with bank
stability.
H7. The ability to diversify income is positively correlated with the competitive competence
and bank stability.
H8. The growth rate of total assets is positively correlated with the competitive competence
and banking stability
H9. The group of variables measuring the presence of foreign banks in Vietnam (FS1 and
FS2) is expected to be positively correlated with bank competitiveness and stability.
H10. GDP growth has a positive impact on the competitive competence and banking
stability
H11. The inflation rate is inversely correlated with the competitive competence and
banking stability
H12. Ownership form is inversely correlated with the competitive competence and banking
stability
H13. Competitiveness is positively correlated with bank stability.
15
CHAPTER 4
RESEARCH RESULTS AND DISCUSSION
4.1. The current status of the operation of a Vietnamese commercial bank in the
period 2010 - 2018
The status of operating results of Vietnamese commercial banks is assessed through
the following criteria: Capital and assets, Capital Adequacy Ratio (CAR), Capital
mobilization and lending, Liquidity safety, Debt Bad and Some other factors such as:
Product system, service, Technology level, Human resources, Brand.
4.2. Some results of banking activities in the CPTPP sector in the period 2010 - 2018
Table 4.1: Competitive ranking of global capacity of CPTPP countries
Nation
2010
(/139)
2011
(/142)
2012
(/144)
2013
(/148)
2014
(/144)
2015
(/140)
2016
(/138)
2017
(/137)
2018
(/140)
1 Australia 16 20 20 16 22 21 19 18 14
2 Brunei 28 28 28 26 - - 58 46 62
3 Canada 10 12 14 14 15 13 15 14 12
4 Chile 30 31 33 34 33 35 33 33 33
5 Japan 6 9 10 9 6 6 8 9 5
6 Malaysia 26 21 25 24 20 25 18 23 25
7 Mexico 66 58 53 55 61 57 51 51 46
8 Peru 73 67 61 61 65 69 67 72 63
9 New Zeland 23 25 23 18 17 16 13 13 18
10 Singapore 3 2 2 2 2 2 2 3 2
11 Vietnam 59 65 75 70 68 56 60 65 77
Source: Authors' synthesis from WEF data
16
4.2.1. Financial capacity
Table 4.2: Ranking of development indicators of financial systems of CPTPP
countries
(compared to 140 ranked countries in 2018)
Nation 1 2 3 4 5 6 7 8 9 Rank
Australia 15 18 35 16 18 4 10 110 112 13
Brunei 85 71 82 121 112 69 69 134 18 107
Canada 4 21 31 11 19 2 4 117 99 11
Chile 25 41 36 21 33 5 31 49 107 20
Japan 7 14 17 12 7 20 18 122 79 10
Malaysia 19 5 5 9 32 38 23 126 83 15
Mexico 97 94 54 51 65 39 37 102 81 61
New Zeland 8 10 15 46 41 9 3 22 110 26
Peru 84 79 70 50 73 42 65 81 101 63
Singapore 17 4 6 3 17 3 14 127 72 5
Vietnam 24 85 51 60 91 113 39 101 111 59
Source: Authors' synthesis from WEF data
Bảng 4.1: Tỷ lệ tín dụng tiêu dùng so với GDP giữa các quốc gia CPTPP
Đơn vị: %
STT Quốc gia 2010 2011 2012 2013 2014 2015 2016 2017 2018
1 Canada - - - - - - - - -
2 Australia 125,50 122,33 121,28 124,98 128,73 136,59 142,52 140,90 139,59
3 Singapore 123,28 126,18 128,91 125,34 129,50 124,00 127,43 128,21 121,90
4 Malaysia 129,64 133,89 136,80 119,79 120,53 125,02 123,77 118,73 121,79
5 Nhật Bản 217,69 228,08 231,43 104,05 103,57 101,95 103,61 106,67 107,89
6 Việt Nam 114,85 99,80 106,46 96,80 100,30 111,93 123,82 130,72 133,31
7 New Zeland 92,66 - - 140,53 141,19 144,22 144,34 142,35 146,55
8 Mexico 30,63 30,70 31,33 22,20 21,94 23,89 25,93 27,02 26,78
17
9 Chile 66,76 74,97 77,64 76,19 78,60 78,65 79,80 78,62 81,27
10 Peru 38,76 38,16 40,86 37,71 40,84 43,84 42,87 42,33 43,97
11 Brunei 67,27 59,38 58,65 30,92 32,91 41,14 43,57 38,81 34,40
Source: Authors' synthesis from WB data (2018)
Chart 4.1: The ratio of NPLs to total outstanding loans over the years of CPTPP
Unit: %
Source: Authors' synthesis from WEF data (2018)
Table 4.4: Capital-to-asset ratio of the banking system in the CPTPP group
Unit: %
Nation 2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 5,43 5,29 5,13 5,13 5,22 5,97 6,55 6,88 6,86
Brunei Darussalam 10,25 8,9 9,1 11,58 11,76 13,23 13,05 10,86 12,32
Canada 4,66 4,89 4,90 4,96 4,94 5,07 5,16 5,22 5,20
Chile 8,28 7,77 8,01 8,13 7,97 7,57 8,41 8,44 8,42
2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 2.15 1.97 1.75 1.40 1.05 0.92 0.98 0.89 0.93
Brunei Darussalam 6.87 6.03 5.38 4.53 3.85 4.00 4.75 3.66 3.92
Canada 1.19 0.84 0.65 0.57 0.52 0.52 0.60 0.45 0.00
Chile 2.69 2.35 2.16 2.11 2.06 1.87 1.83 1.92 1.87
Japan 1.40 1.20 1.10
Malaysia 3.35 2.68 2.02 1.85 1.65 1.60 1.61 1.55 1.46
Mexico 2.04 2.12 2.44 3.24 3.04 2.52 2.09 2.09 2.05
New Zealand 0.00 0.00 0.00 3.23 2.98 2.71 2.54 2.31 1.94
Peru 3.03 2.89 3.23 3.50 3.95 3.93 4.29 4.70 3.27
Singapore 1.41 1.06 1.04 0.87 0.76 0.92 1.22 1.40 1.31
Vietnam 2.09 2.79 3.44 3.11 2.94 2.34 2.28 1.82 2.02
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
18
Japan 5,48 5,52 5,82 5,47 5,38 5,51
Malaysia 9,38 8,89 9,39 9,59 9,95 10,46 11,00 11,24 11,24
Mexico 10,40 9,92 10,59 10,36 10,84 10,45 9,94 10,4 10,7
Peru 9,98 10,56 10,42 10,15 10,67 10,09 11,42 12,08 12,46
Singapore 8,97 8,32 8,92 8,22 8,41 9,00 9,23 9,18 9,03
Vietnam 8.87 9.30 9.93 9.54 8.77 8.26 7.77 7.36 8,40
Source: Authors' synthesis from IMF data (2018)
Table 4.5: Banking system size and CAR ratio of CPTPP group in 2018
STT Nation
The size of the banking system
(billion USD)
Credit / GDP
ratio
Capital
Adequacy
Ratio CAR
1 Canada 7.741 214,2% 14,81%
2 Australia 3.084 141% 14,55%
3 Singapore 925 128,2% 17,08%
4 Malaysia 609 50,8% 17,08%
5 Japan 574 160,8% 16,66%
6 Vietnam 436 130,7% 12,23%
7 New Zeland 348 172,9% 14,40%
8 Mexico 326 35,5% 15,57%
9 Chile 319 112,5% 13,76%
10 Peru 201 35,0% 15,22%
11 Brunei 16 39,5% 18,11%
Source: Authors' synthesis from IMF data (2018)
19
4.2.2. The criteria for evaluating profitability
Figure 4.2: ROA rates of CPTPP countries in the period 2010 - 2018
Unit: %
Source: Authors' synthesis from IMF data (2018)
2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 0.0 1.2 1.2 1.4 1.2 1.4 0.8 1.2 1.3
Brunei Darussalam 1.7 1.2 0.7 1.4 1.7 1.6 1.4 1.5 1.7
Canada 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.1 1.2
Chile 1.7 1.6 1.4 1.5 1.5 1.3 1.2 1.3 1.3
Japan 0.4 0.3 0.3 0.3 0.3
Malaysia 1.5 1.5 1.6 1.5 1.5 1.2 1.3 1.4 1.4
Mexico 1.8 1.5 1.8 2.1 1.7 1.6 1.7 2.0 2.2
Peru 2.3 2.3 2.2 2.0 1.9 2.1 2.0 2.1 2.2
Singapore 1.4 1.1 1.4 1.2 1.1 1.2 1.1 1.3 1.2
Vietnam 1.6 1.5 0.8 0.6 0.3 0.5 0.5 0.7 0.9
0.0
0.5
1.0
1.5
2.0
2.5
20
Figure 4.3: ROE rates of CPTPP countries in the period 2010 - 2018
Unit: %
Source: Authors' synthesis from IMF data (2018)
4.2.3. The level of development and the contribution of the banking industry to
the economy
Table 4.6: The ratio of broad money to GDP among countries in the CPTPP
Unit: %
Nation 2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 100,70 99,87 101,28 105,69 108,73 113,42 118,20 116,84 113,60
Singapore 123,28 126,18 128,91 130,17 129,81 124,44 131,35 129,69 122,65
Malaysia 129,65 133,89 136,80 140,09 137,10 134,93 130,35 124,25 126,64
Japan 217,69 228,08 231,43 235,34 237,35 236,07 242,38 247,87 252,10
Vietnam 114,85 99,80 106,47 117,03 127,55 137,65 151,10 155,28 158,27
2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 0.5 22.6 23.0 27.0 22.9 23.8 12.1 16.7 19.4
Brunei Darussalam 15.8 11.8 7.3 13.7 14.1 12.4 10.8 13.1 15.0
Canada 23.0 23.6 22.7 22.3 22.5 20.7 19.9 21.4 22.1
Chile 20.7 20.8 17.3 18.3 19.3 17.7 13.8 15.4 15.5
Japan 8.6 7.6 7.6 6.6 6.4
Malaysia 16.3 16.8 17.3 15.8 15.0 12.3 12.3 13.1 12.6
Mexico 16.8 15.5 17.5 19.3 15.9 15.4 16.3 19.6 20.9
Peru 22.9 23.5 21.5 19.9 18.2 21.1 19.2 17.7 17.8
Singapore 15.5 13.8 16.4 15.3 13.2 13.6 11.3 14.0 13.0
Vietnam 17.7 16.4 8.2 6.0 3.2 5.5 6.6 8.3 11.7
0.0
5.0
10.0
15.0
20.0
25.0
30.0
21
New Zeland 92,66 92,88 95,18 99,44 100,29 101,00 105,09
Mexico 30,63 30,70 31,33 32,97 34,46 36,45 37,82 38,80 37,86
Chile 66,76 74,97 77,64 62,58 82,49 83,84 82,93 78,52 76,89
Peru 38,76 38,16 40,86 11,13 11,20 11,03 10,77 10,56 47,25
Brunei 67,27 59,38 58,65 62,58 67,45 80,80 92,60 86,69 81,58
Source: Authors' synthesis from WB data (2018)
Chart 4.4: Broad money growth rate of among countries in the CPTPP
Unit: %
Source: Authors' synthesis from WB data (2018)
Table 4.7: The ratio of consumer credit to GDP among CPTPP countries
Unit: %
Nation 2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 125,50 122,33 121,28 124,98 128,73 136,59 142,52 140,90 139,59
2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 10.13 7.97 7.35 6.75 7.03 5.98 6.67 4.52 2.37
Brunei Darussalam 4.81 10.05 0.90 1.47 3.22 -1.76 1.51 -0.44 2.84
Chile 7.71 22.88 10.30 11.74 8.74 9.15 4.90 0.56 4.18
Japan 1.78 2.90 2.20 3.45 2.94 3.02 3.91 3.47 2.43
Malaysia 7.35 14.63 8.85 7.40 6.30 3.04 2.80 4.64 7.69
Mexico 12.76 9.98 10.08 8.28 12.19 12.19 12.33 11.22 5.46
New Zealand 8.36 6.71 9.85 7.66 7.30 6.42
Peru 21.05 11.74 15.02 16.48 6.27 13.39 2.76 9.33 5.43
Singapore 8.59 9.99 7.23 4.32 3.33 1.52 8.04 3.20 3.86
Vietnam 29.71 11.94 24.54 21.40 19.74 14.91 17.88 14.26 12.70
-5.00
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
T
ố
c
đ
ộ
t
ăn
g
t
ư
ở
n
g
22
Singapore 123,28 126,18 128,91 125,34 129,50 124,00 127,43 128,21 121,90
Malaysia 129,64 133,89 136,80 119,79 120,53 125,02 123,77 118,73 121,79
Japan 217,69 228,08 231,43 104,05 103,57 101,95 103,61 106,67 107,89
Vietnam 114,85 99,80 106,46 96,80 100,30 111,93 123,82 130,72 133,31
New Zeland 92,66 140,53 141,19 144,22 144,34 142,35 146,55
Mexico 30,63 30,70 31,33 22,20 21,94 23,89 25,93 27,02 26,78
Chile 66,76 74,97 77,64 76,19 78,60 78,65 79,80 78,62 81,27
Peru 38,76 38,16 40,86 37,71 40,84 43,84 42,87 42,33 43,97
Brunei 67,27 59,38 58,65 30,92 32,91 41,14 43,57 38,81 34,40
Source: Authors' synthesis from WB, IMF data (2018)
Table 4.8: Commercial bank branch density distribution in the CPTPP
(calculated on average per 100,000 people)
STT Nation 2010 2011 2012 2013 2014 2015 2016 2017 2018
1 Australia 30,75 30,41 30,93 30,12 29,14 28,73 27,72 29,61 28,19
2 Brunei Darussalam 23,28 23,16 22,71 22,93 20,26 20,84 19,59 18,36 17,18
3 Canada 24,05 24,18 24,3 23,32 23,14 22,84 22,27 20,79 20,05
4 Chile 17,45 17,35 17,27 17,1 16,87 16,14 15,77 14,85 14,03
5 Japan 33,82 33,9 33,95 33,9 33,89 34,14 34,1 34,03 34,07
6 Malaysia 10,92 11,24 11,14 10,95 10,79 10,67 10,42 10,22 10,25
7 Mexico 14,59 14,62 15,5 15,44 15,34 14,57 14,64 14,62 14,43
8 New Zealand 34,49 33,91 33,31 30,82 29,55 28,96 29,71 27,3 26,78
9 Peru 6,87 7,12 7,75 7,92 8,24 8,37 8,18 7,72 7,36
10 Singapore 10,22 9,96 9,77 9,44 9,32 9,26 8,98 8,49 8,36
11 Vietnam 3,21 3,54 3,11 3,65 3,83 3,76 3,83 3,45 3,91
Source: Authors' synthesis from WB data (2018)
Table 4.9: Density of ATMs distributed in CPTPP countries
(calculated on average per 100,000 people)
Quốc gia 2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 168,66 170,47 164,64 161,09 165,13 163,79 167,59 160,22 146,03
Brunei Darussalam 82,01 80,71 92,5 82,56 81,35 79,25 75,86 69,17 74,13
23
Canada 218,16 207,57 203,32 220,94 221,81 221,46 224,08 228,87 220,6
Chile 61,98 64,98 67,88 64,16 56,85 56,07 53,4 51,79 49,91
Japan 130,93 128,58 127,9 128,3 127,49 127,65 127,8 127,77 127,59
Malaysia 53,52 53,56 53,21 54,58 52,3 51,18 48,89 47,53 46,63
Mexico 45,36 45 48,85 48,73 50,39 52,78 54,42 55,41 58,58
New Zealand 72,22 76,37 74,81 72,37 70,7 69,28 66,04 65,88 64,66
Peru 26,86 31,43 38,8 41,76 56,57 122,78 111,54 109,02 114,66
Singapore 61,51 62 61,39 60,27 59,5 60,02 57,75 65,16 66,46
Vietnam 17,03 19,6 20,69 21,88 22,71 23,76 24,26 24,58 25,28
Source: Authors' synthesis from WB data (2018))
Table 4.10: Credit information depth index of countries in the CPTPP
(0=low to 8=high)
STT Quốc gia 2013 2014 2015 2016 2017 2018
1 Australia 7 7 7 7 7 7
2 Brunei Darussalam 5 5 6 7 7 8
3 Canada 8 8 8 8 8 8
4 Chile 7 7 7 7 7 7
5 Japan 6 6 6 6 6 6
6 Malaysia 7 7 7 8 8 8
7 Mexico 8 8 8 8 8 8
8 New Zealand 7 8 8 8 8 8
9 Peru 8 8 8 8 8 8
10 Singapore 7 7 7 7 7 7
11 Vietnam 6 6 7 7 7 7
Source: Authors' synthesis from WB data (2018)
24
4.2.4. Network works
Chart 4.5: Average number of commercial bank branches in CPTPP
(calculated on average per 100,000 people)
Source: Authors' synthesis from WB data (2018)
2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 30.75 30.41 30.93 30.12 29.14 28.73 27.72 29.61 28.19
Brunei Darussalam 23.28 23.16 22.71 22.93 20.26 20.84 19.59 18.36 17.18
Canada 24.05 24.18 24.3 23.32 23.14 22.84 22.27 20.79 20.05
Chile 17.45 17.35 17.27 17.1 16.87 16.14 15.77 14.85 14.03
Japan 33.82 33.9 33.95 33.9 33.89 34.14 34.1 34.03 34.07
Malaysia 10.92 11.24 11.14 10.95 10.79 10.67 10.42 10.22 10.25
Mexico 14.59 14.62 15.5 15.44 15.34 14.57 14.64 14.62 14.43
New Zealand 34.49 33.91 33.31 30.82 29.55 28.96 29.71 27.3 26.78
Peru 6.87 7.12 7.75 7.92 8.24 8.37 8.18 7.72 7.36
Singapore 10.22 9.96 9.77 9.44 9.32 9.26 8.98 8.49 8.36
Vietnam 3.21 3.54 3.11 3.65 3.83 3.76 3.83 3.45 3.91
0
5
10
15
20
25
30
35
40
25
Figure 4.6: Average number of ATMs in CPTPP countries
(calculated on average per 100,000 people)
Source: Authors' synthesis from WB data (2018)
4.3. Results of experimental research
4.3.1. The results of the estimation of the competitiveness regression model of
Vietnamese commercial banks
4.3.1.1. Descriptive statistics of research variables
Table 4.11: Descriptive statistics table of the variables in the Lerner model
Variable Observation Mean
Standard
deviation
Min Max
Dependent variable
2010 2011 2012 2013 2014 2015 2016 2017 2018
Australia 168.66 170.47 164.64 161.09 165.13 163.79 167.59 160.22 146.03
Brunei Darussalam 82.01 80.71 92.5 82.56 81.35 79.25 75.86 69.17 74.13
Canada 218.16 207.57 203.32 220.94 221.81 221.46 224.08 228.87 220.6
Chile 61.98 64.98 67.88 64.16 56.85 56.07 53.4 51.79 49.91
Japan 130.93 128.58 127.9 128.3 127.49 127.65 127.8 127.77 127.59
Malaysia 53.52 53.56 53.21 54.58 52.3 51.18 48.89 47.53 46.63
Mexico 45.36 45 48.85 48.73 50.39 52.78 54.42 55.41 58.58
New Zealand 72.22 76.37 74.81 72.37 70.7 69.28 66.04 65.88 64.66
Peru 26.86 31.43 38.8 41.76 56.57 122.78 111.54 109.02 114.66
Singapore 61.51 62 61.39 60.27 59.5 60.02 57.75 65.16 66.46
17.03 19.6 20.69 21.88 22.71 23.76 24.26 24.58 25.28
0
50
100
150
200
250
26
Lerner 271 0.1794 0.0888 -0.4789 0.4366
Independent variables
Lerner1 270 0.1790 0.0853 -0.5039 0.4354
ETA 271 18.3747 1.1685 15.9227 20.9956
B_SIZE 271 0.0949 0.0429 0.0326 0.2554
LTA 271 0.5437 0.1319 0.1473 0.8075
HDV 271 0.6362 0.1348 0.2508 0.8937
LLP 271 -0.0254 0.0724 -0.6766 0.0397
HHI 271 0.2945 0.2651 -2.7370 0.4995
GroTA 271 1.8372 23.8438 -0.9282 392.8397
FS1 271 0.2000 0.0216 0.1837 0.2391
FS2 271 0.1027 0.0057 0.0954 0.1130
GDP 271 0.0624 0.0058 0.0525 0.0708
INF 271 0.0661 0.0635 -0.0019 0.2126
Source: Author's calculations from STATA software
4.3.1.2. Analyze correlation among research variables
Table 4.12: Correlation among variables in the competitive estimation model
Source: Author's calculations from STATA software
Lerner Lerner1 B_SIZE ETA LTA HDV LLP HHI GroTA FS1 FS2 GDP INF
Lerner 1
Lerner1 0.6489 1
B_SIZE -0.0248 -0.0603 1
ETA 0.3903 0.3612 -0.725 1
LTA 0.1571 0.0695 -0.0957 0.3225 1
HDV 0.2612 0.2152 0.1413 -0.0265 0.02 1
LLP -0.2472 -0.0736 -0.3121 0.4045 0.6247 -0.196 1
HII 0.4526 0.0307 -0.1007 0.2545 0.1626 -0.0273 0.2233 1.0000
GroTA 0.0826 0.1061 0.0034 0.0259 -0.0517 0.0312 -0.104 0.0035 1
FS1 0.0613 -0.0892 -0.235 0.2243 0.2775 -0.0214 0.1936 -0.168 -0.0411 1
FS2 0.0602 0.0549 0.1804 -0.1802 -0.2706 0.0455 -0.1943 0.0258 -0.0318 -0.52 1
GDP 0.0791 -0.0402 -0.265 0.1896 0.2418 -0.0414 0.1289 -0.145 -0.1124 0.6356 -0.4601 1
INF 0.1665 0.296 0.2556 -0.2278 -0.2967 0.3075 -0.594 0.1964 0.0463 -0.2787 0.147 -0.254 1
27
4.3.1.3. The measurement results impact factors on the competitiveness of
Vietnamese commercial banks
Figure 4.7: Average Lerner index of Vietnamese commercial banks for the period
2010 - 2018
Source: Author's calculations from financial statements of commercial banks
Chart 4.8: Average Lerner index of Vietnamese commercial banks by ownership
Source: Author's calculations from financial statements of commercial banks
Table 4.13: Summary of regression results for the competitiveness measurement
model
24%
19%
17% 16% 16%
14%
15%
17%
19%
2010 2011 2012 2013 2014 2015 2016 2017 2018
LERNER bình quân
23%
18%
15%
14% 15%
12% 13%
16%
18%
29%
24%
23%
24% 24%
23%
24%
23% 23%
2010 2011 2012 2013 2014 2015 2016 2017 2018
NHTM cổ phần NHTM Nhà nước
28
Variable OLS FEM REM GLS GMM_Lerner
Lerner1 0.4893*** 0.2303*** 0.4893*** 0.4893*** 0.2291***
ETA 0.5882*** 0.7083*** 0.5882*** 0.5882*** 0.5825***
BANKSIZE 0.0296*** 0.0564*** 0.0296*** 0.0296*** 0.0386***
LTA 0.0456 0.0579 0.0456 0.0456 0.2469**
LLP -0.1136** -0.0694 -0.1136** -0.1136** -0.1456***
HDV -0.0253 -0.1477*** -0.0253 -0.0253 -0.1469**
HHI 0.1242*** 0.1419*** 0.1242*** 0.1242*** 0.1290***
GroTA 0.0001 0.0001 0.0001 0.0001 0.0001***
FS1 0.1529 -0.0274 0.1529 0.1529 0.1923*
FS2 1.8311*** 2.0381*** 1.8311*** 1.8311*** 1.9301***
GDP 1.4103* 1.3059* 1.4103* 1.4103* -1.2536*
INF 0.1536** 0.1959** 0.1536** 0.1536** 0.1383**
Original 0.0264** 0.0464** 0.0264** 0.0264** 0.0490**
_cons -0.7380*** -1.0991*** -0.7380*** -0.7380*** -0.7264***
Number of
observations
271
Number of
groups
31
Variable tools 26
Mean VIF 1.94
F-test
F test that all u_i=0: F(30, 228) = 3.02
Prob > F = 0.0000
Hausman test
Test: Ho: difference in coefficients not systematic
chi2(12) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 878.20
Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)
29
Breusch Pagar
test
Test: Var(u) = 0
chibar2(01) = 0.00
Prob > chibar2 = 1.0000
Wooldridge
test
Wooldridge test for autocorrelation in panel data
H0: no first order autocorrelation
F( 1, 30) = 41.221
Prob > F = 0.0000
AR(2) Pr > z = 0.314
Sargan test Prob > chi2 = 0.523
Hansen test Prob > chi2 = 0.524
Note: The symbols (***), (**), (*) represent the statistical significance of 1%, 5%, 10%, respectively.
Source: Author's calculations from STATA software
4.3.2. The results of the regression of the stability model of Vietnamese commercial
banks
4.3.2.1. Descriptive statistics of the variables
Table 4.14: Statistical table describing the variables in the stability measurement
model
Variable Observation Mean
Standard
deviation
Min Max
Dependent variable
ZscoreMH2 271 12.6665 5.6891 0.9030 33.9246
Independent variable
Zscore1 271 12.9026 5.6303 0.9030 33.9246
ETA 271 0.0949 0.0429 0.0326 0.2554
B_SIZE 271 18.3747 1.1685 15.9227 20.9956
LTA 271 0.5437 0.1319 0.1473 0.8075
HDV 271 0.6362 0.1348 0.2508 0.8937
LLP1 271 0.0338 0.0688 0.0025 0.6766
HHI 271 0.2945 0.2651 -2.7370 0.4995
GroTA 271 1.8372 23.8438 -0.9282 392.8397
30
FS1 271 0.2000 0.0216 0.1837 0.2391
FS2 271 0.1027 0.0057 0.0954 0.1130
GDP 271 0.0624 0.0058 0.0525 0.0708
INF 271 0.0661 0.0635 -0.0019 0.2126
Original 271 0.1661 0.3728 0.0000 1.0000
Source: Author's calculations from STATA software
4.3.2.2. Correlation between variables in the research model
Table 4.15: Correlation among variables in the Zscore estimation model
ZscoreMH2 Zscore1 ETA B_SIZE LTA LLP1 HDV HHI GroTA FS1 FS2 GDP INF Original
ZscoreMH2 1
Zscore1 0.7801 1
ETA 0.986 0.8008 1
B_SIZE -0.6803 -0.6707 -0.725 1
LTA -
Các file đính kèm theo tài liệu này:
- measures_the_competitiveness_and_stability_of_vietnamese_com.pdf