Thiết kế bộ điều áp xoay chiều một pha điều khiển tốc độ động cơ điện

PHẦN I: CƠ SỞ LÝ THUYẾT 7

CHƯƠNG I: ĐỘNG CƠ ĐIỆN XOAY CHIỀU MỘT PHA 7

1.1. Khái niệm 7

1.2. Nguyên lý điều khiển động cơ xoay chiều một pha 7

1.3. Một số mạch điều khiển động cơ một pha 8

CHƯƠNG II: BỘ ĐIỀU ÁP XOAY CHIỀU MỘT PHA 10

2.1. Đặt vấn đề 10

2.2. Giới thiệu một số sơ đồ mạch động lực 10

2.3. Giới thiệu về phần tử bán dẫn triac. 13

2.3.1 Cấu tạo và ký hiệu 13

2.3.2 Đặc tính V-A. 14

2.4. Điều áp xoay chiều một pha ứng với tải R-L 14

PHẦN II: THIẾT KẾ MẠCH 18

CHƯƠNG I: THIẾT KẾ 18

1.1. Sơ đồ khối 18

1.2. Phân tích từng khối 18

1.2.1. Khối nguồn 18

1.2.2 .Mạch lực 19

1.2.3.Mạch điều khiển 21

1.2.3.1.Phân tích 21

1.2.3.2. Nguyên lý hoạt động. 22

1.2.3.3.Giới thiệu TCA 785 23

1.2.3.4.Sơ đồ 27

CHƯƠNG II: CHẾ TẠO 28

2.1. Tính toán thiết kế để chế tạo mô hình 28

2.1.1. Tính chọn van động lực 28

2.1.2. Chọn thiết bị bảo vệ. 29

2.1.2.1. Bảo vệ quá nhiệt. 29

2.1.2.2. Bảo vệ quá dòng điện cho van. 30

2.1.2.3. Bảo vệ quá điện áp cho van. 30

2.3. Sơ đồ board 34

2.4. Sơ đồ bố trí thiết bị 36

2.5. phương hướng phát triển của đề tài 36

 

 

doc40 trang | Chia sẻ: lethao | Lượt xem: 17358 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Thiết kế bộ điều áp xoay chiều một pha điều khiển tốc độ động cơ điện, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ạch điều khiển Cả nhóm 4 5+6 -Thiết kế sơ đồ nguyên lý. Cả nhóm -Tính chọn thông số. Hiền 5 7 -Ráp mạch, khảo sát trên panel Hạnh -Đo đạc, kiểm tra tín hiệu. Hải 6 8 -Tiến hành làm sản phẩm. -Lắp ráp. Cả nhóm 7 9 -Chuẩn hóa nội dung, làm bản lý thuyết. Hải -Chuẩn bị để bảo vệ Cả nhóm PHẦN I: CƠ SỞ LÝ THUYẾT CHƯƠNG I: ĐỘNG CƠ ĐIỆN XOAY CHIỀU MỘT PHA  Khái niệm Động cơ điện xoay chiều một pha (gọi tắt là động cơ một pha) là động cơ điện xoay chiều không cổ góp được chạy bằng điện một pha. Loại động cơ điện này được sử dụng khá rộng rãi trong công nghiệp và trong đời sống như động cơ bơm nước động cơ quạt động cơ trong các hệ thống tự động...Khi sử dụng loại động cơ này người ta thường cần điều chỉnh tốc độ ví dụ như quạt bàn ,quạt trần. Để điều khiển tốc độ động cơ một pha người ta có thể sử dụng các phương pháp sau: - Thay đổi số vòng dây của Stator. - Mắc nối tiếp với động cơ một điện trở hay cuộn dây điện cảm. - Điều khiển điện áp đưa vào động cơ. Nguyên lý điều khiển động cơ xoay chiều một pha Trước đây điều khiển tốc độ động cơ bằng điều khiển điện áp xoay chiều đưa vào động cơ, người ta thường sử dụng hai cách phổ biến là mắc nối tiếp với tải một điện trở hay một điện kháng mà ta coi là Zf  hoặc là điều khiển điện áp bằng biến áp như là survolter hay các ổn áp. Hai cách trên đây đều có nhược điểm là kích thước lớn và khó điều khiển liên tục khi dòng điện lớn. Ngày nay với việc ứng dụng Tiristor và Triac vào điều khiển, người ta có thể điều khiển động cơ một pha bằng bán dẫn  Một số mạch điều khiển động cơ một pha Một trong những ứng dụng rất rộng rãi của điều áp xoay chiều là điều khiển động cơ điện một pha mà điển hình là điều khiển tốc độ quay của quạt điện.  Chức năng của các linh kiện trong sơ đồ hình 15 - 4:        T - Triac điều khiển điện áp trên quạt.        VR - biến trở để điều chỉnh khoảng thời gian dẫn của Triac.        R - điện trở đệm.        D - diac - định ngưỡng điện áp để Triac dẫn.        C - Tụ điện tạo điện áp ngưỡng để mở thông diac. Điện áp và tốc độ của quạt có thể được điều khiển bằng cách điều chỉnh biến trở VR trên hình a. Tuy nhiên sơ đồ điều khiển này không triệt để, vì ở vùng điện áp nhỏ khi Triac dẫn ít rất khó điều khiển. Sơ đồ hình b có chất lượng điều khiển tốt hơn. Tốc độ quay  của quạt có thể được điều khiển cũng bằng biến trở VR. Khi điều chỉnh trị số VR ta điều chỉnh việc nạp tụ C lúc đó điều chỉnh được thời điểm mở thông diac và thời điểm Triac dẫn. Như vậy Triac được mở thông khi điện áp trên tụ đạt điểm dẫn thông diac. Kết quả là muốn tăng tốc độ của quạt ta cần giảm điện trở của VR để tụ nạp nhanh hơn, Triac dẫn sớm hơn điên áp ra lớn hơn. Ngược lại điên trở của VR càng lớn tụ nạp càng chậm Triac mở càng chậm lại điện áp và tốc độ của quạt nhỏ xuống. * Mạch điều khiển trên đây có ưu điểm: - Có thể điều khiển liên tục tốc độ quạt - có thể sử dụng cho các loại tải khác như điều khiển độ sáng của đèn sợi đốt, điều khiển bếp điện rất có hiệu quả. -Kích thước mạch điều khiển nhỏ, gọn. * Nhược điểm: Nếu chất lượng Triac, diac không tốt thì ở vùng tốc độ thấp quạt sẽ xuất hiện tiếng ù do thành phần một chiều của dòng điện. CHƯƠNG II: BỘ ĐIỀU ÁP XOAY CHIỀU MỘT PHA Đặt vấn đề Các bộ biến đổi điện áp xoay chiều dùng để biến đổi điện áp hiệu dụng đặt lên tải. Nguyên lý của bộ biến đổi này là dùng các phần tử van bán dẫn nối tải với nguồn trong một khoảng thời gian t1 rồi lại cắt đi trong một khoảng thời gian t0 theo một chu kỳ lặp lại T. Bằng cách thay đổi độ rộng của t1 hay t0 trong khoảng T ta thay đổi được giá trị điện áp trung bình ra trên tải. Nguyên lý này có ưu điểm là điều chỉnh điện áp ra trong một phạm vi rộng và vô cấp, hiệu suất cao vì tổn thất trên các phân tử điện tử công suất rất nhỏ. Điều áp xoay chiều thường được sử dụng trong điều khiển chiếu sáng, đốt nóng, trong khởi động mềm và điều chỉnh tốc độ quạt gió hoặc máy bơm. -Phân loại: Dựa vào số pha nguồn cấp mà ta có các bộ điều chỉnh điện áp khác nhau là Điều áp xoay chiều một pha, Điều áp xoay chiều ba pha. Giới thiệu một số sơ đồ mạch động lực Hình 1 giới thiệu một số mạch điều áp xoay chiều một pha. Hình 1a là điều áp xoay chiều điều khiển bằng cách mắc nối tiếp với tải một điện kháng hay điện trở phụ (tổng trở phụ ) biến thiên. Sơ đồ mạch điều chỉnh này đơn giản dễ thực hiện. Tuy nhiên, mạch điều chỉnh kinh điển này hiện nay ít được dùng, do hiệu suất thấp (nếu Zf là điện trở ) hay cosj thấp(nếu Zf là điện cảm ). Z Z i Hình 1 Các phương án điều áp một pha Người ta có thể dùng biến áp tự ngẫu để điều chỉnh điện áp xoay chiều U2 như trên hình 1b. Điều chỉnh bằng biến áp tự ngẫu có ưu điểm là có thể điều chỉnh điện áp U2 từ 0 đến trị số bất kì, lớn hay nhỏ hơn điện áp vào. Nếu cần điện áp ra có điều chỉnh, mà vùng điều chỉnh có thể lớn hơn điện áp vào, thì phương án phải dùng biến áp là tất yếu. Tuy nhiên, khi dòng tải lớn, sử dụng biến áp tự ngẫu để điều chỉnh, khó đạt được yêu cầu như mong muốn, đặc biệt là không điều chỉnh liên tục được, do chổi than khó chế tạo để có thể chỉ tiếp xúc trên một vòng dây của biến áp. Hai giải pháp điều áp xoay chiều trên hình 1a,b có chung ưu điểm là điện áp hình sin, đơn giản. Có chung nhược điểm là quán tính điều chỉnh chậm và không điều chỉnh liên tục khi dòng tải lớn. Sử dụng sơ đồ bán dẫn để điều chỉnh xoay chiều, có thể khắc phục được những nhược điểm vừa nêu. Các sơ đồ điều áp xoay chiều bằng bán dẫn trên hình 1c được sử dụng phổ biến. Lựa chọn sơ đồ nào trong các sơ đồ trên tuỳ thuộc dòng điện, điện áp tải và khả năng cung cấp các linh kiện bán dẫn. Có một số gợi ý khi lựa chọn các sơ đồ hình 1c như sau: T2 Z T1 U1 Z T U1 a. D2 Z T U1 D1 D3 D4 d. b. Z U1 c. D1 T1 T2 D2 Hình 2: Sơ đồ điều áp xoay chiều một pha bằng bán dẫn a. bằng hai tiristor song song ngược b. bằng triac c. bằng một tiristor một diod d. bằng bốn diod một tiristor Sơ đồ kinh điển hình 2.A thường được sử dụng nhiều hơn, do có thể điều khiển được với mọi công suất tải. Hiện nay Tiristor được chế tạo có dòng điện đến 7000A, thì việc điều khiển xoay chiều đến hàng chục nghìn ampe theo sơ đồ này là hoàn toàn đáp ứng được Tuy nhiên, việc điều khiển hai tiristor song song ngược đôi khi có chất lượng điều khiển không tốt lắm, đặc biệt là khi cần điều khiển đối xứng điện áp, nhất là khi cung cấp cho tải đòi hỏi thành phần điện áp đối xứng (chẳng hạn như biến áp hay động cơ xoay chiều). Khả năng mất đối xứng điện áp tải khi điều khiển là do linh kiện mạch điều khiển tiristor gây nên sai số. Điện áp tải thu được gây mất đối xứng như so sánh trên hình 3b. Điện áp và dòng điện không đối xứng như hình 3.b cung cấp cho tải, sẽ làm cho tải có thành phần dòng điện một chiều, các cuộn dây bị bão hoà, phát nóng và bị cháy. Vì vậy việc định kì kiểm tra, hiệu chỉnh lại mạch là việc nên thường xuyên làm đối với sơ đồ mạch này. Tuy vậy, đối với dòng điện tải lớn thì đây là sơ đồ tối ưu hơn cả cho việc lựa chọn. U U Tải t a a a U U Tải t b a1 a2 Hình 3: Hình dạng đường cong điện áp điều khiển a- Mong muốn b- Không mong muốn Để khắc phục nhược điểm vừa nêu về việc ghép hai tiristor song song ngược, triac ra đời và có thể mắc theo sơ đồ hình 2.B. Sơ đồ này có ưu điểm là các đường cong điện áp ra gần như mong muốn như hình 3.a, nó còn có ưu điểm hơn khi lắp ráp. Sơ đồ mạch này hiện nay được sử dụng khá phổ biến trong công nghiệp. Tuy nhiên triac hiện nay được chế tạo với dòng điện không lớn (I < 400A), nên với những dòng điện tải lớn cần phải ghép song song các triac, lúc đó sẽ phức tạp hơn về lắp ráp và khó điều khiển song song. Những tải có dòng điện trên 400A thì sơ đồ hình 2.B ít dùng. Sơ đồ hình 2.C có hai tiristor và hai điốt có thể được dùng chỉ để nối các cực điều khiển đơn giản, sơ đồ này có thể được dùng khi điện áp nguồn cấp lớn (cần phân bổ điện áp trên các van, đơn thuần như việc mắc nối tiếp các van). Sơ đồ hình 2D trước đây thường được dùng, khi cần điều khiển đối xứng điện áp trên tải, vì ở đây chỉ có một tiristor một mạch điều khiển nên việc điều khiển đối xứng điện áp dễ dàng hơn. Số lượng tiristor ít hơn, có thể sẽ có ưu điểm hơn khi van điều khiển còn hiếm. Tuy nhiên, việc điều khiển theo sơ đồ này dẫn đến tổn hao trên các van bán dẫn lớn, làm hiệu suất của hệ thống điều khiển thấp. Ngoài ra, tổn hao năng lượng nhiệt lớn làm cho hệ thống làm mát khó khăn hơn Giới thiệu về phần tử bán dẫn triac. 2.3.1 Cấu tạo và ký hiệu Hình 4: Cấu tạo và ký hiệu của triac. Triac là linh kiện bán dẫn tương tự như hai Thyristor mắc song song ngược, nhưng chỉ có một cực điều khiển. Triac là thiết bị bán dẫn ba cực, bốn lớp. Có thẻ điều khiển cho mở dẫn dòng bằng cả xung dương (dòng đi vào cực điều khiển) lẫn xung dòng âm (dòng đi ra khỏi cực điều khiển). Tuy nhiên xung dòng điều khiển âm có độ nhạy kém hơn, nghĩa là mở Triac sẽ cần một dòng điều khiển âm lớn hơn so với dòng điểu khiển dương. Vì vậy trong thực tế để đảm bảo tính đối xứng của dòng điện qua Triac thì sử dụng dòng điều khiển âm là tốt hơn cả. *Nguyên lý hoạt động. Có 4 tổ hợp điện thế có thể mở Triac cho dòng chảy qua: B2 G + + + - - - - + Trường hợp MT2 (+), G(+). Thyristor T mở cho dòng chảy qua như một Thyristor thông thường. Trường hợp MT2 (-), G(-). Các điện tử từ N2 phóng vào P2. Phần lớn bị trường nội tại EE1 hút vào, điện áp ngoài được đặt lên J2 khiến choBarie này cao đến mức hút vào những điện tích thiểu số(các điện tử của P1) và làm động năng của chúng đủ lớn để bẻ gãy các liên kết của các nguyên tử Sillic trong vùng. Kết quả là một phản ứng dây chuyền thì T’ mở cho dòng chảy qua. 2.3.2 Đặc tính V-A. Hình 5: Đặc tuyến V-A của triac Triac có đường đặc tính V-A đối xứng nhận góc mở trong cả hai chiều Điều áp xoay chiều một pha ứng với tải R-L Hình7: Hình dáng dòng điện và điện áp đối với tải R-L Khi tiristor T1 mở có phương trình: L + Ri = sint i = sin() + Ae- Hằng dạng số tích phân A được xác định : Khi thì i = 0. Biểu thức dòng tải i có dạng: i = [ sin() - sin()e] Biểu thức này đúng trong khoảng đến Góc được thay đổi bằng cách thay và đặt i= 0 Sin()- sin().e- = 0 Trong biểu thức trên: tg = Tiristor T1 phải được khoá lại trước khi cho xung mở T2, nếu không thì không thể mở được T2, tức Để thoả mãn điều kiện này ta phải có: Hình 8: Hình dáng dòng điện và điện áp đối với tải thuần trở và thuần cảm Điều đó nói lên rằng, ngay cả trường hợp tải thuần trở, lưới điện xoay chiều vẫn phải cung cấp một lượng công suất phản kháng. Giá trị hiệu dụng của điện áp trên tải: Uc = = V. Giá trị hiệu dụng của dòng tải: Ic = .() Công suất tác dụng cung cấp cho mạch tải: P = UcIc = ().() Như vậy bằng cách làm biến đổi góc từ 0 đến , người ta có thể điều chỉnh được công suất tác dụng từ giá trị cực đại P =() đến 0 Dưới đây là bảng góc mở α ứng với từng loại tải : PHẦN II: THIẾT KẾ MẠCH CHƯƠNG I: THIẾT KẾ Sơ đồ khối Phân tích từng khối 1.2.1. Khối nguồn a.Sơ đồ b.Chức năng Biến đổi dòng xoay chiều điện áp 15V thành dòng một chiều cấp cho chân vào của TCA785. c.Nguyên lý hoạt động Dòng điện 15V xoay chiều qua cầu chỉnh lưu 3A làm biến đổi từ dòng xoay chiều thành dòng một chiều.Khi qua IC ổn áp 7815 sẽ cho dòng điện có điện áp 15V ổn định.Sau khối chỉnh lưu cầu điện áp 15v được cho qua tụ 2200µF để san phẳng điện áp tạo điện áp ổn định cho IC ổn áp 7815 và mắc song với một tụ gốm để loại bỏ thành phần sóng hài của điện áp xoay chiều sau IC 7815 ta mắc song song với một led để báo mạch điều khiển có nguồn 1.2.2 .Mạch lực Với yêu cầu của đề tài là thiết kế bộ điều áp xoay chiều cho động cơ (tải R+L) nên chúng em chọn sơ đồ dùng TRIAC để điều khiển vì sơ đồ dùng Triac có những ưu điểm sau: - Công suất tải là không lớn nên Triac đáp ứng đầy đủ về công suất đáp ứng - Mạch điều khiển Triac đơn giản. - Giá thành rẻ, vận hành đơn giản. a. Sơ đồ mạch b.Nguyên lý làm việc Tín hiệu được đưa vào chân điều khiển G của Triac. Triac có nhiệm vụ điều khiển mở dẫn dòng từ đó ta nhận được giá trị điện áp trên tải tương ứng với góc mở của triac khi ta điều chỉnh biến trở V11 để điều chỉnh độ rộng xung vuông tương ứng tải ở trên sơ đồ có thể đặt trước hoặc sau van đều được : Dưới đây là sơ đồ dạng sóng đầu ra của van khi điều chỉnh góc mở: Nhìn từ hình trên ta thấy do tải có tính cảm khám nên khi tắt vẫn có một phần điện áp trả lại của động cơ .Nên có thể xuất hiện một vùng không hoạt động nếu diện cảm lớn thì mạch có thể không hoạt động hoàn toàn Nguyên nhân của hiện tượng này như sau : Em xin trình bày với 2 tiristor mắc song song ngược (tương tự 1 triac) Khi điện áp nguồn U1 đã đổi dấu mà cuộn dây điện cảm chưa xả hết năng lượng, làm cho T1 vẫn dẫn từ π cho đến φ1 nếu T1 đang dẫn chứng tỏ T1 đang phân cực thuận và điện áp Ua1a2>0.Khi T1 phân cực thuận chứng tỏ T2 phân cực ngược. Do đó trong vùng từ φ1 cho đến π nếu có phát xung điều khiển T2 thì T2 không dẫn được .Phần này em cũng đã trình bày ở trên . Thứ 2 là do khi có điện cảm, dòng điện không biến thiên đột ngột tại thời điểm mở tiristor,điện cảm càng lớn khi dòng điện biến thiên càng chậm. Nếu độ rộng xung điều khiển hẹp, dòng điện khi có xung điều khiển không đủ lớn hơn dòng điện duy trì,do đó van bán dẫn không tự giữ dòng điện. Kết quả không có dòng điện, van sẽ không mở. Hiện tượng này sẽ thấy ở cuối và đầu chu kỳ điện áp, lúc đó điện áp tức thời đặt vào van bán dẫn nhỏ. Khi kết thúc xung điều khiển, dòng điện còn nhỏ hơn dòng duy trì nên van bán dẫn khoá luôn. Chỉ khi nào điện áp mở ở van đủ lớn hơn dòng dòng điện duy trì, dòng điện mới tồn tại trong mạch Để khắc phục hiện tường này là tạo xung gián đoạn bằng chùm xung liên tiếp như hình vẽ dưới đây. Từ thời điểm mở van cho tới cuối bán kỳ: Dưới đây là sơ đồ: Tuỳ theo tải có điện cảm lớn cỡ nào mà ta thiết kế chọn độ rộng xung cho hợp lý 1.2.3.Mạch điều khiển 1.2.3.1.Phân tích Điều khiển Triac trong sơ đồ chỉnh lưu hiện nay có rất nhiều phương pháp khác nhau thường gặp là điều khiển theo nguyên tắc thẳng đứng tuyến tính. Theo nguyên tắc này để điều khiển góc mở của Triac ta tạo ra một điện áp tựa dạng tam giác (điện áp tựa răng cưa Urc). Dùng một điện áp một chiều Uđk để so sánh với điện áp tựa. Tại thời điểm hai điện áp này bằng nhau(Uđk= Urc) . Trong vùng điện áp dương anot thì phát xung điều khiển cho tới cuối bán kỳ (hoặc tới khi dòng điện bằng 0) . Để thực hiện ý đồ trên mạch điều khiển bao gồm 3 khâu cơ bản: Hình 9: Sơ đồ khối các khâu trong mạch điều khiển * Nhiệm vụ của các khâu trong sơ đồ khối như sau: 1. Khâu đồng bộ: Có nhiệm vụ tạo ra điện áp tựa Urc tuyến tính trùng pha với điện áp Anot (cực G) của Thyristor (triac) 2. Khâu so sánh: Nhận tín hiệu điện áp tựa và điện áp điều khiển. Có nhiệm vụ so sánh giữa điện áp tựa với điện áp điều khiển Uđk. Tìm thời điểm hai điện áp bằng nhau(Uđk= Urc). Tại thời điểm hai điện áp này bằng nhau thì phát xung điều khiển ở đầu ra để gửi sang tầng tạo xung và khuếch đại xung. 3. Khâu tạo xung và khuếch đại xung: Có nhiệm vụ tạo xung phù hợp để mở Triac. Xung để mở Triac cần có các yêu cầu: Sườn trước dốc thẳng đứng để đảm bảo mở Triac tức thời khi có xung điều khiển (Thường gặp là xung kim hoặc xung chữ nhật) đủ độ rộng (với độ rộng xung lớn hơn thời gian mở củacTriac). Cách ly giữa mạch điều khiển và mạch động lực (nếu điện áp động lực quá lớn) đủ công suất. 1.2.3.2. Nguyên lý hoạt động. Tín hiệu điện áp cung cấp cho mạch điều khiển được đưa đến khối đồng pha. Đầu ra của khối này có điện áp thường là hình sin cùng tần số và có thể lệch pha một góc xác định so với điện áp nguồn. Điện áp này gọi là điện áp đồng bộ Vđb . Đầu ra của mạch phát điện răng cưa ta có các điện áp răng cưa đồng bộ về tần số và góc pha với điện áp đồng bộ. Các điện áp này gọi là điện áp răng cưa Vrc. Điện áp răng cưa Vrc được đưa vào đầu vào của khối so sánh. Tại đó có một tín hiệu khác nữa là điện áp một chiều điều chỉnh lấy từ ngoài. Hai tín hiệu này được mắc với cực tính sao cho tác động của chúng lên mạch so sánh là ngược chiều nhau. Khối so sánh làm nhiệm vụ so sánh hai tín hiệu này. Tại thời điểm hai tín hiệu này bằng nhau thì tín hiệu đầu ra khối so sánh là các xung xuất hiện với chu kỳ của Vrc . Xung răng cưa có hai sườn trong đó có một sườn mà tại đó thì đầu ra khối so sánh xuất hiện một xung điện áp thì sườn đó là sườn sử dụng . Vậy ta có thể thay đổi thời điểm của xung xuất hiện tại đầu ra khối so sánh bằng cách thay đổi Vđk khi giữ nguyên dạng của Vrc Trong một số trường hợp xung ra khối so sánh được đưa ngay đến đầu cực của thiết bị cần điều khiển nhưng trong đa số các trường hợp thì tín hiệu ra khối so sánh chưa đủ yêu cầu cần thiết. Người ta phải thực hiện việc khuếch đại thay đổi lại hình dáng xung. Các nhiệm vụ này được thực hiên bởi một mạch gọi là mạch xung. Đầu ra của khối tạo xung và khuếch đại xung sẽ được một chuỗi xung điều khiển có đủ các thông số yêu cầu về công suất, độ dài, độ dốc mặt đầu của xung. Tại thời điểm bắt đầu xuất hiện các xung hoàn toàn trùng với thời điểm xuất hiện xung trên đầu ra khối so sánh. Ngày nay các mạch cổ điển như trên thường được thay thế bằng các IC tích hợp đầy đủ các khâu, với kết cấu nhỏ gọn, giá thành rẻ và đạt được độ chính xác rất cao. IC TCA 785 là một vi mạch như vậy 1.2.3.3.Giới thiệu TCA 785 Vi mạch TCA 785 là vi mạch phức hợp thực hiện được 4 chức năng của một mạch điều khiển: tạo điện áp đồng bộ, tạo điện áp răng cưa đồng bộ, so sánh và tạo xung ra. a.Ký hiệu và chức năng của TCA 785. Chân Ký hiệu Chức năng Chân Ký hiệu Chức năng 1 OS Chân nối đất 9 R9 Điện trở tạo mạch răng cưa 2 Q Đầu ra 2 đảo 10 C10 Tụ tạo mạch răng cưa 3 QU Đầu ra U 11 V11 Điện áp điều khiển 4 Q Đầu ra 1 đảo 12 C12 Tụ tạo độ rộng xung 5 VSYNC Điện áp đồng bộ 13 L Tín hiệuđiều khiển xung ngắn, xung rộng 6 I Tín hiệu cấm 14 Q1 Đầu ra 1 7 QZ Đầu ra z 15 Q2 Đầu ra 2 8 VREF Điện áp chuẩn 16 Vs Điện áp nguồn nuôi Hình 13: dạng sóng và chức năng của các chân TCA785 b.Các thông số của TCA 785. Thông số Giá trị nhỏ nhất Giá trị tiêu biều F =50Hz Vs = 5v Giá trị lớn nhất Đơn vị Dòng tiêu thụ I.S 4,5 6,5 10 mA Điện áp vào điềukhiển,chân11 Trở kháng vào V11 R11 0,2 15 V10max V K Mạch tạo răng cưa Dòng nạp tụ Biên độ của răng cưa Điện trở mạch nạp Thời gian sườn ngắn của xung răng cưa I10 V10 R9 TP 10 3 80 1000 VS-2 300 A V K S Tín hiệu cấm vào, chân 6 Cấm Cho phép V6I V6H 4 3,3 3,3 2,5 V V Độ rộng xung ra, chân13 Xung hẹp Xung rộng V13H V13L 3,5 2,5 3,5 2,5 V V Xung ra, chân 14, 15 Điện áp ra mức cao Điện áp ra mức thấp Độ rộng xung hẹp Độ rộng xung rộng V14/15L V14/15L tp tp VS-3 0,3 20 530 VS-2,5 0,8 30 620,m VS-1,0 2 40 760 V V S S/nF Điện áp điều khiển Điện áp chuẩn Góc điều khiển ứng với điện áp chuẩn Vref ref 2,8 3,1 2 x10-4 3,4 5x10-4 V 1/K Tính toán các phần tử bên ngoài: Tụ răng cưa: C10 Min = 500pF; Max = 1F Thời điểm phát xung: tTr = Dòng nạp tụ: I10 = Điện áp trên tụ: V10 = TCA 785 do hãng Siemen chế tạo, được sử dụng để điều khiển các thiết bị chỉnh lưu, thiết bị chỉnh dòng điện áp xoay chiều. Có thể điều chỉnh góc từ 00 đến 1800 điện. Thông số chủ yếu của TCA 785: + Điện áp nuôi: US = 18V + Dòng điện tiêu thụ: IS = 10mA + Dòng điện ra: I = 50mA + Điện áp răng cưa: Ur max = (US - 2)V + Điện trở trong mạch tạo điện áp răng cưa: R9 = 20K 500K + Điện áp điều khiển: U11 = -0,5 (US-2)V + Dòng điện đồng bộ: IS = 200A + Tụ điện: C10 = 0,5F + Tần số xung ra: f = 10 500 Hz b. Sơ đồ chức năng chân của vi mạch TCA785 Hình 14: sơ đồ khối chức năng chân của tca785 1.2.3.4.Sơ đồ CHƯƠNG II: CHẾ TẠO MẠCH. Tính toán thiết kế để chế tạo mô hình Tính chọn van động lực Dựa vào các yếu tố cơ bản dòng tải, sơ đồ cần chọn, điều kiện tản nhiệt, điện áp làm việc. P: Công suất định mức của tải Pđm=0.2 Kw U: Điện áp định mức U=220V cos : Hệ số công suất tải lấy cos =0,8 Khi đó : - Điện áp làm việc cực đại của triac U = K .U = .220 = 311,13V Điện áp của van cần chọn U = K . U = 1.8.311,13 = 560,034 V K là hệ số dự trữ điện áp .Với phần tính toán này chúng em lấy điện áp dự trữ của van là Kdt=1.8 - Dòng điện làm việc của van được tính theo dòng hiệu dụng Itải=1.136 A Với I== 200/(220×0.8)=1.136 A Chọn điều kiện làm việc của van: có cánh tản nhiệt không có quạt đối lưu Dòng điện định mức của van cần chọn Ilv =30%Idmvan = 3.786 A Với các thông số trên theo datasheet cũng như độ phổ biến ngoài thị trường chúng em quyết định lựa chọn loại van sau : BTA-136 600E có các thông số sau: Điện áp định mức: Uđm = 600 V. Dòng điện định mức: Iđm = 4 A. Dòng điện điều khiển: Iđk = 50 m A. Điện áp điều khiển: Uđk = 1.5V. Dòng điện rò: Ir = 500. Dòng điện duy trì: Ih = 15 mA. Sụt trên van khi mở: U = 1.7 V. Thời gian giữ xung điều khiển: tx = 2 Tốc độ tăng điện áp: = 500 V/ s. Nhiệt độ làm việc cực đại: T0C = 1250C. Trên đây là thông số em chọn ứng với tải là động cơ điện một pha công suất nhỏ.các giá trị của nguồn khó có thể vượt qua giá trị này nên chúng em quyết định sử dung TCA 600E làm van mạch lực. Các giá trị trên em lấy trên datasheet của triac Với các giá trị của van đều đáp ứng và sát các thông số yêu cầu của đông cơ nên chúng em quyết định sử dụng van này trong mạch 2.1.2. Chọn thiết bị bảo vệ. 2.1.2.1. Bảo vệ quá nhiệt. Triac làm việc với dòng điện tối đa Imax = 1.136 A chịu một tổn hao trên van là (P1) và khi chuyển mạch (P2). Tổng tổn hao sẽ là: P = P1 +P2 P1 = U.Ilv = 1,6.1.136 = 1,82W. Tổn hao công suất này sinh ra nhiệt. Mặt khác van chỉ làm việc tới nhiệt độ tối đa cho phép là T = 1250C. Do đó phải bảo vệ van bằng cách gắn van bán dẫn lên cánh toả nhiệt. Khi van bán dẫn được mắc vào cánh toả nhiệt bằng đồng hoặc nhôm, nhiệt độ của van được toả ra môi trường xung quanh nhờ bề mặt của cánh toả nhiệt. Sự toả nhiệt này là nhờ vào sự chênh lệch nhiệt giữa cánh toả nhiệt và môi trường xung quanh. Khi cánh toả nhiệt nóng lên, nhiệt độ xung quanh cánh toả nhiệt nóng lên. Nhiệt độ xung quanh cánh toả nhiệt tăng lên. Làm cho tốc độ dẫn nhiệt ra môi trường không khí bị chậm lại. Diện tích bề mặt toả nhiệt được tính: Stn = Tổn hao công suất: P = 1,82W. Độ chênh lệch nhiệt độ so với môi trường: = Tlv – Tmt Có Tlv = 1250C, chọn nhiệt độ môi trường: Tmt = 400C. = 125 - 40 = 85 0C Ktn: Hệ số có xét tới điều kiện tỏa nhiệt. Chọn Ktn = 8.10-4 W/cm2 0C. Stn = = 26,76 cm2 Hình 15: hình dạng cánh tản nhiệt cho triac 2.1.2.2. Bảo vệ quá dòng điện cho van. *Chọn cầu chì tác động nhanh để bảo vệ ngắn mạch nguồn: Icc = 1,1Ilv = 1,1.1,136 = 1,25 A. Chọn một cầu chì loại 1 A. 2.1.2.3. Bảo vệ quá điện áp cho van. Bảo vệ quá điện áp do quá trình đóng cắt Triac được thực hiện bằng cách mắc R-C song song với triac(hoặc thyristor). Khi có sự chuyển mạch các điện tích tích tụ trong các lớp bán dẫn, phóng ra ngoài tạo ra dòng điện ngược trong khoảnh thời gian ngắn. Sự biến thiên nhanh chóng của dòng điện ngược sẽ gây ra sức điện động cảm ứng rất lớn trong các điện cảm làm cho quá điện áp giữa Anot và Katot của triac (hoặc thyristor). Khi có mạch R - C mắc song song với triac (hoặc Thyristor) tạo ra mạch vòng phóng điện trong quá trình chuyển mạch nên triac (hoặc thyristor) không bị quá điện áp. Hình 16: sơ đồ mạch động lực được lựa chọn Thông thường chọn R = 10 100, C = 0,11000F. Trên đây chúng em xin trình bày cách tính chọn van và mạch dộng lực cho mạch điều khiển ! 3 tính chọn phần tử cách ly Có rất nhiều phương án cho khâu cách ly đó có thể dung phần tử cách ly quang biến áp xung hay với mạch công suất nhỏ chỉ cần dùng diot để chống ngược dòng Trong phạm vi đề tài là ứng dụng với tải công suất trung bình và nhỏ để đáp ứng được tính gọn nhẹ và gái thành của mạch phương án sử dụng cách ly quang được chúng em quyết định sử dụng vì khá hiệu quả giá thành rẻ gọn nhẹ và cách ly an toàn giữa mạch lực và mạch điều khiển từ các thong số trên chúng em quyết định sử dụng MOC 3021 để thực hiện khâu cách ly này Sau đây là một số sơ đồ kết nối trong datasheet : Đây là một số sơ đồ kết nối của MOC 3020 ứng với các loại tải khác nhau sau đây là sơ đồ kết nối trong khâu cách ly của chúng em Hình 18: Sơ đồ khối và sơ đồ nguyên lý của moc 3020 Sơ đồ nguyên lý toàn mạch * Nguyên lý hoạt động Khi cấp nguồn cho mạch điều khiển qua khối chỉnh lưu điện áp 15V AC vào các chân 13,6,16 cho TCA 785 chân 5 của mạch nối với điện áp xoay chiều 15V sau máy biến áp để tạo điện áp đồng với mạch lực (mạch lực và mạch điều khiển chung nguồn) .Để tạo được xung răng cưa sau khi tham khảo sơ đồ chân của datasheet chúng em nối chân 12 với một tụ không phân cực 22nF để tạo độ rộng xung và một tụ 68nF vào chân 10 để tạo biên độ cho mạch điều khiển để điều khiển được triac dùng 2 biến trở 50k vào chân 11 để diều khiển độ rộng xung qua đó điều chỉnh góc mở cho triac và từ đó nhận được một giá trị điện áp tương ứng trên tải . (các chân còn lại không dùng chúng em chọn giải pháp để trống không nối mát).Xung ra từ chân điều khiển 14 để điều chỉnh góc mở phần điện áp dương ,chân 15 để phát xung điều khiển mở phần điện áp âm để mở cho triac ta có thể

Các file đính kèm theo tài liệu này:

  • docBao cao 31.55.doc
  • pptDO AN 3.ppt