Mục đích của cô đặc là để loại đi phần lớn nước và tăng hàm lượng acid glutamic.
Điều kiện kỹ thuật khi cô đặc
- Nồng độ khi cô đặc: ta biết nhiệt độ càng cao, độ hoà tan các chất càng tăng, cho nên tuỳ theo từng thời tiết và yêu cầu quá trình cô đặc mà khống chế nồng độ. nồng độ quá nhỏ sẽ làm tăng độ hoà tan của axit glutamic, giảm hiệu suất thu hồi. Nồng độ quá lớn, độ nhớt dung dịch sẽ tăng không những chỉ ảnh hưởng đến việc tách axit glutamic mà còn ảnh hưởng đến các thao tác khác.
Thời gian cô đặc nồng độ theo yêu cầu kỹ thuật, phụ thuộc vào thiết bị và phương pháp cô đặc.
Nếu điều kiện thủ công: cô đặc trực tiếp hoặc gián tiếp trong những thiết bị đơn giản và là thủ công, giữ nhiệt độ cô ≤ 800C khó khăn nên mất thời gian nhiều. Nếu điều kiện công nghiệp sẽ giảm thời gian cô.
Cô đặc chân không, bảo đảm nhiệt độ sôi ≤ 800C, trong những thiết bị truyền nhiệt gián tiếp, thiết bị cô đặc tuần hoàn ngoài hoặc tuần hoàn trong (trong thiết bị có các lớp men chịu axit và chịu nhiệt). Do cô đặc trong điều kiện chân không nên rút ngắn được thời gian cô đặc nhiều.
Tuỳ theo điều kiện từng cơ sở trong quá trình cô đặc lấy mẫu thử khi nào đạt nồng độ theo yêu cầu trên thì kết thúc.
34 trang |
Chia sẻ: oanh_nt | Lượt xem: 3305 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Thiết kế phân xưởng tinh chế axit glutamic năng suất 25850 lit dịch lên men/ngày, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ay cả vài năm trước đây trong bản bách khoa toàn thư và các hợp chất hoá học cũng không nêu chú các ứng dụng của GA. Tầm quan trọng của GA sử dụng trong thương nghiệp, đặc biệt là trong y dược học và trình tự sản xuất sinh hoá học, từ từ tăng dần trong 10 đến 20năm trở lại đây.Tình hình hiện nay là đại diện của một thay đổi quan trọng, chính sự thay đổi này là nguồn gốc phát triển tích cực trong khoa học công nghệ nói trên. Trong những năm gần đây công trình kỹ thuật di truyền, tổng hợp sinh học cùng với kỹ thuật Protein và các lĩnh vực khác liên kết lại tạo thành hiệu ứng liên hoàn làm tăng như cầu sử dụng của GA và các chất dẫn xuất của nó. Ứng dụng của GA trên phương diện nghiên cứu khoa học và phân tích chia làm 5 loại lớn:
Các loại thuốc thử GA và chất dẫn xuất của nó.
Gia tăng tính bảo vệ.
Tiêu chí phóng xạ của GA và các chất dẫn xuất của nó.
Chuyển tải hợp chất vật chất bên ngoài có GA, dùng để tổng hợp Protein
Làm mẫu phẩm phân tích.
Bảng 1.1: Ứng dụng chủ yếu của GA và các chất dẫn xuất của nó trong nghiên cứu khoa học:
Kỹ thuật Protein
Tổng hợp Peptide
Cải tạo Protein
Hỗ trợ tổng hợp các vật chất phức tạp
Sinh hoá học và tế bào sinh học
Thực nghiệm sinh hoá
Ứng dụng phân tích
Thực nghiệm tế bào sinh vật học
Làm mẫu phân tích tiêu chuẩn
Quy trình chẩn đoán sản phẩm
Đặc tính của acid glutamic:
Axit glutamic có công thức phân tử: C5 H9NO4
Acid glutamic có công thức cấu tạo sau:
Axit glutamic có trọng lượng phân tử 147,13 dalton, bị phân giải ở nhiệt độ 247249oC, điểm đẳng điện là pH = 3,22. Có tính chất là hoà tan trong nước, hầu như không tan trong cồn, ete và một số dung môi.
Axit glutamic là loại axit amin cơ thể có thể tổng hợp được, nó có nhiều trong các loại thực phẩm như protein thịt động vật, thực vật như cà rốt, rong biển, của sắn, rỉ đường…Axit glutamic phân bổ rộng rãi trong tự nhiên dưới dạng hợp chất và dưới dạng tự do. Trong sinh vật, đặc biệt là vi sinh vật, axit glutamic được tổng hợp theo con đường lên men từ nhiều nguồn cacbon.
Sơ lược về phương pháp sản xuất acid glutamic
[PGS.TS. Nguyễn Thị Hiền (2004), Công nghệ sản xuất mì chính và các sản phẩm lên men cổ truyền, NXB Khoa Học và Kỹ Thuật, Hà Nội.]
Có rất nhiều phương pháp sản xuất acid glutamic như tổng hợp hoá học, thuỷ phân và lên men vi sinh vật. Trong đó phương pháp tổng hợp từ vi sinh vật có nhiều ưu điểm nhất. Nó là một trong những ứng dụng của công nghệ sinh học vào trong sản xuất. Nó không những có ý nghĩa về mặt kinh tế mà còn có ý nghĩa lớn lao về xử lý môi trường vì tận dụng được các phế thải của các ngành công nghiệp khác
Phương pháp này lợi dụng một số vi sinh vật có khả năng sinh tổng hợp ra các axit amin từ các nguồn gluxit và đạm vô cơ, tạo ra được nhiều loại aminoaxit như: axit glutamic, lizin, valin, alanin, phenylalanin, tryptophan, methionin ...
Phương pháp lên men có nguồn gốc từ Nhật Bản, năm 1956 khi mà Shukuo và Kinoshita sử dụng chủng Micrococcus glutamicus sản xuất glutamat từ môi trường có chứa glucoza và amoniac. Sau đó một số loài vi sinh vật khác cũng được sử dụng như Brevi bacterium và Microbacterium.
Tất cả các loài vi sinh vật này đều có một số đặc điểm sau:
+ Hình dạng tế bào từ hình cầu đến hình que ngắn
+ Vi khuẩn Gram (+)
+ Hô hấp hiếu khí
+ Không tạo bào tử
+ Không chuyển động được, không có tiên mao
+ Biotin là yếu tố cần thiết cho sinh trưởng và phát triển.
+ Tích tụ một lượng lớn glutamic từ hydrat cacbon và NH4+ trong môi trường có sục không khí.
Khi sử dụng Micrococcus glutamicus có nhiều công thức thiết lập môi trường nuôi cấy khác nhau,
Bảng 1.1 : Công thức môi trường nuôi cấy theo Tanaka và Ajnomoto
Tanaka (g/l)
Ajnomoto (g/l)
Glucoza
Urê
KH2PO4
MgSO4.7H2O
Dịch thủy phân đậu nành
Cao ngô
Nitơ amin
Biotin
Fe và Mn
Thời gian lên men
Hiệu suất thu hồi
100
5
1
0,25
-
2,5
5
2,5
-
35 h
50
100
8
0.1
0,04
1
0,5
-
0,5
0,2
40 h
44,8
` Nhiệt độ lên men giữ ở 280C và duy trì pH = 8,0 bằng cách thường xuyên bổ sung urê. Điều kiện hiếu khí là rất quan trọng bởi vì nếu không được sục khí thì sản phẩm tạo thành không phải là axit glutamic mà là lactat. Khi sử dụng nguyên liệu lên men là rỉ đường thì cần phải bổ sung các chất kháng biotin để kiểm soát sự sinh trưởng của vi sinh vật. Phương pháp này có nhiều ưu điểm như: không sử dụng nguyên liệu protit, không cần sủ dụng nhiều háo chất và thiết bị chịu ăn mòn, hiệu suất cao, giá thành hạ. Nên đang được nghiên cứu và ứng dụng ở nước ta và các nước trên thế giới.
Cơ sở lý thuyết về tách, làm sạch và kết tinh acid glutamic.
[PGS.TS. Nguyễn Thị Hiền (2004), Công nghệ sản xuất mì chính và các sản phẩm lên men cổ truyền, NXB Khoa Học và Kỹ Thuật, Hà Nội.]
Các thành phần có trong dịch sau lên men
Phương trình tổng quát của quá trình tạo L-AG từ glucose hay axetat và NH3 được diễn ra như sau:
Glucose + NH3 L-AG + CO2 + 3H2
3 axetat + NH3 L-AG + CO2 + 3H2
Theo phương trình này thì sản phẩm chính là L-AG và CO2. Ở đây theo lý thuyết, hiệu suất chuyển hoá (HSCH) glucoza hay axetat thành L-AG đều là 81,66%. Thực tế nghiên cứu và sản xuất chưa bao giờ đạt được giá trị này phần vì cơ chất còn dư lại trong môi trường, phần vì phải dùng cho tăng sinh khối và tạo các sản phẩm không mong muốn ngoài L-AG. Theo Kinoshita và cộng sự, HSCH có thể chấp nhận được khi đưa phương pháp lên men L-AG từ glucoza vào sản xuất công nghiệp là 30%. Ngày nay, tuỳ theo điều kiện sản xuất và phương tiện quá trình lên men người ta đã đạt được HSCH đường thành L-AG là 45 - 50 % trong sản xuất và 55 - 57% giống tự nhiên hay 61 - 62% từ giống đột biến trong nghiên cứu ở phòng thí nghiệm. Như vậy so với HSCH lý thuyết, HSCH thực tế ở phòng thí nghiệm mới đạt được 76% từ glucoza và 70% từ benzoat. Người ta đang tìm mọi biện pháp để rút ngắn khoảng cách giữa HSCH lý thuyết và HSCH thực tế.
Tùy vào điều kiện lên men, trong dịch lên men, ngoài sản phẩm chính là acid glutamic ra thì còn có một số sản phẩm phụ khác như acid lactic, acid succinic, acid - xetoglutaric, Glutamin và sản phẩm khác như glutamin (GM), L-acetylglutamin (L-AGM), alanin và aspatic ở trong dịch men với số lượng khác nhau tuỳ thuộc vào loại giống và điều kiện nuôi dưỡng hay thay đổi cấu tạo môi trường.
Nguyên lý tách acid glutamic
Như đã nói, trong quá trình lên men, acid glutamic được thoát ra từ tế bào môi trường nuôi cấy vì vậy việc thu nhận acid glutamic chủ yếu từ dịch môi trường sau lên men. Trong dịch lên men này ngoài acid glutamic còn chứa một số sản phẩm phụ khác do đó cần phải tách, làm sạch acid glutamic ra khỏi các tạp chất này. Các phương pháp chiết rút và tinh sạch acid glutamic đều dựa trên những tính chất hóa lý của acid glutamic như độ tích điện, kích thước phân tử, độ hòa tan... Muốn thu nhận được các acid glutamic tinh khiết cần sử dụng nhiều biện pháp khác nhau.
Các phương pháp kết tủa
Trạng thái keo của acid glutamic bền vững là nhờ sự cân bằng các điện tích và lớp vỏ thuỷ hoá. Khi trạng thái này bị phá vỡ bởi các yếu tố như nhiệt độ cao, muối các kim loại nặng, dung môi hữu cơ... thì acid glutamic rất dễ bị kết tủa. Hiện tượng kết tủa acid glutamic có thể thuận nghịch, tức là nó có thể trở lại trạng thái ban đầu khi tác động của các yếu tố trên chưa sâu sắc. Tuy nhiên, nếu sự tác động đó mạnh và lâu sẽ làm cho acid glutamic bị biến tính. Một số phướng pháp kết tủa như kết tủa bằng nhiệt độ hay kết tủa bằng các tác nhân hóa học như : muối trung tính, dung môi hữu co, kiềm hoặc acid…
Phương pháp lọc
Mục đích của phương pháp lọc là tách acid glutamic ra khỏi dịch lên men.
Kết quả của trình lọc cũng bao gồm dịch lọc và bã lọc tùy theo yêu cầu công nghệ mà ta thu nhận dịch lọc hay bã lọc.
Một số phương pháp lọc:
Lọc tự nhiên: các cơ sở thủ công, chủ yếu dùng những thiết bị đơn giản, do chênh lệch áp suất lọc do trong lượng dịch gây ra, nên thời gian lọc kéo dài, tốn nhiều diện tích, cồng kềnh và có hại đối với công nhân và thiết bị.
Hút lọc: tạo độ chân không để có chênh lệch áp suất ∆p < 1kg/cm2. Tốc độ lọc phụ thuộc vào trở lực lọc của vật liệu, chênh lệch áp suất ∆p, điện tích bề mặt lọc và chiều cao lớp nguyên liệu lọc.
Tốc độ lọc xác định theo phương trình:
Trong đó: v : tốc độ lọc
f : điện tích bề mặt lọc
∆p : Chênh lệch áp suất
r : trở lực riêng
h : chiều cao của lớp nguyên liệu
Từ đây thấy, muốn tăng tốc độ lọc lên cần:
- tăng điện tích lớp nguyên liệu lọc
- giảm chiều cao lớp nguyên liệu
- tăng chênh lệch áp suất ∆p, nhưng tăng theo tỷ lệ tuỳ theo loại nguyên liệu bị nén ép hay không.
Nếu ∆p tăng cao quá nguyên liệu bị nén ép thì tăng trở lực r đưa đến v không tăng. Thường ∆p = 500 - 600 ≤ 1kp/cm2.
Phương pháp này có nhược điểm: tốc độ lọc nhỏ, cồng kềnh, chiếm diện tích, dịch lọc không trong lắm
Ly tâm lọc: dựa vào lực ly tâm, tránh ăn mòn cho thiết bị nên cũng bị hạn chế. ép lọc: dùng thích hợp và phổ biến nhất do:
- bề mặt lọc lớn
- lọc nhanh, thiết bị gọn và dễ dùng những vật liệu chống ăn mòn ở môi trường axit (vải, gỗ…).
- tạo chênh lệch ∆p, rút ngắn thời gian lọc.
Phương trình lý thuyết tốc độ lọc:
d: đường kính ống mao dẫn
α: hệ số trở lực đo ống mao dẫn
∆p: chênh lệch áp suất
L: chiều dày lớp bã
μ: độ nhớt dung dịch
n: số ống mao dẫn có trong 1m2 bề mặt lọc (phụ thuộc độ xốp của bã).
Qua phương trình trên ta thấy tốc độ lọc không nghỉ phụ thuộc vào bề mặt thiết bị lọc mà chất lượng bã cũng ảnh hưởng lớn: bã xốp lọc nhanh (d lớn, α nhỏ), bã dính lọc chậm (do chất lượng nguyên liệu ban đầu). Nhiệt độ, áp suất và bề dày lớp bã cũng ảnh hưởng lớn.
Yêu cầu dung dịch sau khi lọc: màu nâu sáng, trong suốt, nồng độ càng cao càng tốt, thường 14 -18 0Be. Hiện nay trong điều kiện của ta, tiêu chuẩn theo kinh nghiệm:
Dịch nuôi cấy vi sinh vật và các dịch chiêt có khuynh hướng trở thành dạng đặc tự nhiên nên thường gặp khó khăn khi lọc bằng phương pháp truyền thống (nhờ vào tác dụng của trọng lực), trừ khi diện tích màng lọc là được sử dụng rất lớn.
Để khắc phục nhược điểm của kỹ thuật này người ta dùng phương pháp lọc dòng chảy ngang hoặc lọc tiếp tuyến ( lọc nhờ vào tác dụng của áp lực ) theo phương pháp này, dịch chiết chảy ở góc phải theo hướng lọc và sử dụng tốc độ dòng chảy cao sẻ có khuynh hướng giảm sự tắc nghẽn bằng các hoạt động tự làm sạch.
Phương pháp ly tâm:
Một trong những phương pháp không thể thiếu được trong tinh sạch protein nói chung và acid glutamic nói riêng là ly tâm.
Nguyên tắc của phương pháp ly tâm là tách các thành phần có khối lượng phân tử khác nhau ra khỏi dung dịch lực ly tâm. Thực chất sự ly tâm là lắng tốc độ kết tủa của những tiểu phần rắn nhờ lực ly tâm.
Kết quả sau ly tâm gồm 2 pha
Pha rắn (ở đáy ống) là kết tủa chứa võ tế bào, các tế bào không bị vỡ, các chất có khối lượng lớn.
Pha lỏng (nổi ở phần trên) chứa dịch protein và một số chất phân tử lượng nhỏ
Sự sai khác về tỉ trọng của nguyên liệu lơ lững so với chất lỏng càng lớn thì tốc độ kết tủa sẻ càng cao. Mặt dầu người ta coi số vòng quay trong một phút là đơn vị thông thường của lực ly tâm, nhưng quy ước ấy không thỏa mãn, Chính vì vậy người ta đưa ra đơn vị của lực ly tâm là g ( hằng số hấp dẫn ).
Công thức tính lực ly tâm ( RFC )
RFC (g) = 1,1118.105.R.N2
Trong đó:
R: bán kính nắp ly tâm (cm)
N: số vòng quay trong một phút
Một số lưu ý khi làm việc với máy ly tâm
Phải luôn giữ cân bằng đối xứng khi ly tâm và thăng bằng máy ly tâm khi đặt máy làm việc.
Tiến hành ly tâm với thời gian tối thiểu để tránh nóng máy
Phương pháp cô đặc
Mục đích của cô đặc là để loại đi phần lớn nước và tăng hàm lượng acid glutamic.
Điều kiện kỹ thuật khi cô đặc
- Nồng độ khi cô đặc: ta biết nhiệt độ càng cao, độ hoà tan các chất càng tăng, cho nên tuỳ theo từng thời tiết và yêu cầu quá trình cô đặc mà khống chế nồng độ. nồng độ quá nhỏ sẽ làm tăng độ hoà tan của axit glutamic, giảm hiệu suất thu hồi. Nồng độ quá lớn, độ nhớt dung dịch sẽ tăng không những chỉ ảnh hưởng đến việc tách axit glutamic mà còn ảnh hưởng đến các thao tác khác.
Thời gian cô đặc nồng độ theo yêu cầu kỹ thuật, phụ thuộc vào thiết bị và phương pháp cô đặc.
Nếu điều kiện thủ công: cô đặc trực tiếp hoặc gián tiếp trong những thiết bị đơn giản và là thủ công, giữ nhiệt độ cô ≤ 800C khó khăn nên mất thời gian nhiều. Nếu điều kiện công nghiệp sẽ giảm thời gian cô.
Cô đặc chân không, bảo đảm nhiệt độ sôi ≤ 800C, trong những thiết bị truyền nhiệt gián tiếp, thiết bị cô đặc tuần hoàn ngoài hoặc tuần hoàn trong (trong thiết bị có các lớp men chịu axit và chịu nhiệt). Do cô đặc trong điều kiện chân không nên rút ngắn được thời gian cô đặc nhiều.
Tuỳ theo điều kiện từng cơ sở trong quá trình cô đặc lấy mẫu thử khi nào đạt nồng độ theo yêu cầu trên thì kết thúc.
Phương pháp trao đổi ion
[PGS.TS. Nguyễn Thị Hiền (2004), Công nghệ sản xuất mì chính và các sản phẩm lên men cổ truyền, NXB Khoa Học và Kỹ Thuật, Hà Nội, trang 121]
Phương pháp sắc ký trao đổi ion dựa vào sự khác nhau về điện tích tổng số của các chất (acid glutamic, acid lactic, acid succinic, acid α - xetoglutaric)có trong dịch lên men. Hay nói cách khác, phương pháp này được dựa trên cơ sở của phản ứng trao đổi ion giữa các chất tan trong nước hoặc dung dịch đệm loãng và các tác nhân trao đổi ion
Trước tiên các chất (các acid) sẽ gắn thuận nghịch với các chất trao đổi bằng tương tác ion giữa các nhóm mang điện tích trái dấu. Sau đó các chất được chiết rút riêng biệt nhờ việc tăng dần lực ion làm cho tương tác ion bị bẻ gãy thông thường dùng gradient muối NaCl hay gradient pH.
Hình 1.1 : Nguyên tắc của sắc ký trao đổi ion
Các chất trong dịch len men của một hổn hợp cần phân tích thường có các nhóm ion hoá khác nhau do đó có độ pH khác nhau. Ở một giá trị pH nhất định các acid sẻ có một điện tích không giống nhau, do đó chúng được giữ nhiều hay ít bằng tương tác ion trên một nhựa trao đổi ion đã cho với một pha di động đã cho.
Trong phương pháp tinh sạch acid glutamic người ta lợi dụng tính chất hạt nhựa polyetylen sunfuric (ta quen gọi là refin) sau khi đã được cation hoá (tức tái sinh) có khả năng giữ lại trên bề mặt của nó anion, ở đây chủ yếu là axit glutamic. Sau đó lại dùng NaOH để tách anion ra khỏi hạt nhựa.
Quá trình hấp thụ:
R- SO3H+ + NH3ROO- R’SO3NH3RCOOH
Quá trình tách:
R’SO3NH3RCOOH + NaOH R’SO3Na +NH2RCOOH + H2O
Ngoài ra còn có một số quá trình hấp thụ khác.
Để hấp thụ AG, thường dùng các loại nhựa trao đổi ion có tính chất động học khác nhau: gồm các nhựa trao đổi ion dương (cationit): Amberlate IR-120, Amberlate IRC-50, Pover 50 (dạng H+, Na+), KY-2 (dạng H+ và NH4+), K. 732 (dạng H+)…, các nhựa trao đổi ion âm (anionit): Amberlate IR-4B, AmberlateIRA-400… Nhìn chung các cationit nói trên đều là cao phân tử tạo từ styren và divinylbenzen theo phương pháp trùng hợp (Amberlate IR-120, Amberlate IRC-50, Pover 50+, KY-2, K732) hoặc từ axit m- crylic và divinylbenzen (Amberlate IRC- 50), chúng đều có dung tích hấp thụ cao, bền trong môi trường axit mạnh và kiềm mạnh, chịu được nhiệt độ cao ~1000C, không thay đổi cấu trúc sau nhiều lần làm việc, có tính bền cơ học cao. [cnsxmc trang 123]
Tương tác giữa acid glutamic và chất trao đổi còn phụ thuộc vào:
Sự phân bố điện tích bề mặt của a
pH dịch đệm
Bản chất các ion trong dung dịch
Các chất thêm vào
Đặc tính của chất trao đổi
Nguyên lý kết tinh acid glutamic
Mục đích của quá trình làm lạnh - kết tinh là sau khi cô đặc đến nồng độ theo yêu cầu, làm lạnh kết tinh để tách các tinh thể axit glutamic và các aminoaxit khác ra khỏi dung dịch (phần quá bão hoà).
Cơ sở của quá trình kết tinh [cnsxmi chnh]
Người ta nhận thấy rằng, vận tốc kết tinh tăng cùng với sự tăng khả năng quá bão hoà của dung dịch, dung dịch càng không tinh kiết, độ nhớt càng tăng làm giảm tốc độ kết tinh nhiều (tuỳ thuộc vào nguyên liệu ban đầu). Ngoài ảnh hưởng của dung dịch, pH môi trường cũng ảnh hưởng lớn đến tốc độ kết tinh.
Quá trình kết tinh có thể được chia làm 2 giai đoạn chính: Sự tạo mầm tinh thể và sự lớn lên của tinh thể.
Sự tạo mầm tinh thể
Tốc độ tạo mầm tinh thể được xác định bằng lượng mầm tinh thể được tạo thành trong một đơn vị thời gian ở một đơn vị thể tích dung dịch nhất định.
Dung dịch hydroclorua aminoaxit hoặc glutamat natri khi cô đặc đến nồng độ nhất định tức đưa dung dịch đến trạng thái quá bão hoà thì có sự xuất hiện các tinh thể. Những tinh thể nhỏ xuất hiện đầu tiên gọi là mầm tinh thể hay nhân tinh thể.
Trong sản xuất, để tăng tốc độ tạo nấm tinh thể, dùng các phương pháp gây nhân tinh thể như: phương pháp gây nấm tự nhiên, phương pháp kích thích và phương pháp tính chủng [cnmc trang 56].
- Phương pháp gây nấm tự nhiên
Dung dịch đưa vào cô chân không nhiệt độ ≤ 80oC đến trạng thái quá bão hoà, có sự xuất hiện tinh thể. Những tinh thể nhỏ xuất hiện đầu tiên gọi là nấm tinh thể, phương pháp này đã được ứng dụng từ lâu tuy nhiên nó vẫn có nhược điểm là thời gian gây nấm dài, khó khống chế số lượng nấm nên kích thích mầm khó đạt theo ý muốn con người [cnmc trang 57].
- Phương pháp kích thích
Cho dung dịch cô đến trạng thái quá bão hoà sau đó hạ nhiệt độ dung dịch xuống thấp, khuấy trộn và cho hạt tinh thể ở ngoài vào làm cho dung dịch ở trạng thái không ổn định, chịu sự kích thích nhưng lại xuất hiện tinh thể nhanh hơn. Phương pháp này khống chế được thời gian nhưng không khống chế được lượng mầm nhiều hay ít, không ổn định. Có nhiều phương pháp gây kích thích như chấn động, khuấy trộn, sóng siêu âm,… [cnmc trang 57].
- Phương pháp tính chủng
Dùng phần kết tinh các đợt cho vào dung dịch cô đặc để tạo mầm nhanh và kết tinh thể nhiều và lớn hơn.
Sự lớn lên của tinh thể
Sau khi tinh thể hình thành tiếp tục cho tinh thể lớn lên, tốc độ lớn lên của tinh thể được biễu diễn bởi tinh thể lớn lên trong 1 đơn vị bề mặt kết tinh trong 1 đơn vị thời gian, tốc độ lớn lên của tinh thể phụ thuộc vào điều kiện khác nhau: nhiệt độ,nồng độ, tính chất vật lý của dung dịch…
Nhìn chung, quá trình kết tinh chịu ảnh hưởng của nhiều yếu tố: quá bão hoà, độ nhớt, nhiệt độ, độ thuần khiết, khả năng khuấy trộn dung dịch. Đối với nước ta hiện nay, do chưa có biện pháp chủ yếu khống chế các điều kiện trên nên chủ yếu kết tinh theo dạng bột, độ thuần khiết không cao [mc 57].
PHẦN 2 : CHỌN VÀ THUYẾT MINH QUY TRÌNH CÔNG NGHỆ
Chọn quy trình tinh chế acid glutamic
Kết thúc quá trình lên men, axit glutamic được tạo thành cùng với một số tạp chất khác, do đó cần phải tinh chế các tạp chất này ra khỏi dung dịch chứa axit.
Hiện nay có nhiều phương pháp kết tinh acid glutamic từ dung dịch nuôi cấy.
Phương pháp đẳng điện.
Phương pháp hydrochlorit của glutamic.
Phương pháp dung môi hữu cơ.
Phương pháp trao đổi ion.
Phương pháp chuyển acid glutamic thnàh các muối kim loại.
Phương pháp điện thẩm tích.
Phương pháp tạo hydroclorit của axit glutamic: nhược điểm là tốn axit, tốn NaOH, lại phải dùng tới thiết bị chịu axit và chịu kiềm, gây ô nhiễm môi trường nghiêm trọng, đặc biệt giá thành sản phẩm cao và vì thế hiện nay ít được sử dụng.
Phương pháp dùng dung môi hữu cơ hòa tan axit glutamic, chuyển axit glutamic thành các muối kim loại khó tan, điện thẩm tích chuyển axit glutamic về phía cực dương. Song các phương pháp này mới chỉ được dùng trong phòng thí nghiệm.
Phương pháp điểm đẳng điện: đơn giản được ứng dụng nhiều ở các nhà máy mì chính nhưng nhược điểm là hiệu suất thu hồi thấp, thường chỉ thu được 50 – 60% axit glutamic có trong dịch lên men.
Triển vọng nhất và được nhiều nơi ứng dụng là phương pháp tách axit glutamic bằng cách hấp phụ qua nhựa trao đổi ion. Phương pháp trao đổi ion để thu hồi AG từ dịch mì chính lên men đã được khá nhiều nước quan tâm, bởi lẽ phương pháp trao đổi ion có nhiều ưu điểm cơ bản hơn hẳn phương pháp hoá giải và đẳng điện:
- Đạt hiệu xuất thu hồi AG cao, thường lớn hơn 75% so với lượng AG có trong dịch men và làm sạch tinh thể AG ở dạng α - AG.
- Không phải cô đặc dịch men, do đó giảm tiêu hao điện, hơi, nước, nhân công.
- Dùng trong công nghiệp, phương pháp này có quy trình đơn giản, chu kỳ ngắn. [cnsxmc trang 123]
Vì những ưu điểm của phương pháp trao đổi ion nên tôi sử dụng phương pháp trao đổi ion cho quy trinh tinh chế acid glutamic từ dịch lên men
Rửa nhựa refin
pH=7
HCl
Tái sinh
t=15-20’, pH=2-2.5
Rửa tái sinh
t=40-60’, pH=3
Sinh khối
Pha loãng
18-20g/l, pH=5-5,5
Lắng, tách sinh khối
Gia nhiêt 950C, pH=4,5. lắng 1 ngày
Dịch sau lên men
pH=6-7, AG=40g/l
Trao đổi ngược
T=80’pH=4,5t0=600
Rửa trao đổi
Gia nhiệt
t=600C
Rửa hấp phụ
Thu acid glutamic
H2O
H2O
Nước 600C
NaOH 5%
t=600C
HCl 31%
Nước thải
Dịch dò
Dịch thải
HCl
Điêu chế
0-50be
Acid hóa
pH=2.5-3.22
Làm lạnh, kết tinh
t=120C, 48 giờ
Ly tâm
v=9601500v/phút,
W=10%
Lọc belt
Nước cái
Nước chấm
Xử lý
Quy Trình sản xuất
Làm nguội
Thức ăn gia súc
Sấy
t0≤800C,t=2h,W<0.5%
Sàng phân loại
Tinh thể acid glutamic
Bao gói thành phẩm
Thuyết minh Quy trình:
Thành phần dịch sau lên men [cnsxmc trang 124]
Dịch sau lên men có hàm lượng acid glutamic khoảng 40g/l, pH=6-7. Nhiệt độ khoảng 320C.Ngoài ra còn một số tạp chất khác như acid lactic, acid succinic, acid - xetoglutaric, alanin và aspatic,đường khử, NH4+, các ion, các chất màu.. ở trong dịch men với số lượng khác nhau tuỳ thuộc vào loại giống và điều kiện nuôi dưỡng hay thay đổi cấu tạo môi trường. Khối lượng riêng của dịch lên men là:1,03-1,05 g/cm3.
Acid glutamic có trong dịch lên men có tính chất hóa lý sau:
Điểm đẳng điện: pI=3.22
Phân tử lượng: 147,1
Lắng, loc, tách sinh khối, sơ bộ
Mục đích: Gia nhiệt là để tiêu diệt vi sinh vật lên men, làm ngừng quá trình lên men, và loại xác vi khuẩn trong dịch lên men và tăng hiệu suất thu hồi cho công đoạn trao đổi ion do xác vi khuẩn bám vào hạt nhựa làm hạt nhựa dâng lên từng đoạn do đó giảm dung tích hấp phụ.
Cách thực hiện: Dịch sau lên men, dể yên trong thùng lên men, gia nhiệt 950C, hạ pH=4,5 để lắng 1 ngày. Trong thời gian này, các chất lắng và sinh khối vi khuẩn sẻ lắng xuống đáy. Sau đó tách thu bã dùng làm thức ăn chăn nuôi.
Pha loãng dịch lên men
Hình 2.2 Thiết bị pha loãng [6]
òa tan
Mục đích: Dịch lên men có hàm lượng axit glutamic khoảng 40g/l (mật độ phân tử tương đối dày đặc) nếu cứ để như vậy thì khi dòng chảy qua khối hạt nhựa, xác suất tiếp xúc giữa các phân tử aciglutamic với các hạt nhựa sẽ ít hơn, số đi theo dòng chảy sẽ lớn, gây tổn thất lớn.
Pha loãng dịch lên men bằng dịch thải lần trước hay bằng nước lạnh theo tỉ lệ sao cho sau khi pha dịch lên men có hàm lượng axit glutamic khoảng 18-20g/l. Điều chỉnh pH=5-5,5 để nhựa có thể hấp thụ tốt hơn.[3, tr 178].
Thiết bị pha loãng: Sử dụng thiết bị bằng thép, bên trong có cánh khuấy như hình 2.2.
Trao đổi ion
Mục đích: tách lấy axit glutamic ra khỏi dịch lên men.
Nguyên liệu
Hình 2.3. Thiết bị trao đổi ion [6]
Dùng nhựa K372 (Trung quốc) chế tạo từ styren và divinylbenzen (DVB) theo phương pháp trùng hợp, chứa 7 -8 liên kết ngang. DVB có các tính chất sau:
- Dạng bề ngoài: tròn, trong suốt, vàng nâu.
- Khối lượng riêng: 1,24 -1,29 g/cm3.
- Kích thước hạt: 0,3 - 1,0 mm (95%).
- Không tan trong NaOH, HCl, rượu, axeton, benzen.
- Chịu nhiệt: 1000C dạng H+
1200C dạng Na+
- Độ ẩm 46 - 52%.
- Dung tích trao đổi ≥ 4,5 mg/g nhựa khô.
- Khả năng hấp thụ AG tinh khiết của K.732(H+) là: 0,186 g/g K.372.
Thiết bị trao đổi ion: Cột nhựa có f= 90, h = 680 - chứa 2 kg hạt nhựa K.732 ẩm
Công đoạn trao đổi nhựa ion trải qua các quá trình sau:
Xử lý hạt nhựa refin [cnsx mc, trang 122]
Mục đích: Hạt nhựa refin sau một mẻ trao đổi không còn khả năng hấp thụ nữa, muốn tiếp tục trao đổi phải qua khâu xử lý tái sinh.
Quá trình thực hiện:
- Rửa nhựa refin: dùng nước sạch rửa ngược khoảng 1 giờ, thỉnh thoảng dùng áp chân không và van đóng mở gián đoạn để sục đảo cho khối nhựa được tơi, đều, rửa cho tới khi pH = 8 - 9 thì thôi, xả bỏ hết lớp nước bẩn ở trên, sau đó tiếp tục cho nước vào rửa xuôi cho đến khi pH = 7 thì thôi và tiến hành tái sinh.
- Tái sinh: Dùng axit thu hồi cho chảy ngược 15 -20 phút sau đó mới cho axit mới pha, giữ cho tốc độ vào và ra ngang nhau để cho mặt nước có chiều cao cố định tới khi dịch ra có pH = 2 - 2,5 thì ngừng cho HCl.
- Rửa tái sinh: mở van đáy thu hồi lấy axit cho tái sinh lần sau rồi mới dùng nước lạnh rửa xuôi cho tới khi pH = 3 thì ngừng cho nước và có thể tiến hành trao đổi. Thời gian kéo dài 40 -60 phút.
Trao đổi ngược
Sau khi hạt nhựa đã được tái sinh, rửa tái sinh và dùng chân không đóng mở ngắt quãng làm cho hat nhựa được tơi, xốp để ổn định rồi cho dịch men vào trao đổi ngược, lưu tốc vừa phải khống chế trong khoảng 80 phút trao đổi hết một mẻ là vừa.
Rửa trao đổi
Rửa trao đổi: Sau khi trao đổi hết để cho rêfin lắng xuống tự nhiên, xả bỏ lớp dịch bẩn ở trên bề mặt, đảo trộn hạt nhựa rồi cho nước sạch vào rửa ngược cho tới khi sạch thì thôi (nước thải thải ra hết).
Gia nhiệt
Sau khi rửa sạch thì ngừng cho nước lạnh và bắt đầu cho nước nóng vào để gia nhiệt hạt nhựa. Nước nóng 600C đã được gia nhiệt chuẩn bị sẵn. Nước thải ra lúc nóng gọi là dịch dò có chứa một lượng rất ít axit glutamic nên được thu hồi lại làm nước pha dịch men ở mẻ sau. Gia nhiệt cho đến khi nước thải đạt 450C.
Phản hấp phụ, thu acid
Các file đính kèm theo tài liệu này:
- Thiết kế phân xưởng tinh chế axit glutamic năng suất 25850 lit dịch lên men-ngày.doc