Ôn tập Phương trình và Bất phương trình Toán học

Phương trình bậc nhất một ẩn ã + b = 0

1. Định nghĩa:

Phương trình bậc nhất 1 ẩn là phương trình có dạng ?

ax + b = 0 (a khác 0), a và b là các hệ số, x là ẩn số

2. Giải và biện luận phương trình : ax + b = 0

Cho phương trình : ax + b = 0 (1)

* Nếu a khác 0 : (1) có nghiệm duy nhất x = -b/a

* Nếu a = 0 : (1) <=>0x + b =0 <=>0x = -b

b khác 0 : (1) vô nghiệm

b = 0 : mọi x thuộc R là nghiệm của (1)

pdf4 trang | Chia sẻ: maiphuongdc | Lượt xem: 12141 | Lượt tải: 5download
Bạn đang xem nội dung tài liệu Ôn tập Phương trình và Bất phương trình Toán học, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1 LUYỆN THI ĐẠI HỌC Đại số 2 Chương 1 PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MỘT ẨN VẤN ĐỀ 1 Phương trình bậc nhất một ẩn : ax + b = 0 I. KIẾN THỨC CẦN NHỚ 1. Định nghĩa: Phương trình bậc nhất 1 ẩn là phương trình có dạng ? ax + b = 0 (a ≠ 0), a và b là các hệ số, x là ẩn số 2. Giải và biện luận phương trình : ax + b = 0 Cho phương trình : ax + b = 0 (1) * Nếu a ≠ 0 : (1) có nghiệm duy nhất bx a = − * Nếu a = 0 : (1) 0x b 0 0x b⇔ + = ⇔ = − b ≠ 0 : (1) vô nghiệm b = 0 : mọi x R∈ là nghiệm của (1) II. CÁC VÍ DỤ: Ví dụ 1: Giải và biện luận phương trình : mx + 2 (x – m) = (m + 1)2 + 3 Giải Phương trình 2mx 2x 2m m 2m 1 3⇔ + = + + + + 2 2(m 2)x m 4m 4 (m 2)⇔ + = + + = + (1) . m + 2 ≠ 0 m 2⇔ ≠ − : phương trình có nghiệm duy nhất: 2(m 2)x m 2 m 2 += = ++ . m = - 2 : (1) 0x 0 : x R⇔ = ∀ ∈ là vô nghiệm của (1) 3 Ví dụ 2: Giải và biện luận phương trình : 2 2 2a(ax 2b ) a b (x a)+ − = + Giải Phương trình cho 2 2 2 2 2a x b x b a a 2b a⇔ − = + − 2 2 2 2 2(a b )x a ab a(a b )⇔ − = − = − (1) . 2 2a b 0 a b− ≠ ⇔ ≠ ± : Phương trình có nghiệm duy nhất: 2 2 2 a(a b )x a b −= − . a = b : 2 3 2(1) 0x a a a (1 a)⇔ = − = − * a = 0 a 1: x R∨ = ∀ ∈ là nghiệm * a ≠ 0 và a ≠ 1: Phương trình vô nghiệm. . a = - b (1) 2 3 20x b b b (1 b)⇔ = + = + * b 0 b 1: x R= ∨ = − ∀ ∈ là nghiệm * b ≠ 0 và b ≠ 1: Phương trình vô nghiệm Ví dụ 3: Giải và biện luận phương trình : 2 2 2 a 3a 4a 3 1 x a x aa x − ++ =− +− (*) Giải (*) 2 x a a(a x) 3a 4a 3 a x ≠ ±⎧⎪⇔ ⎨− + + − + = −⎪⎩ 2 x a 3(1 a)x 2a 5a 3 2(a 1)(a ) (a 1)(3 2a) 2 ≠ ±⎧⎪⇔ ⎨ − = − + − = − − − = − −⎪⎩ (**) . 1 – a ≠ 0 (a 1)(3 2a)a 1: (**) x 2a 3 1 a − −⇔ ≠ ⇔ = = −− Chỉ nhận được khi: 2a 3 a a 3 2a 3 a a 1 − ≠ ≠⎧ ⎧⇔⎨ ⎨− ≠ − ≠⎩ ⎩ . 1 a 0 a 1: (**) 0x 0 x R− = ⇔ = ⇔ = ⇔∀ ∈ . Tóm lại: a ≠ 1 và a ≠ 3: Phương trình có nghiệm x = 2a – 3 4 a = 3 : Phương trình vô nghiệm a = 1 : x R∀ ∈ Ví dụ 4: Định m để phương trình sau vô nghiệm: x m x 2 2 (1) x 1 x + −+ =+ Giải Điều kiện : x 1 0 x 1 x 0 x 0 + ≠ ≠ −⎧ ⎧⇔⎨ ⎨≠ ≠⎩ ⎩ (1) x(x m) (x 1)(x 2) 2x(x 1)⇔ + + + − = + 2 2 2x mx x x 2 2x 2x (m 3)x 2 ⇔ + + − − = + ⇔ − = Phương trình vô nghiệm khi: m – 3 = 0 hoặc nghiệm tìm được bằng –1 hoặc bằng 0. m 3 0 m 32 1 m 1m 3 2 0 (không tồn tại) m 3 ⎡⎢ − =⎢ =⎡⎢ = − ⇔ ⎢⎢ =− ⎣⎢⎢ =⎢ −⎣ Ví dụ 5 : Định m để phương trình sau có tập nghiệm là R m3x = mx + m2 –m Giải Ta có : m3x = mx + m2 –m Phương trình có nghiệm 3 2 2 m m 0 m(m 1) 0x R m(m 1) 0m m 0 ⎧ ⎧− = − =⎪ ⎪∀ ∈ ⇔ ⇔⎨ ⎨ − =⎪− =⎪ ⎩⎩ m 0 m 1 m 0 m 1 m 0 m 1 = ∨ = ±⎧⇔ ⇔ = ∨ =⎨ = ∨ =⎩ 5 Ví dụ 6 : Định m để phương trình có nghiệm: 3x m 2x 2m 1x 2 x 2 x 2 − + −+ − =− − Giải Điều kiện x –2 > 0 x 2⇔ > Phương trình cho 3x m x 2 2x 2m 1⇔ − + − = + − 2x 3m 1 3m 1x nhận được khi : x 2 2 ⇔ = + +⇔ = > 3m 1 2 3m 1 4 m 1 2 +⇔ > ⇔ + > ⇔ > Vậy phương trình có nghiệm khi m > 1 Ví dụ 7: Định m để phương trình sau có nghiệm duy nhất: x 2 x 1 (1) x m x 1 + +=− − Giải x m,x 1 (1) (x 2)(x 1) (x m)(x 1) ≠ ≠⎧⇔ ⎨ + − = − +⎩ x m,x 1 mx 2 m ≠ ≠⎧⇔ ⎨ = −⎩ (1) có nghiệm duy nhất 2 m 0 m 0 2 m m m m 2 0 m 2m 22 m 1 m ⎧⎪ ≠ ≠⎧⎪ ⎪−⎪⇔ ≠ ⇔ + − ≠⎨ ⎨⎪ ⎪ ≠⎩−⎪ ≠⎪⎩ m 0 m 1 m 2 ≠⎧⎪⇔ ≠⎨⎪ ≠ −⎩ 6 III. BÀI TẬP ĐỀ NGHỊ 1.1 Giải và biện luận các phương trình : a. (m 1)x m 2 m x 3 + + − =+ b. x m x 2 x 1 x 1 − −=+ − 1.2 Định m để phương trình có nghiệm : 2 2 (2m 1)x 3 (2m 3)x m 2 4 x 4 x + + + + −= − − 1.3 Định m để phương trình có nghiệm x > 0 : 2m (x 1) 4x 3m 2− = − + 1.4 Định m để phương trình sau vô nghiệm : 2(m 1) x 1 m (7m 5)x+ + − = − 1.5 Định m để phương trình sau có tập nghiệm là R : 2(m 1)x m 1− = − 7 HƯỚNG DẪN VÀ ĐÁP SỐ 1.1 a. (m 1)x m 2 m x 3 + + − =+ (ĐK : x 3≠ − ) x 2m 2 3⇔ = + ≠ − . 5m : 2 ≠ − nghiệm x = 2m + 2 . 5m 2 = − : VN b. x 1x m x 2 xm m 2x 1 x 1 ≠ ±⎧− −= ⇔ ⎨ = ++ − ⎩ . m = 0 : VN . m 0 : m 1:VN≠ + = − m 1:+ ≠ − nghiệm x 2x m += 1.2 2 2 (2m 1)x 3 (2m 3)x m 2 (*) 4 x 4 x + + + + −= − − ĐK : 24 x 0 2 x 2− > ⇔ − < < (*) 5 mx 2 −⇔ = phải thoả điều kiện 5 m2 2 1 m 9 2 −− < < ⇔ < < 1.3 Phương trình cho 2(m 2) 4x m 3m 2⇔ + − = − + Phương trình có nghiệm 2 2 2 m 4 0 m 2 m 2m 4 0 m 3m 2 0 ⎡ − ≠⎢⎧⇔ ⇔ = ∧ ≠ −⎢ − =⎪⎢⎨ − + =⎢⎪⎩⎣ m 1x 0 m 1 m 2 m 2 −= > ⇔ > ∨ < −+ 1.4 2(m 1) x 1 m (7m 5)x+ + − = − (m 2)(m 3)x m 1⇔ − − = − Phương trình VN (m 2)(m 3) 0 m 2 m 3 m 1 0 − − =⎧⇔ ⇔ = ∨ =⎨ − ≠⎩ 1.5 2(m 1)x m 1− = − Phương trình có tập nghiệm R m 1⇔ =

Các file đính kèm theo tài liệu này:

  • pdfc1_vd1_ptbacnhat1an.pdf
  • pdfbai tap he phuong trinh.pdf
  • pdfc1_vd3_bptbachai.pdf
  • pdfc1_vd4_bptquyvebachai_ptbac3_4.pdf
  • pdfc1_vd4_bptquyvebachai_ptbac3_4_10.pdf
  • pdfc2_vd1_hebacnhat2an.pdf
  • pdfc2_vd2_hedoixungloai1.pdf
  • pdfc2_vd3_hedoixungloai2.pdf
  • pdfc2_vd4_hedangcap.pdf
  • pdfc2_vd4_hedangcap'.pdf
  • pdfc2_vd5_heptkhac.pdf
  • pdfc3_vd1_ptchuatrituyetdoi.pdf
  • pdfc3_vd3_hept_bptchuatrituyetdoi.pdf
  • pdfc3_vd3_hept_bptchuatrituyetdoi'.pdf
  • pdfc3_vd3_hept_bptchuatrituyetdoi_10.pdf
  • pdfc4_vd1_ptchuacanbac2.pdf
  • pdfc4_vd2_ptchuacanbac3.pdf
  • pdfc4_vd3_giaivabienluanptchuacan.pdf
  • pdfc4_vd3_giaivabienluanptchuacan'.pdf
  • pdfc4_vd4_heptchuacan.pdf
  • pdfHe Phuong Trinh.pdf
  • pdfPHUONG TRÌNH - HPT.pdf
Tài liệu liên quan