MỤC LỤC
DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT
DANH MỤC CÁC BẢNG
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
MỞ ĐẦU 1
CHƯƠNG 1: MỘT SỐ KIẾN THỨC CƠ BẢN VỀ ANTEN VÀ ANTEN
MẠCH DẢI 2
1.1 Một số kiến thức cơ bản về anten 2 1.1.1 Mục đích, chức năng, nhiệm vụ của anten 2
1.1.2 Cấu trúc chung của hệ anten 2
1.1.3 Các thông số đặc trưng của anten 3
1.1.3.1 Trường bức xạ 3
1.1.3.2 Đặc tính định hướng của trường bức xạ 4
1.1.3.3 Đặc tính phân cực của trường bức xạ 9
1.1.3.4 Hệ số định hướng và hệ số tăng ích 10
1.1.4 Phối hợp trở kháng cho anten 12
1.2 Đường truyền vi dải và anten mạch dải 13
1.2.1 Đường truyền vi dải 13
1.2.1.1 Cấu trúc hình học của đường truyền vi dải 13
1.2.1.2 Các tham số cơ bản 14
1.2.1.3 Trở kháng đặc tính biến thiên của theo tần số 17
1.2.2 Anten mạch dải 17
1.2.2.1 Khái niệm 17
1.2.2.2 Cấu trúc và đặc tính cơ bản 17
CHƯƠNG 2: HỆ THỐNG RFID 21
2.1 Hệ thống RFID 2.1.1 Hệ thống nhận dạng tự động (Auto Identification-Auto ID) 21
2.1.1.1 Hệ thống mã vạch 21
2.1.1.2 Hệ thống nhận dạng sinh học 22
2.1.1.3 Hệ thống nhận dạng thẻ thông minh 22
2.1.2 Khái niệm về hệ thống RFID 23
2.1.3 Cấu tạo chung của hệ thống RFID 24
2.1.3.1 Tag / thẻ 24
2.1.3.2 Đầu đọc (Reader) 25
2.1.3.3 Middleware 25
2.1.4 Phân loại hệ thống RFID 25
2.1.4.1 RFID trường gần 26
2.1.4.2 RFID trường xa 26
2.1.5 Các tần số, quy định được sử dụng trong hệ thống RFID 27
2.1.6 Ưu điểm, nhược điểm của hệ thống RFID 29
2.1.6.1 Ưu điểm 29
2.1.6.2 Nhược điểm 30
2.1.7 Ứng dụng và xu hướng phát triển của RFID 30
2.1.7.1 Ứng dụng 30
2.1.7.2 Xu hướng phát triển 32
2.2 Anten trong hệ thống RFID 35
2.2.1 Nguyên lý hoạt động 35
2.2.1.1 Trường gần 35
2.2.1.2 Trường xa 36
2.2.2 Các loại anten dùng trong hệ thống RFID 37
CHƯƠNG 3: PHÂN TÍCH ANTEN CHO THẺ RFID TRƯỜNG XA 39
3.1 Đường Radio 41
3.2 EIRP và ERP 43
3.3 Độ tăng ích của anten thẻ 44
3.4 Hệ số phối hợp phân cực 44
3.5 Hệ số truyền công suất 44
3.6 RCS của anten 47
3.7 Tính toán khoảng đọc 50
CHƯƠNG 4: MÔ PHỎNG VÀ THIẾT KẾ ANTEN 52
4.1 Mô phỏng, thiết kế anten mạch dải có cấu trúc zíc zắc hoạt động tại dải tần
2.45GHz dung cho hệ thống RFID 52
4.2 Đo đạc thực nghiệm 60
4.3 Nhận xét- đánh giá 64
KẾT LUẬN 66
TÀI LIỆU THAM KHẢO 67
75 trang |
Chia sẻ: lethao | Lượt xem: 3280 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Nghiên cứu và thiết kế một anten cho hệ thống RFID, hoạt động ở dải tần 2.45GHz, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
đặt trong hệ toạ độ Đecac
Khi độ dày của chất dẫn t = 0, trở kháng đặc tính Z0 và hệ số điện môi hiệu ứng εe được tính theo công thức Wheeler và Schneider:
với
Sai số tương đối của và phải nhỏ hơn 1%. Trong đó W/h được tính:
với
Các biểu thức trên cho độ chính xác lớn hơn 1%.
Giá trị của trở kháng đặc tính và hệ số điện môi hiệu ứng là hàm của tỉ số W/h được minh hoạ hình dưới đây, ở đây
Sự biến đổi của trở kháng đặc trưng đối với đường vi dải có chất nền không khí (Zaom với = 1) cũng được vẽ bởi một đường cong gạch đứt.
Hình 9: Trở kháng đặc tính và hệ số điện môi hiệu ứng của đường truyền vi dải được tính theo phương pháp của Wheeler
b) Ảnh hưởng của độ dày chất dẫn
Công thức đơn giản và chính xác của trở kháng đặc tính Z0 và hệ số điện môi hiệu ứng εe với độ dày chất dẫn hữu hạn là:
Trong đó:
Lưu ý rằng và không bị ảnh hưởng của độ dày chất dẫn khi tỉ số t/h nhỏ. Tuy nhiên độ dày chất dẫn sẽ ảnh hưởng đến suy hao chất dẫn trong đường truyền vi dải.
1.1.2.3 Trở kháng đặc tính biến thiên của theo tần số
Trở kháng đặc tính biết thiên một cách phức tạp do sự phụ thuộc của tần số vào hình học và điện môi. Khi đó ta cần có phương pháp để tính trở kháng đặc tính.
Một phương pháp điển hình của Owen là xác định độ rộng hiệu ứng , tiếp đó lấy đường truyền vi dải làm mô hình cho một cấu trúc ống dẫn sóng hai chiều. Độ rộng hiệu ứng của ống dẫn sóng được xác định bởi công thức:
Khi đó ta có tần số ngưỡng:
Độ rộng hiệu ứng dưới dạng hàm của tần số được tính:
Khi đó ta có trở kháng đặc tính được tính theo công thức:
1.2.2 Anten mạch dải
1.2.2.1 Khái niệm
Anten mạch dải (anten mạch in) còn thường được gọi là anten mạch vi dải vì nó có kích thước rất nhỏ, về thực chất là một kết cấu bức xạ kiểu khe.
1.2.2.2 Cấu trúc và đặc tính cơ bản
Về cấu tạo, mỗi phần tử anten mạch dải gồm có các phần chính là phiến kim loại, lớp đế điện môi, màn chắn kim loại và bộ phận tiếp điện. Hình vẽ:
Hình 10: Anten mạch dải
Phiến kim loại được gắn trên lớp đế điện môi, tạo nên một kết cấu tương tự một mảng của mạch in, do vậy anten còn có tên gọi là anten mạch in.
Các thông số cấu trúc cơ bản của một phần tử anten mạch dải là chiều dài L, chiều rộng W, chiều dày lớp đế điện môi h với hằng số điện môi .
Phiến kim loại rất mỏng (nhỏ hơn nhiều bước sóng truyền trong không gian tự do λo), lớp điện môi có độ dày h (0.003λo ≤ h ≤ 0.05λo) và độ dài L trong khoảng λo/3 < L < λo/2.
Một số vật liệu điện môi sử dụng trong công nghệ mạch dải có hằng số điện môi εr từ 2.2 ÷ 12. Lớp điện môi dày với hằng số nhỏ hơn 2.2 sẽ tăng hiệu quả sử dụng của anten: dải tần rộng hơn, suy hao do bức xạ đường biên không đáng kể, nhưng kích thước anten sẽ lớn hơn. Ngược lại, lớp điện môi mỏng với hằng số điện môi lớn thích hợp với các mạch vi sóng bởi mạch này yêu cầu tối thiểu hoá bức xạ tại biên cũng như ảnh hưởng qua lại giữa các mối ghép, dẫn đến kích thước anten nhỏ hơn, nhưng hiệu suất thấp, suy hao lớn hơn và dải tần cũng hẹp hơn. Trong khi đó, anten mạch dải thường tích hợp với mạch vi sóng nên bắt buộc phải có sự thoả hiệp.
Hình 11: Anten mạch dải nhìn từ mặt bên
Phân tích anten mạch dải theo phương pháp đường truyền dẫn, một phần tử anten mạch dải chữ nhật có thể được mô tả tương đương với hai khe bức xạ song song có chiều dài mỗi khe là W và dặt cách nhau một khoảng L. Mỗi khe bức xạ được xem như một dipole từ.
Hình 12: Khe bức xạ Anten mạch dải
Các phần tử bức xạ dùng cấu trúc mạch dải thường có nhiều hình dạng khác nhau như: hình vuông, hình chữ nhật, dipole, hình tròn, elip, hình tam giác…các dạng này đều dễ chế tạo, có đặc tính bức xạ linh hoạt và độ phân cực chéo thấp.
Hình 13: Các dạng anten mạch ải điển hình
Mỗi phần tử anten mạch dải có thể sử dụng như một anten độc lập, hoặc chúng có thể kết hợp với nhau thành hệ anten. Phần tử bức xạ của anten mạch dải nằm ở phía trên của tấm kim loại (màn chắn dẫn điện) nên có thể dễ dàng kết hợp các phần tử anten với các mạch tích cực (mạch khuyếch đại, đổi tần…) hoặc các mạch xử lý tín hiệu nằm ở phía sau màn chắn để tạo ra hệ anten tích cực hoặc anten có xử lý tín hiệu.
Phần tử anten mạch dải có thể được tiếp điện bằng đường truyền mạch dải (được chế tạo theo công nghệ mạch in gắn liền với phiến kim loại), hoặc dung cáp đồng trục có đầu thăm nối với phiến kim loại còn vỏ cáp nối với màn chắn. Hình vẽ:
Đường vi dải Cáp đồng trục
Hình 14: Tiếp điện cho anten mạch dải
Ngày nay, anten mạch dải xuất hiện trong hầu hết các lĩnh cực, đặc biệt là trong lĩnh vực vũ trụ, hàng không, thông tin vệ tinh, các thiết bị thông tin và truyền thông. Đây là loại anten có kích thước nhỏ gọn, phù hợp với mọi loại hình dạng, đơn giản và rẻ tiền nhờ sử dụng công nghệ mạch in. Tuỳ theo cấu tạo khác nhau để có được sự linh hoạt về tần số cộng hưởng, độ phân cực, kiểu bức xạ, trở kháng làm việc…
Tuy nhiên, nhược điểm của loại anten này là công suất thấp, ảnh hưởng bức xạ nguồn nuôi và dải tần rất hẹp (một vài phần trăm). Ta có thể nâng hiệu suất bằng cách tăng độ dày lớp điện môi (khoảng 90% nếu không có sóng bề mặt) và dải tần có thể tăng 35%. Thực tế khi độ dày lớp điện môi tăng sẽ xuất hiện sóng bề mặt làm giảm công suất bức xạ, sóng bề mặt truyền trong lớp điện môi, tán xạ tại các góc và các gờ giới hạn bởi lớp điện môi và lớp đế, làm giảm đặc tính phân cực, phát xạ của anten. Sóng này có thể loại trừ mà vẫn giữ được dải tần rộng nếu sử dụng phương pháp hốc cộng hưởng.
CHƯƠNG 2
HỆ THỐNG RFID
2.1 Hệ thống RFID.
2.1.1 Hệ thống nhận dạng tự động (Auto Identification-Auto ID):
Trong vài năm gần đây, các hệ thống nhận dạng tự động ngày càng phát triển và trở nên khá phổ biến trong các ngành như công nghiệp dịch vụ, mua sắm, phân phối, quản lý và được sử dụng tại rất nhiều các cơ quan, nhà máy, bệnh viện và các tổ chức khác. Chúng cung cấp cho chúng ta các thông tin về con người, hàng hoá, động vật trong việc di chuyển. Ví dụ: mã vạch, thẻ từ, …và hệ thống RFID.
Mã
vạch
RFID
Thẻ thông minh
Quang
học
Giọng
nói
Hệ thống nhận dạng tự động
Sinh
học
Vân tay
Hình 15: Mô hình các hệ thống nhận dạng tự động
2.1.1.1 Hệ thống nhận dạng mã vạch (Barcode):
Hệ thống nhận dạng tự động bằng mã vạch đã đạt được nhiều thành công và được ứng dụng, phát triển mạnh mẽ nhất. Mã vạch là hệ thống mã nhị phân được tạo nên bởi các vạch và khoảng trống xắp xếp song song với nhau. Chúng được xắp xếp theo một quy ước định trước, các phần của mã vạch đại diện cho dữ liệu cần mã hóa. Mã vạch có thể được đọc bởi đầu đọc laser thông qua sự phản xạ khác nhau của dòng laser đối với các vạch đen và khoảng trống màu trắng.
2.1.1.2 Hệ thống nhận dạng sinh học:
Hệ thống nhận dạng sinh học thường dùng để nhận dạng các sinh vật sống trong đó nhận dạng con người là chủ yếu. Trong hệ thống nhận dạng tự động, nhận dạng sinh học có độ chính xác khá cao qua việc so sánh các đặc điểm riêng của mỗi người. Trong thực tế, có rất nhiều các hệ thống nhận dạng sinh học như: nhận dạng vân tay, nhận dạng giọng nói và nhận dạng võng mạc.
2.1.1.3 Hệ thống nhận dạng thẻ thông minh (smart card):
Thẻ thông minh là thiết bị lưu trữ dữ liệu điện tử, có loại có thêm một chip để xử lý thông tin. Chúng thường được thiết kế trong một thẻ nhựa có kích thước như thẻ điện thoại. Để hoạt động, thẻ thông minh phải được đưa vào đầu đọc thẻ, thẻ được kết nối với đầu đọc thông qua các tiếp xúc điện. Thẻ được cung cấp năng lượng và xung đồng bộ bởi đầu đọc thông qua tiếp xúc điện đó. Dữ liệu truyền giữa đầu đọc và thẻ được truyền theo dạng nối tiếp hai chiều.
Qua đặc điểm của các hệ thống nhận dạng tự động trên, chúng ta có thể thấy rằng hầu hết các hệ thống nhận dạng tự động trên đều yêu cầu kết nối vật lý tiếp xúc với khoảng cách gần. Điều này gây rất nhiều bất tiện cho người sử dụng trong sử dụng hoặc quản lý. Với hệ thống RIFD, việc kết nối không dây giữa thiết bị mang thông tin và thiết bị đọc sẽ đem lại nhiều ứng dụng và tiện lợi hơn. Trong thực tế, chúng ta còn có thể truyền năng lượng từ đầu đọc cho thiết bị di động thông qua việc sử dụng công nghệ không dây này.
Hình 16: Mô hình công ty ứng dụng RFID
2.1.2 Khái niệm về hệ thống RFID.
Hệ thống nhận dạng tự động RFID cũng tương tự như hệ thống nhận dạng bằng thẻ thông minh trên. Nó cũng là thiết bị lưu trữ dữ liệu rất thuật tiện, có thể mang theo được, đó chính là thẻ RFID. Tuy nhiên, điểm khác biệt của hệ thống RFID đó chính là năng lượng cung cấp cho thẻ và việc truyền dữ liệu giữa đầu đọc và thẻ không phải thông qua các kết nối vật lý hay quang học mà thông qua điện trường do đầu đọc phát ra.
Hệ thống RFID lấy năng lượng từ trường điện từ của sóng radio, và nhận dạng dựa vào tần số sóng radio mang thông tin đó. Do những đặc tính ưu việt của công nghệ của hệ thống RFID so với các hệ thống nhận dạng tự động khác, hệ thống RFID ngày nay được ứng dụng trong rất nhiều các lĩnh vực và ngày càng phát triển.
Hình 16 cho thấy mô hình công ty ứng dụng RFID.
2.1.3 Cấu trúc cơ bản của hệ thống RFID.
Hình 17 : Cấu trúc cơ bản của hệ thống RFID
Cấu trúc hệ thống RFID chủ yếu bao gồm một đầu đọc (reader), một thẻ (tag) và phần mềm xử lý trung gian. Đầu đọc sẽ truy vấn thẻ, lấy thông tin, và sau đó xử lý theo thông tin vừa nhận được đó.
2.1.3.1 Tag / thẻ
Thẻ được sử dụng trong hệ thống RFID có chức năng như một bộ thu phát (transponder), được thiết kế để có thể vừa có khả năng thu tín hiệu vô tuyến vừa có khả năng tự động phát đi trả lời.
Cấu tạo một thẻ RFID thường bao gồm các thành phần sau:
- Mạch giải mã
- Bộ nhớ
- Nguồn cung cấp
- Điều khiển giao tiếp
- Anten
Thẻ có ba loại: tích cực, bán thụ động và thụ động.
Thẻ RFID thụ động bản thân không có pin hay nguồn cung cấp trong nó; do đó, nó phải lấy nguồn cung cấp từ tín hiệu của đầu đọc. Thẻ là một mạch cộng hưởng có khả năng hấp thụ nguồn cung cấp phát ra từ anten của đầu đọc. Để nhận năng lượng từ đầu đọc, cần phải sử dụng một tính chất của trường điện từ gọi là trường gần. Tức là thẻ phải ở khoảng cách tương đối gần so với đầu đọc để có thể nhận được năng lượng từ đầu đọc.
Ngược với thẻ thụ động là thẻ tích cực. Thẻ tích cực bản thân đã có nguồn cung cấp bên trong, pin. Vì có năng lượng để cung cấp cho chính mạch điện tử của nó, nên nó có thể phát và thu độc lập mà không cần nguồn cung cấp từ trường gần của anten đầu đọc. Và cũng bởi vì nó không phụ thuộc vào nguồn cung cấp từ reader, nên chúng cũng không bị giới hạn hoạt động trong phạm vi trường gần. Nó có thể tương tác với reader ở khoảng cách xa hơn.
Thẻ bán thụ động cũng có pin để cung cấp năng lượng nhưng vẫn phụ thuộc vào trường gần để cấp nguồn cho mạch vô tuyến hoạt động trong quá trình phát và nhận dữ liệu.
2.1.3.2 Đầu đọc (Reader)
Thành phần thứ hai trong hệ thống RFID cơ bản đó là đầu đọc. Nó thực sự là một bộ thu phát (transceiver) nhưng bởi vì chức năng chủ yếu của nó là “đọc thẻ”. Vì vậy nó được gọi là “đầu đọc”. Đầu đọc có thể có tích hợp anten bên trong hoặc anten rời. Còn có các thành phần khác trong đầu đọc như là các giao diện hệ thống như cổng nối tiếp RS-232 hay Ethernet, các mạch mã hoá và giải mã, nguồn cung cấp, và các mạch điều khiển giao tiếp.
Anten đầu đọc có kích thước rất đa dạng từ vài cm cho tới hàng chục, trăm cm. Mỗi reader có thể có nhiều hơn một anten tuỳ thuộc vào từng ứng dụng cụ thể.
2.1.3.3 Middleware
Phần mềm Middleware sẽ quản lý đầu và dữ liệu đến từ thẻ, chuyển nó tới hệ thống cơ sở dữ liệu tập trung. Middleware được bố trí ở giữa đầu đọc và cơ sở dữ liệu. Ngoài việc lấy dữ liệu từ thẻ và đưa dữ liệu vào cơ sở dữ liệu, middleware còn thực hiện các chức năng như lọc, quản lý và phối hợp đầu đọc. Khi các hệ thống RFID phát triển lên, middleware sẽ được bổ sung thêm các chức năng quản lý nâng cao và cải tiến cho cả đầu đọc và thẻ, chưa kể đến các tuỳ chọn quản lý dữ liệu mở rộng.
2.1.4 Phân loại hệ thống RFID
Hệ thống RFID có thể được phân loại dựa theo tần số hoạt động, khoảng đọc, nguồn cung cấp cho thẻ, và giao thức truyền dữ liệu giữa thẻ và đầu đọc…Nhưng từ quan điểm thiết kế anten, hệ thống RFID có thể được phân loại thành RFID trường gần và RFID trường xa. Còn về phưong pháp cấp nguồn cho thẻ thì có thể phân loại hệ thống RFID thành hệ thống RFID thụ động, tích cực và bán tích cực.
RFID trường gần và trường xa: Có hai phương pháp để truyền công suất từ đầu đọc tới thẻ, đó là ghép dung/cảm ứng và thu/phát sóng điện từ (EM). Cả hai phương pháp này đều khai thác các tính chất của điện từ trường đối với một anten RF - Trường khu gần và trường khu xa.
2.1.4.1 RFID trường gần
Trường gần là một hiện tượng xảy ra trong truyền sóng vô tuyến, trong đó cường độ trường của trường điện từ đủ lớn để cảm ứng tạo ra một điện trường trên cuộn dây anten của thẻ. Độ lớn của trường gần phụ thuộc vào bước sóng của tín hiệu vô tuyến được sử dụng (r = λ/2π).
Trong các hệ thống RFID trường gần, công suất cũng như thông tin cần truyền từ đầu đọc tới thẻ đều có thể thực hiện được bằng cách ghép cảm ứng qua tương tác với từ trường, hoặc ghép dung ứng qua tương tác với điện trường. Hệ thống RFID trường gần là phương pháp đơn giản nhất để thực hiện một hệ thống RFID thụ động.
Hạn chế chủ yếu của hệ thống RFID trường gần đó là giới hạn về khoảng đọc. Đối với các hệ thống RFID ghép cảm ứng, năng lượng cảm ứng là một hàm của khoảng cách từ cuộn anten. Từ trường giảm đi với tốc độ 1/r3, trong đó r là khoảng cách giữa đầu đọc và thẻ. Khoảng đọc của một hệ thống RFID trường gần như vậy thường ngắn hơn 1.5m. Còn một sự hạn chế khác liên quan đến hướng của từ trường. Cùng với tầm nhìn của anten đầu đọc, cường độ trường của thành phần từ trường trực giao với mặt phẳng anten đầu đọc thì rất mạnh, trái lại thành phần cường độ trường song song với mặt phẳng anten đầu đọc thì lại rất yếu hoặc thậm chí bằng không. Do đó, nếu thẻ được đặt song song với từ trường của anten đầu đọc, đầu đọc sẽ không thể nhận biết được thẻ bởi vì không có từ thông chảy qua thẻ.
2.1.4.2 RFID trường xa
Trong các hệ thống RFID trường xa, công suất cũng như thông tin truyền từ đầu đọc tới thẻ đều được thực hiện bằng cách phát và thu sóng EM. Đầu đọc sẽ phát ra năng lượng qua anten, một phần năng lượng đã phát sau đó sẽ bị phản xạ trở lại từ thẻ và đầu đọc sẽ nhận biết được. Biên độ năng lượng phản xạ từ thẻ có thể bị ảnh hưởng bởi sự thay đổi trở kháng tải kết nối tới anten của thẻ. Bằng cách thay đổi trở kháng tải của anten theo thời gian, thẻ có thể phản xạ nhiều hoặc ít so với tín hiệu tới và đó cũng là cách mã hoá ID của thẻ.
Các hệ thống RFID trường xa hoạt động ở các tần số lớn hơn 100MHz, chủ yếu là băng UHF như là 868MHz, 915MHz hoặc 955MHz hay băng tần vi ba như là 2.45GHz hoặc 5.8GHz. Khoảng đọc của hệ thống RFID trường xa được xác định bởi mật độ năng lượng mà thẻ nhận được và độ nhạy của phần thu đầu đọc đối với tín hiệu phản xạ từ thẻ. Năng lượng cần thiết để cấp cho thẻ tại một tần số cho trước sẽ ngày càng giảm xuống (hiện giờ là khoảng vài mW). Đầu đọc đang ngày càng được cải tiến độ nhạy sao cho chúng có thể nhận biết được tín hiệu yếu với các mức công suất khoảng -80dBm với chi phí chấp nhận được. Khoảng đọc của hệ thống có thể dao động từ 3 – 5m. Khi lớn nhất có thể lên tới 10m hoặc hơn.
2.1.5 Các tần số, quy định được sử dụng trong hệ thống RFID
Hoạt động của một hệ thống RFID phụ thuộc rất nhiều vào tần số hoạt động mà hệ thống sử dụng. Tần số hoạt động sẽ ảnh hưởng lớn tới khoảng đọc, tốc độ trao đổi dữ liệu, hoạt động, kích thước, loại anten, và tính hấp thụ bề mặt. Do phải đảm bảo hệ thống RFID cùng tồn tại được với các hệ thống thông tin khác như là thông tin di động, thông tin vệ tinh…mà tần số hoạt động của hệ thống RFID bị giới hạn; Chỉ được phép hoạt động với dải tần được cấp phép (dải ISM). Ngoài dải tần ISM ra, toàn bộ dải tần dưới 135kHz (ở Bắc và Nam Mỹ) và 400kHz (ở Nhật) cũng được dành cho ứng dụng RFID.
Hình 18: Dải tần chính dành cho ứng dụng RFID
Các tần số trong khoảng 30kHz – 400kHz được coi là dải tần thấp (LF). Hệ thống RFID LF hoạt động chủ yếu ở tần số 125kHz hoặc 134.2kHz. Các hệ thống này thường sử dụng thẻ thụ động, có tốc độ truyền dữ liệu từ thẻ tới reader thấp và thích hợp cho các ứng dụng trong đó môi trường hoạt động có các đối tượng cần nhận dạng chủ yếu là kim loại, chất lỏng…(một tính chất rất quan trọng của các hệ LF). Thẻ LF tích cực cũng có mặt trong một số các ứng dụng RFID khác.
Băng cao tần (HF) có dải tần từ 3MHz tới 30MHz, và băng 13.56MHz là tần số tiêu biểu được sử dụng trong dải tần này cho ứng dụng RFID. Hệ thống RFID HF cũng sử dụng thẻ thụ động, cũng có tốc độ truyền dữ liệu từ thẻ tới reader thấp, và hoạt động khá tốt trong các môi trường có chứa kim loại, chất lỏng.
Băng siêu cao tần (UHF) có dải tần từ 300MHz tới 1GHz. Một hệ thống RFID UHF thụ động tiêu biểu hoạt động tại tần số 915MHz ở Mỹ và 868MHz ở Châu Âu. Còn hệ thống RFID UHF tích cực thì hoạt động tại tần số 315MHz hoặc 433MHz. Hệ thống RFID UHF có thể sử dụng cả thẻ tích cực lẫn thụ động và có tốc độ truyền dữ liệu giữa thẻ và đầu đọc cao. Tuy nhiên, dải tần UHF cho ứng dụng RFID chưa được chấp nhận rộng rãi trên toàn thế giới.
Băng tần vi ba (MWF) có dải tần trên 1GHz. Hệ thống RFID MWF hoạt động tại một trong các tần số 2.45GHz, 5.8GHz, trong đó 2.45GHz là tần số được sử dụng phổ biến nhất và được chấp nhận rộng rãi. Hệ thống RFID MWF cũng có thể sử dụng cả thẻ tích cực lẫn thụ động và có tốc độ truyền dữ liệu giữa thẻ và reader nhanh nhất trong tất cả các hệ thống trên. Do kích thước của anten tỷ lệ nghịch với tần số, nên anten của thẻ thụ động hoạt động trong dải tần MWF có kích thước nhỏ hơn rất nhiều so với các hệ thống RFID khác hoạt động ở dải tần khác thấp hơn.
Bảng dưới đây sẽ tổng hợp các băng tần được sử dụng cũng như các thông số đi kèm của chúng.
Bảng 1: Các hệ thống RFID trường gần và trường xa với các thống số liên quan
Bảng 2: Giới hạn về công suất và tần số trong các hệ thống RFID tại một số các quốc gia khác nhau
2.1.6 Ưu điểm, nhược điểm của hệ thống RFID.
2.1.6.1 Ưu điểm:
- Khả năng xử lý đồng thời: RFID có khả năng xử lý đồng thời nhiều đối tượng cùng một lúc. Trong khi các hệ thống nhận dạng tự động khác xử lý đơn hoặc xử lý theo chuỗi. Điều này làm tăng đáng kể tốc độ kiểm tra và giảm lượng ách tắc hơn các hệ thống khác.
a) xử lý đơn b) xử lý nối tiếp c) xử lý đồng thời
Hình 19: Các phương pháp xử lý dữ liệu
- Khả năng xử lý không cần nhân công: Trong khi các hệ thống khác đòi hỏi phải có nhân công trực tiếp thao tác để có thể nhận dạng thì hệ thống RFID có thể nhận dạng mà không cần đến sự hỗ trợ của con người. Giảm chi phí nhân công và lỗi nhân công.
- Khả năng cập nhật, thay đổi dữ liệu trực tiếp: Hệ thống RFID có khả năng đọc/ghi thông tin trên thẻ một cách dễ dàng.
- Các đối tượng cần nhận dạng có thể được kiểm soát trong bất kỳ một điều kiện và không gian giới hạn nào.
- Mỗi đối tượng cần nhận dạng trong hệ thống RFID chỉ có một số nhận dạng duy nhất. Cũng như khả năng mã hoá dữ liệu.
- Lưu trữ được nhiều dữ liệu hơn trên tag. Phụ thuộc vào nhà sản xuất, nó có thể chứa từ 64 cho tới 512bit thông tin.
- Tuổi thọ cũng như độ bền lâu hơn trong trường hợp thẻ thụ động không cần pin.
2.1.6.2 Nhược điểm:
- Giá thành của hệ thống RFID hiện nay vẫn còn cao, chưa thể áp dụng rộng rãi trong tất cả các lĩnh vực cần nhận dạng.
- Các chuẩn của công nghệ RFID hiện nay vẫn chưa được thống nhất.
- Chịu ảnh hưởng của các chất liệu cần nhận dạng như là kim loại và chất lỏng đối với thẻ thụ động.
2.1.7 Ứng dụng và xu hướng phát triển của RFID
2.1.7.1 Ứng dụng:
● Ứng dụng trong quản lý, theo dõi người, vật nuôi:
- Chứng minh thư điện tử.
- Quản lý nhân sự (công nhân, nhân viên, sinh viên, học sinh…).
- Theo dõi gia súc chăn nuôi.
● Ứng dụng trong hệ thống quản lý dữ liệu, thư viện:
- Quản lý thư viện, bảo tàng.
● Ứng dụng trong hệ thống quản lý hàng hoá, mua sắm và thanh toán.
- Kiểm kê hàng hóa xuất nhập qua cửa khẩu hoặc kho hàng.
- Mua hàng hoá trong siêu thị.
- Thẻ thanh toán điện tử.
● Ứng dụng trong y tế.
- Bệnh án điện tử
- Quản lý thuốc…
● Ứng dụng trong hệ thống bảo mật, cảnh báo.
- Thẻ ra vào.
- Ô tô, xe máy.
- Cảnh báo mất đồ vật.
● Ứng dụng trong lĩnh vực bưu điện, hàng không, giao thông vận tải:
- Quản lý, theo dõi bưu phẩm, hàng hoá
- Trạm thu phí, kiểm soát giao thông…
Hình 20: Ứng dụng RFID điển hình
2.1.7.2 Xu hướng phát triển
Theo các nhà nghiên cứu, các nhà khoa học máy tính nhận định: công nghệ xác thực bằng tần sóng RFID sớm muộn sẽ trở nên phổ biến và các tổ chức cần chuẩn bị đón nhận nó.
RFID được đánh giá là một trong những "công nghệ thần kỳ" bởi nó hứa hẹn kết nối mọi vật dụng hàng ngày thông qua một mạng không dây, và trên lý thuyết, có thể tìm lại những đồ dùng từng được sản xuất. Các nhà khoa học máy tính gọi RFID là "Internet của hàng hóa" bởi bất cứ thứ gì từ lọ dầu gội đầu đến đôi giày thể thao đều sẽ "search" được.
Nhưng vấn đề gặp phải hiện nay là công nghệ này cần có chi phí đầu tư cao và cần có những tiêu chuẩn chung để áp dụng phổ biến trong mọi lĩnh vực.
Tuy nhiên trong những năm gần đây, sự quan tâm, đầu tư của các công ty, các nhà khoa học, chính phủ các nước đã thúc đẩy công nghệ RFID có những bước phát triển mạnh mẽ, các chuẩn chung của công nghệ này được thiết lập.
Chính vì vậy công nghệ RFID hứa hẹn sẽ được ứng dụng đại trà hoá trong tương lai.
Ở Việt Nam hiện nay, RFID chưa được biết đến nhiều, song cũng đã có những công ty kinh doanh trong lĩnh vực này; đã có những đơn vị nghiên cứu và ứng dụng công nghệ mới này. Hiện tại, Trung tâm công nghệ cao, thuộc Viện điện tử - tin học - tự động hóa, đang nghiên cứu thiết kế và xây dựng hệ phần mềm cho các hệ thống quản lý tự động bằng thẻ RFID để ứng dụng trong hệ thống thu phí cầu đường. Ngay tại Trung tâm cũng đã ứng dụng công nghệ này với hệ thống phần mềm quản lý ra vào cửa của cán bộ công nhân viên.
Xin được trích dẫn lời ông Trần Thanh Hải, Phó vụ trưởng Vụ Thương mại điện tử Bộ Thương mại được đăng trên báo điện tử www.VnExpress.vn : "Đúng là công nghệ RFID còn mới mẻ ở Việt Nam và chưa có chính sách nào hỗ trợ, hướng dẫn về vấn đề này. Trong thời gian tới, Bộ Thương mại sẽ có những nghiên cứu về RFID cụ thể hơn. Việc mời chuyên gia Nhật Bản sang làm việc là một trong những hoạt động đầu tiên của chúng tôi để quảng bá về công nghệ mới này".
Hy vọng trong tương lai không xa, công nghệ RFID sẽ được ứng dụng rộng rãi ở Việt Nam.
Hình 21 : Biểu đồ tăng trưởng số anten được cấp bằng sáng chế của một số nước từ năm 1981 đến tháng 8 năm 2006.
Bảng3 : Số anten được cấp bằng sáng chế của một số nước từ năm 1991 đến tháng 8 năm 2006.
So sánh mức tăng trưởng các giai đoạn:
- 1991 đến 1995: 102%
- 1995 đến 2000: 212%
- 2000 đến 2005: 314%
Như vậy ta nhận thấy, RFID ngày càng phát triển, với tốc độ ngày càng nhanh.
Hình 22: Biểu đồ phân bố số anten được cấp bằng sáng chế của một số nước tính đến tháng 8 năm 2006.
2.2 Anten trong hệ thống RFID:
2.2.1 Nguyên lý hoạt động
Trong các hệ thống RFID trường gần và trường xa, do đặc tính trường điện từ tại mối khu là khác nhau nên cơ chế ghép năng lượng giữa đầu đọc và thẻ là khác nhau.
2.2.1.1 Trường gần
Trường điện từ tại khu gần có tính chất thụ động và gần như tĩnh. Điện trường sẽ bị thay thế bởi từ trường, và trường nào sẽ tồn tại được quyết định bởi loại anten được sử dụng: Điện trường sẽ tồn tại khi anten dipole được sử dụng; trái lại, với anten vòng nhỏ thì sẽ chỉ có từ trường tồn tại. Sự ghép ứng giữa anten thẻ và đầu đọc có thể nhận được qua giao thoa với từ trường hoặc điện trường. Trong các hệ thống RFID trường gần thì hệ thống ghép cảm ứng được dùng rộng rãi hơn cả so với hệ thống ghép dung ứng.
a) Ghép cảm ứng
Trong một hệ thống RFID ghép cảm ứng, cuộn dây anten đầu đọc sẽ tạo ra một từ trường mạnh cảm ứng vào cuộn anten của thẻ. Khi một phần năng lượng trường tới được hấp thụ vào anten cuộn của thẻ, sẽ tạo ra một điện áp Ui trên anten của thẻ. Điện áp này được chỉnh lưu và làm nguồn nuôi cho microchip trong thẻ. Một tụ CR được mắc song song với anten cuộn của đầu đọc, điện dung được chọn sao cho nó cùng với điện cảm anten cuộn hình thành nên một mạch cộng hưởng song song với tần số cộng hưởng tương ứng với tần số phát đi của đầu đọc. Trên anten của đầu đọc sẽ sinh ra các dòng rất lớn bằng cách thiết lập mạch cộng hưởng song song, có thể dùng để tạo ra từ trường cảm ứng cho hoạt động của thẻ.
Hình 23: Truyền công suất và thông tin giữa thẻ và đầu đọc trong hệ thống RFID ghép cảm ứng.
Hiệu suất truyền giữa anten đầu đọc và thẻ tỷ lệ với tần số hoạt động, số vòng dây, diện tích ghép anten, góc của cuộn dây, và khoảng cách giữa hai cuộn dây.
b) Ghép dung ứng
Trong hệ thống RFID ghép dung ứng, anten sẽ tạo ra và tương tác với điện trường. Trong các hệ thống này, chính phân bố của điện tích chứ không phải dòng điện sẽ quyết định độ lớn của trường và do đó độ lớn ghép ứng (coupling strength). Do độ lớn ghép ứng phụ thuộc vào số lượng các điện tích được gia tốc, nên các hệ thống dựa trên ghép dung ứng sẽ ít được sử dụng hơn nhiều so với các hệ thống ghép cảm ứng.
Dipole là một anten thích hợp đối với các hệ thống ghép dung ứng do điện trường sẽ tồn tại thay vì từ trường. Không chỉ các hệ thống ghép cảm ứng
Các file đính kèm theo tài liệu này:
- RFID.doc