Tiểu luận Lý thuyết về 05 loại nhiễu trong thông tin di động

MỤC LỤC

MỤC LỤC. 1

LỜI MỞ ĐẦU. 2

1.Nhiễu trắng. 3

1.1. Khái niệm về nhiễu trắng. 3

1.2. Các phép biểu diễn toán học của nhiễu trắng. 4

1.3. Phổ công suất của nhiễu trắng có băng tần giới hạn: . 4

2. Nhiễu liên ký tự ISI (Inter symbol interference) . 6

2.2. Các biện pháp khắc phục nhiễu ISI. 7

2.2.1. Bộ lọc cos nâng: . 7

2.2.2. Bộ lọc ngang ép không:. 9

3. Nhiễu liên kênh ICI (Interchannel Interference). 11

3.1. Nhiễu liên kênh ICI. 11

3.2.Nhiễu xuyên kênh trong OFDM ở kênh thông tin di động. 12

3.2.1. Giới thiệu. 12

3.2.2. OFDM ở kênh thay đổi theo thời gian. 13

3.2.3. Phân tích nhiễu xuyên kênh (ICI). 15

3.2.4 Kết luận. . 19

3.3.ISI và ICI trong hệ thống FDM. 19

4. Nhiễu đồng kênh (Co-Channel Interference) . 23

4.1. Khái niệm chung. 23

4.2.Tái sử dụng tần số. 24

4.2.1.Khái niệm tái sử dụng tần số . 24

4.3.Các mẫu tái sử dụng tần số . 29

4.3.1. Mẫu 3/9. 29

4.3.2.Mẫu 4/12. 30

4.3.3.Mẫu 7/21. 31

4.3. Nhận xét. 31

4.3.1. So sánh giữa các mẫu sử dụng tần số: . 31

4.3.2. Dung lượng và tỉ số C/I. . 31

5. Nhiễu đa truy nhập (Multiple Access Interference). 32

KẾT LUẬN. 37

 

doc38 trang | Chia sẻ: lethao | Lượt xem: 5598 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Tiểu luận Lý thuyết về 05 loại nhiễu trong thông tin di động, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
g bảo vệ (guard interval - GI), thường lớn hơn thời gian trễ tối đa của kênh truyền, giữa hai 6 ký tự nên nhiễu ISI có thể bị loại bỏ hoàn toàn.2.1. Đặc điểm:Dải thông tuyệt đối của các xung nhiều mức đỉnh phẳng là vô hạn. Nếu các xung này được lọc không đúng khi chúng truyền qua một hệ thống thông tin thì chúng sẽ trải ra trên miền thời gian và xung cho mỗi kí hiệu sẽ chèn vào các khe thời gian bên cạnh gây ra nhiễu giữa các kí hiệu (ISI).ISI là hiện tượng nhiễu liên kí hiệu. ISI xảy ra do hiệu ứng đa đường, trong đó một tín hiệu tới sau sẽ gây ảnh hưởng lên kí hiệu trước đó. Chẳng hạn như ở hình 4 phía trên, ta thấy rõ tín hiệu phản xạ (reflection) đến máy thu theo đường truyền dài hơn so với các tín hiệu còn lại. 2.2. Các biện pháp khắc phục nhiễu ISI Trong các hệ thống đơn sóng mang, ISI là một vấn đề khá nan giải. Lí do là độ rộng băng tần tỉ lệ nghịch với khoảng thời gian kí hiệu, do vậy, nếu muốn tăng tốc độ truyền dữ liệu trong các hệ thống này, tức là giảm khoảng kí hiệu, vô hình chung đã làm tăng mức trải trễ tương đối. Lúc này hệ thống rất nhạy với trải trễ. Và việc thêm khoảng bảo vệ khó triệt tiêu hết ISI. Để giảm nhiễu xuyên âm người ta phải làm thế nào hạn chế dải thông mà vẫn không gây ra ISI. Khi dải thông bị giới hạn, xung sẽ có đỉnh tròn thay vì đỉnh phẳng. Một trong những phương pháp để loại bỏ nhiễu ISI là dùng bộ lọc cos nâng và bộ lọc ngang ép không (phương pháp Nyquist I). 2.2.1. Bộ lọc cos nâng: mk Nguồn số n(t) ak (t-kT) Tạo xung T() Lọc phát s'(t) R() Lọc thu Quyết định m'k Nhận tin s(t) Hình 5. Sơ đồ bộ lọc cos nâng 7 Tín hiệu từ nguồn gồm có M phần tử, song chúng ta hạn chế chỉ khảo sát trường hợp khi các phần tử s i(t) của tập tín hiệu chỉ khác nhau về biên độ, tức là ta sẽ hạn chế chỉ xét hệ thống điều chế biên độ xung PAM. Thực tế hệ thống này có thể xem như gán cho mỗi một tin m k một hằng số a kmà biên độ của xung đầu ra của bộ tạo xung sẽ được nhân với nó. Ta hãy giả sử rằng bộ tạo xung cho ra các xung Dirắc tại các thời điểm t=kT s. Các xung dạng dirac này, có biên độ thay đổi tuỳ theo sự thay đổi các giá trị m k, qua bộ lọc T() sẽ tới kênh truyền. Phần máy thu trên hình 2.2 là máy thu tối ưu, thu lọc phối hợp, mạch quyết định thực hiện lấy mẫu và so ngưỡng. Hàm truyền tổng cộng của hệ thống (đặc tính tần số tổng cộng của hệ thống) là tích của hai đặc tính của hai bộ lọc phát và thu C()=T().R(). Bây giờ chúng ta sẽ tìm kiếm lớp các đặc tính lọc C() sao cho việc truyền chuỗi tín hiệu qua hệ thống sẽ không có ISI. Việc truyền được coi là không có ISI nếu vào thời điểm quyết định tín hiệu lấy mẫu thứ k, chỉ có phản ứng xung của tín hiệu thứ k là khác không còn phản ứng của các tín hiệu khác đều bằng không. Theo định lý Nyquist, độ rộng băng tần truyền dẫn nhỏ nhất để có thể truyền được không méo tín hiệu băng gốc là B=1/2.T. Độ rộng băng ở đây có nghĩa là dải tần mà ngoài nó giá trị hàm truyền đồng nhất bằng không. Tần số 1/2T được gọi là tần số Nyquist. Do vậy chúng ta sẽ xét các đặc tính lọc có độ rộng thông tần tối thiểu là 1/2T (hay /T tính theo tần số góc). Trước tiên ta hãy xem xét trường hợp C() là đặc tính của bộ lọc thông thấp lý tưởng, tức là đáp tuyến pha của bộ lọc thì tuyến tính còn đáp tuyến biên độ |C()| có dạng: C () = ⎨ ⎧ ;1 ⎩0; ⎪ ⎪ 0 0 > 0 8 Bộ lọc này có phản ứng xung là: c (t) = sin 0t 0t Có giá trị cực đại bằng 1 tại t=0 và có giá trị bằng 0 tạo t=k/ 0. Giả sử rằng đầu vào bộ lọc lý tưởng này có tín hiệu được tạo bởi bộ tạo xung như trên hình 2.2, tức là tín hiệu lối vào bộ lọc T()được cho bởi: s(t) = a (t kT) k= - Trong trường hợp này, phản ứng xung đầu ra sẽ không gây nên ISI nếu tần số cắt của bộ lọc là f 0= 0/2=1/2T. Do đơn giản trong tính toán, hàm số cong dạng cosine thường ưa được sử dụng để phân tích các bộ lọc này. Hàm truyền tổng cộng khi đó có dạng: Và phản ứng xung có dạng: c (t) = sint /T cost /T t /T 1 4 t /T 2 2 2 k Hàm truyền liên tục thì có biên độ gợn sóng suy giảm theo luỹ thừa 3 của biến t. Do vậy ngay cả khi đồng bộ không lý tưởng thì giá trị của phản ứng xung đầu ra của các bộ lọc này sẽ bị chặn. Do đó, ISI sẽ nhỏ ngay cả khi đồng bộ không lý tưởng. 2.2.2. Bộ lọc ngang ép không: 9 Nguồn số liệu Bộ lọc phát Kênh truyền Bộ lọc cân bằng kênh t m=mT+t V(t m) V(t) Hình 6. Vị trí bộ lọc cân bằng kênh. Theo hình 6 ta có đáp ứng tần số của toàn hệ thống từ phát đến thu là H 0(f)= H T(f). H c(f)H E(f) Với đáp ứng xung tổng hợp h (t)= f 0 -1 [H 0(f) ] Để thoả mãn điều kiện không có nhiẽu liên kí hiệu ISI thì k ⎞ H ⎜ f + ⎟ = const T ⎠ Tần số lấy mẫu tín hiệu bên thu là 1/T. Theo đó thì mật độ cân bằng lý tưởng zero- ISI đơn giản là một bộ lọc nghịch đảo đáp ứng tần số của bên phát và kênh truyền. Bộ lọc đảo này thường được xấp xỉ bởi một bộ lọc FIR như hình vẽ dưới 0 ⎛ ⎝ D D D D C-N C-N+1 C0 CN tm Hình 7. Bộ lọc cân bằng kênh P cq(t) 10 Đáp ứng xung của bộ lọc cân bằng kênh là: N n= - N Đáp ứng tần số tương ứng là: H (f) = E h E (t) = C (t nT ) n N C ne n = -N Vấn đề của bộ lọc đảo chính là lựa chọn các hệ số của bộ lọc sao cho xấp xỉ được điều kiện zero- ISI. Trong môi trường truyền dẫn đa đường, nhiễu xuyên ký tự (ISI) gây bởi tín hiệu phản xạ có thời gian trễ khác nhau từ các hướng khác nhau từ phát đến thu là điều không thể tránh khỏi. Ảnh hưởng này sẽ làm biến dạng hoàn toàn mẫu tín hiệu khiến bên thu không thể khôi phục lại được tín hiệu gốc ban đầu. Các kỹ thuật sử dụng trải phổ trực tiếp DS-CDMA như trong chuẩn 802.11b rất dễ bị ảnh hưởng bởi nhiễu đa đường vì thời gian trễ có thể vượt quá khoảng thời gian của một ký tự. OFDM sử dụng kỹ thuật truyền song song nhiều băng tần con nên kéo dài thời gian truyền một ký tự lên nhiều lần. Ngoài ra, OFDM còn chèn thêm một khoảng bảo vệ (guard interval - GI), thường lớn hơn thời gian trễ tối đa của kênh truyền, giữa hai ký tự nên nhiễu ISI có thể bị loại bỏ hoàn toàn. 3. Nhiễu liên kênh ICI (Interchannel Interference) 3.1. Nhiễu liên kênh ICI Nhiễu xuyên kênh gây ra do các thiết bị phát trên các kênh liền nhau j 2nTf 11 Hình 8 Nhiễu liên kênh thường xảy ra do tín hiệu truyền trên kênh vô tuyến bị dịch tần gây can nhiễu sang các kênh kề nó. Để loại bỏ nhiễu xuyên kênh người ta phải có khoảng bảo vệ (guard band) giữa các dải tần. 3.2.Nhiễu xuyên kênh trong OFDM ở kênh thông tin di động 3.2.1. Giới thiệu Trong phương pháp đa truy nhập phân chia theo tần số trực giao (OFDM), băng thông truyền được chia thành nhiều kênh nhỏ, và được truyền song song với nhau. Do đó, giới hạn của ký tự tăng lên và nhiễu liên ký tự (ISI) gây ra môi trường fading theo thời gian bị loại bỏ. Tuy nhiên, với những giới hạn ký tự dài hơn, nhiễu xuyên kênh (ICI) gây ra bởi Doppler ở kênh thông tin di động lại tăng lên. Hiệu ứng Doppler có ảnh hưởng đến hệ thống OFDM. Ở đây, chúng ta nhận được giới hạn của ICI, tính toán dễ dàng hơn và hữu ích hơn. Giới hạn bao gồm cả giới hạn chung và riêng. Giới hạn chung chỉ phụ thuộc vào tần số Doppler lớn nhất ( f d ) và 12 thời gian ký tự (T s ). Giới hạn riêng cũng phụ thuộc vào biến của phổ Doppler. 3.2.2. OFDM ở kênh thay đổi theo thời gian Giả sử tín hiệu OFDM ở miền thời gian là x t) = s[k]e ( k j 2 f kt với 0 t Ts (3.1) Ts Tín hiệu truyền qua k (kênh con), s[k], được coi là độc lập với các kênh con khác. Tín hiệu nhận được, sau khi truyền qua kênh thay đổi theo thời gian với đáp ứng xung h(t, ) , là: ~ x (t) = h(t, ) x(t ) d Với nhiễu kênh (channel noise) và nhiễu đồng kênh (co-channel interference) không tính tới. Trong điều kiện fading phẳng, đáp ứng xung kênh có thể đặt là: h (t, ) = (t) ( ) Tín hiệu nhận được sẽ là: ~ x (t) = (t) x(t) (t) là quá trình wide-sense stationary stochastic với dãy số 0 và biến đơn vị. Với phổ Doppler nguyên thủy, mật độ phổ của (t) là: ⎧ 1 ⎪ fd if f < f 2 d 1 Với f = f + k f là tần số của k - kênh con (subchannel) và f = . k 0 ⎩0 tần số Doppler lớn nhất : f d . Cả 2 trường hợp phổ Doppler đều đồng dạng và có 2 kiểu đường dẫn. (path). Đó là: ⎪ ( f ) = ⎨ ⎪ ⎪ P J 1 1 ⎛ 1 ⎞ ⎜ ⎟ ⎝ fd ⎠ 13 ⎧ 1 P (uf ) = ⎨⎪2 fd ⎪ ⎩0 if f < f d Và 1 P t) = ⎡ ( f + f ) + ( f f )⎤ 2 ⎣ Hàm tương quan của (t) , định nghĩa là r ( ) = E{ ( t ( d d ⎦ J t + ) (t)} * Dễ dàng suy ra r ( ) = F { ( Hàm tương quan có thể biểu diễn ở 3 dạng như sau: 1 • • • Thông thường (classical) r ( ) = J (2 f ) Đồng dạng (Uniform) r ( ) = sin c( f ) Hai đường (Two-path) r ( ) = cos(2 f ) J 0 d u d t d P f )} Với J là hàm Bessel dãy số 0 của dạng đầu tiên và sin c( x) = 0 . Cần sin( x) x chú ý là dạng hai đường tương ứng với hệ thống OFDM có tần số f d (Hz) cố định. Với kênh fadinh thời gian phân tán, h (t, ) = (t) ( ) i ~ Và x(t) = (t) x(t ) i (3.3) là trễ của dãy i và (t)là biên độ phức tương ứng. Ở đây, chúng ta giả sử quá trình phức stochastic của (t) là độc lập với I, nhưng có cùng thông số. i Thêm vào đó, ta cũng giả sử năng lượng ở mức bình thường: E (t) } = 1 i i i i i i { i 2 i 14 3.2.3. Phân tích nhiễu xuyên kênh (ICI) ~ Tín hiệu được điều chế lại có thể bao gồm cả tín hiệu nhận được x(t) là: ~ s[m]= x(t)e T s 0 1 Ts ~ j 2 f m dtt (3.4) Để đơn giản, sự hội nhập (intergration) sẽ dùng để thay thế hàm chuyển đổi Fourier rời rạc (DFT). Bởi vậy, kết quả sẽ bao gồm cả phần đưa vào trường hợp số song mang không xác định. Tuy nhiên, so sánh với trường hợp số sóng mang xác định thì sự sai khác là không đáng kể. a.Tính toán chính xác Để đơn giản, đầu tiên chúng ta nhận được biên ICI cho kênh fading phẳng, và sau đó mở rộng kết quả cho môi trường có tần số bất kỳ khác. Từ (3.1), (3.2) và (3.4), tín hiệu được điều chế lại trở thành: ~ s[m]= (t) s[k]e Ts ⎧ 1 k 0 Ts = ⎨ ( t)e k ⎩Ts ⎪ 0 ⎪ 1 Ts j2 f kt j2 f mt e dt j 2 ( f m f k )t = a s[m]+ a s[k] mk 14243 ICI Với a l được định nghĩa là: 0 mk a l = 1 Ts T s 0 (t)e j2t ft dt ⎫ ⎪ dt ⎬ s[k] ⎪ ⎭ (3.5) (3.6) a 0 biểu diễn sự suy giảm và pha của tín hiệu mong muốn, còn với biểu diễn hệ số khuếch đại kênh của tín hiệu nhiễu. Với thời gian bất kỳ trên kênh, a l 0, và ra kết quả của ICI. Năng lượng của ICI được định nghĩa là: 15 2 = E l0 PICI a s[m l] l Với OFDM có số sóng mang con không xác định, diễn thông qua hàm tương quan 1 r ( ) là: PICI có thể biểu 1 Hoặc thông qua mật độ phổ Doppler: PICI = fd = 1 P( f )sin c ( fT s )df (3.8) 2 f d Cả (7) và (8) đều cho OFDM với số sóng mang con xác định, ta có thể thấy chỉ có sai số rất nhỏ, ta có thẻ dùng cho OFDM với số sóng mang xác định. Do đó, công thức (7) và (8) có thể dung tính gần chính xác năng lượng ICI cho OFDM với số sóng mang xác định. Biết mỗi hàm tương quan trong miền thời gian của kênh thay đổi theo thời gian, ta có thể tính năng lượng của ICI dùng công thức (3.7). Biểu diễn theo kiểu thông thường: 1 0 d s (3.9) 1 Biểu diễn theo kiểu đồng dạng và kiểu 2 đường: PICI = 1 (1 x ) J (2 f T x) dx PICI = 1 1 cos(2 f dT s ) 2 f dT sSi(2 f dT )s 2 (3.10) PICI (1 x () 1 r(T x) dx) s (3.7) Và PICI 2 ( f dT s ) 2 = 1 sin c ( f T ) d s (3.11) b. Giới hạn Sử dụng các công thức phía trên, năng lượng ICI có thể tính chính xác. Tuy nhiên, các công thức tính chính xác khá phức tạp và không dễ 16 dàng. Hơn nữa, trong nhiều trường hợp, hàm tương quan theo miền thời gian chính xác hay phổ công suất là không thể tính. Ở đây, chúng ta nhận được giới hạn trên và dưới và giới hạn chung của công suất ICI. Những giới hạn này ít phức tạp hơn và dễ tính toán hơn. Đầu tiên, đưa 1 r(T sx) f d 1 r(T x) = P( f )( f d Dễ thấy s 1 e ở (3.7) vào phổ công suất, P(f), ta có: fd j 2 fT s x ) df = 2 P( f )( 0 1 cos(2 fT x) df) s 1 2 2 1 cos 4 24 2 1 1 2 Hơn nữa, 1 r(T x) (2 f T ) x Với i=1, 2 ..được định nghĩa là 2 s d s fd fd fd 0 k = f 2k P ( f )df = f 2k 1 2 2 fd 1 2k 2 2k fd P ( f )df Hằng số 1 và 2 dễ dàng tính toán và đưa ra kết quả như bảng 1. Thay vào bất đẳng thức (7), chúng ta tính được giới hạn của công suất ICI. PICI 1 12 (2 f T ) (2 f T ) 2 d s d s PICI 1 12 360 (2 f T ) d s 2 2 4 (3.12) Và (3.13) Nếu không biết phổ Doppler, 1 và 2 cũng có thể tính đuowcj thông qua cách tính gần đúng khác. Ví dụ, có thể chứng minh như sau: f d f f d (k) 2 2k 2k P ( f ) df d (t) k dt k (k) Với (t) = E { (t }) = (2 ) . Suy ra: 17 (k) E (t) (2 f d ) 2k { 2 } k = Cách tính có phần đơn giản hơn khi liên quan đến phổ Doppler. Bảng 1 Từ định nghĩa 1 , rõ ràng 1 1. Thực tế, cùng với (3.13), ta có thể tính giới hạn trên của công suất ICI, chỉ phụ thuộc vào f dT s , PICI 1 12 (2 f T ) d s 2 (3.14) Giới hạn trên có thể dung cho hệ thống OFDM với phổ Doppler, bao gồm hệ thống OFDM với tần số off-set. Bởi vì 1 thường nhỏ hơn 1 nên giới hạn trên rộng hơn giới hạn ở (3.13). Tuy nhiên, (3.14) dễ tính toán hơn vì chỉ phụ thuộc f dT s . Với dạng hai dường, 1 = 1 và giới hạn chung cũng là giới hạn hẹp. Như đã nói ở trên, chúng ta có giới hạn chung và riêng cho kênh fading phẳng. Ở hệ thống OFDM kênh fading thời gian phân tán, thường thì ta sẽ giả sử rằng phần mở rộng theo chu kỳ được thêm vào giữa ký tự OFDM để tránh nhiễu xuyên khối. Với giả thuyết đó, ta sẽ có al = i e j 2 lf i Ts Ts 0 (t)e i j 2 lft dt 18 Bởi vì (t) độc lập với I và có cùng thống kê, E { a i l 2 } giống với cả kênh phẳng và kênh fading phân tán. Hơn nữa, công thức chính xác tính P ICI và giới hạn khác cũng có thể để tính kênh phân tán. 3.2.4 Kết luận. Để đi sâu vào tính chính xác các giới hạn, chúng ta so sánh giới hạn trên và giới hạn dưới và giới hạn chung với giá trị chính xác của công suất ICI ( P ICI ). Chú ý rằng với kiểu hai đường, giới hạn trên và dưới là xác định. Giới hạn riêng rất gần để tính chính xác P ICI . Khi thiết kế hệ thống OFDM, nếu chu kỳ của ký tự, Ts, phải được chọn để f dT s rất nhỏ, do đó ảnh hưởng của phổ Doppler sẽ không đáng kể. 3.3.ISI và ICI trong hệ thống FDM Trong hệ thống đa sóng mang (FDM), vấn đề về đa đường và fading lựa tần đc giả quyết. Tín hiệu đc chia thành N dòng song song và truyền trên N sóng mang con với tốc độ nhỏ hơn. Để tiết kiệm băng thông, người ta đưa vào hệ thống OFDM, trong đó các sóng mang con là trực giao lẫn nhau, tức là cho phép các sóng mang con này chồng phổ, như vậy tăng đc hiệu quả sử dụng phổ. 19 Hình 9 Các sóng mang con có dải tần hẹp, khoảng kí hiệu dài hơn nên trễ đa đường tương đối là nhỏ. Do vậy, để khử hoàn toàn nhiễu do đa đường, người ta thêm vào kí hiệuOFDM một khoảng bảo vệ. Khoảng này có thể là khoảng trắng. Tuy nhiên, một vấn đề mới lại nảy sinh. Đó là hiện tượng nhiễu liên kênh (ICI) giữa các sóng mang con của OFDM. Nguyên nhân vẫn ở hiệu ứng đa đường, cộng thêm và khoảng bảo vệ trắng. ICI sinh ra do sự chồng phổ giữa các sóng mang, gây ra xuyên âm. Trong các hệ thống đơn sóng mang, ICI thường xuất hiện ở các hệ thống làm việc tại các dải tần kề nhau. Trong các hệ thống này, người ta thường đưa vào giữa ác dải tần làm việc một khoảng phổ nhằm tránh xuyên âm. Trong hệ thống OFDM nói ở trên, phổ các sóng mang con vốn "chồng" lên nhau, tuy nhiên vẫn không gây xuyên âm, đó là do các sóng mang con là trực giao nhau theo nghĩa toán học. Sự trực giao này sẽ mất đi nếu trong khoảng kí hiệu ( chính xác hơn là trong khoảng tích phân FFT) có 20 một (hay nhiều) sóng mang con không tồn tại chính xác một số nguyên lần chu kì. Hình 10 Khi đó, người ta thay khoảng bảo vệ "trắng" bằng khoảng bảo vệ lặp, tức là mở rộng chu kì mẫu tín hiệu Hình 11 21 Hệ thống OFDM do vậy rất đc kì vọng cho các ứng dụng ở địa hình phức tạp, như các thành phố (với nhiều nhà cao tầng) hay vùng nông thôn(nhiều đồi núi). Theo mình biết thì kĩ thuật này hiện có trong các chuẩn phát thanh số (DAB), truyền hình số (DVB), IEEE802.11a,g và IEEE802.16 với tốc độ truyền dữ liệu rất hấp dẫn, có thể lên tới 54Mbps thay vì 11Mbps như trong CDMA. Tuy nhiên, vấn đề triển khai hệ thống này còn gặp khá nhiều khó khăn, chủ yếu là do vấn đề chi phí lắp đặt, và hiện tại cũng không có nhiều ứng dụng đòi hỏi tốc độ truyền dữ liệu quá cao, còn với các ứng dụng thấp hơn, các hệ thống hiện nay đã quá đủ để cung cấp dịch vụ. Nhiễu lựa chọn tần số cũng là một vấn đề gây ảnh hưởng lớn đến chất lượng truyền thông tín hiệu. Tuy nhiên, OFDM cũng mềm dẻo hơn CDMA khi giải quyết vấn đề này. OFDM có thể khôi phục lại kênh truyền thông qua tín hiệu dẫn đường (Pilot) được truyền đi cùng với dòng tín hiệu thông tin. Ngoài ra, đối với các kênh con suy giảm nghiêm trọng về tần số thì OFDM còn có một lựa chọn nữa để giảm tỷ lệ lỗi bit là giảm bớt số bít mã hoá cho một tín hiệu điều chế tại tần số đó. Do vậy, OFDM không phải không có nhược điểm, đó là nó đòi hỏi khắt khe về vấn đề đồng bộ vì sự sai lệch về tần số, ảnh hưởng của hiệu ứng Doppler khi di chuyển và lệch pha sẽ gây ra nhiễu giao thoa tần số (Intercarrier interference - ICI) mà kết quả là phá bỏ sự trực giao giữa các tần số sóng mang và làm tăng tỷ số bít lỗi (BER). Tuy nhiên OFDM cũng có thể giảm bớt sự phức tạp của vấn đề đồng bộ thông qua khoảng bảo vệ (GI). Sử dụng chuỗi bảo vệ (GI) cho phép OFDM có thể điều chỉnh tần số thích hợp mặc dù việc thêm GI cũng đồng nghĩa với việc giảm hiệu quả sử dụng phổ tần số. Ngoài ra OFDM chịu ảnh hưởng của nhiễu xung, có nghĩa là một xung tín hiệu nhiễu có thể tác động xấu đến một chùm tín hiệu thay vì một số ký tự như trong CDMA và điều này làm tăng tỷ lệ lỗi bit của 22 OFDM so với CDMA. 4. Nhiễu đồng kênh (Co-Channel Interference) 4.1. Khái niệm chung Nhiễu đồng kênh xảy ra khi cả hai máy phát trên cùng một tần số hoặc trên cùng một kênh. Máy thu điều chỉnh ở kênh này sẽ thu được cả hai tín hiệu với cường độ phụ thuộc vào vị trí của máy thu so với hai máy phát. Hình 12: Nhiễu đồng kênh Nhiễu đồng kênh thường gặp trong hệ thống thông tin số cellular, trong đó để tăng hiệu suất sử dụng phổ bằng cách sử dụng lại tần số. Như vậy có thể coi nhiễu đồng kênh trong hệ thống cellular là nhiễu gây nên do các cell sử dụng cùng 1 kênh tần số. Nhiễu đồng kênh liên quan tới việc sử dụng tần số. Có thể ví dụ trong mạng GSM: Trong mạng GSM, mỗi trạm BTS được cấp phát một nhóm tần 23 số vô tuyến. Các trạm thu phát gốc BTS lân cận được cấp phát các nhóm kênh vô tuyến không trùng với các kênh của BTS liền kề. Đặc trưng cho loại nhiễu này là tỉ số sóng mang trên nhiễu (C/I). Tỉ số này được định nghĩa là cường độ tín hiệu mong muốn trên cường độ tín hiệu nhiễu sau lọc cao tần và nó thể hiện mối quan hệ giữa cường độ tín hiệu mong muốn so với nhiễu đồng kênh từ các BTS khác. C/I = 10log (P c/P i) Yêu cầu là C/I <=12dB. Trong đó : Pc là công suất tín hiệu thu mong muốn. Pi là công suất nhiễu thu được. Một số giải pháp để hạn chế loại nhiễu đồng kênh trong các hệ thống cellular như sau: Không thể dùng bộ lọc để loại bỏ giao thoa này do các máy phát sử dụng cùng một tần số. Chỉ có thể tối thiểu hóa nhiễu đồng kênh bằng cách thiết kế mạng cellular phù hợp. Tức là thiết kế sao cho các cell trong mạng có sử dụng cùng nhóm tần số không ảnh hưởng tới nhau=>khoảng cách các cell cùng tần số phải đủ lớn. 4.2.Tái sử dụng tần số 4.2.1.Khái niệm tái sử dụng tần số Mạng tế bào hoạt động trên nguyên tắc phân chia vùng phủ sóng dịch vụ thành các phân vùng hoặc tế bào, ở đó có riêng một tập hợp tài nguyên hoặc kênh để người sử dụng mạng truy nhập. 24 Thông thường, các vùng phủ sóng tế bào được xây dựng theo cấu trúc ô tế bào lục giác. Mạng tế bào bị giới hạn về băng thông hoạt động trên nguyên lý tái sử dụng tần số. Điều này cho thấy, cùng một nhóm tần số được sử dụng lại trong các ô tế bào mà đã được giữ khoảng cách với nhau một khoảng cự ly đủ lớn sao cho không gây tác hại lẫn nhau mà thể hiệu ở sự giao thoa đồng kênh. Đối với một cấu trúc tế bào lục giác, ta có thể co gọn các tế bào thành cụm để đảm bảo không có hai tế bào lân cận nào dùng chung một tần số. Hình 13: Mô hình tái sử dụng tần số Sử dụng lại tần số là việc cấp phát cùng một nhóm tần số vô tuyến tại các vị trí địa lý khác nhau trong mạng mà không làm ảnh hưởng đến chất lượng kết nối tại giao diện vô tuyến do nhiễu đồng kênh và nhiễu kênh lân cận gây nên. a. Nguyên lý tái sử dụng tần số Một hệ thống tổ ong làm việc dựa trên việc sử dụng lại tần số. Nguyên lý cơ bản khi thiết kế hệ thống tổ ong là các mẫu sử dụng lại tần số. Tổng băng thông có trên mạng được phân chia giữa các tế bào trong một cụm. Cụm này sau đó có thể được sử dụng để xác định số cuộc gọi có thể được 25 hỗ trợ trong mỗi tế bào. Bằng việc giảm số lượng các tế bào trong một cụm, dung lượng của hệ thống có thể tăng lên, vì có thể có thêm nhiều kênh hơn trong mỗi tế bào. Tuy nhiên mỗi lần giảm kích thước cụm sẽ gây nên một lần giảm khoảng cách sử dụng lặp tần, do vậy, hệ thống rất có nguy cơ trở thành giao thoa đồng kênh. Theo định nghĩa sử dụng lại tần số là việc sử dụng các kênh vô tuyến ở cùng một tần số mang để phủ sóng cho các vùng địa lý khác nhau. Các vùng này phải cách nhau một cự ly đủ lớn để mọi nhiễu giao thoa đồng kênh (có thể xảy ra) chấp nhận được. Tỉ số sóng mang trên nhiễu C/I phụ thuộc vào vị trí tức thời của thuê bao di động do địa hình không đồng nhất, số lượng và kiểu tán xạ. Phân bố tỉ số C/I cần thiết ở hệ thống xác định số nhóm tần số F mà ta có thể sử dụng. Nếu toàn bộ số kênh quy định N được chia thanh F nhóm thì mỗi nhóm sẽ chứa N/F kênh. Vì tổng số kênh N là cố định nên số nhóm tần số F nhỏ hơn sẽ dẫn đến nhiều kênh hơn ở một nhóm và một đài trạm. Vì vậy, việc giảm số lượng các nhóm tần số sẽ cho phép mỗi đài trạm tăng lưu lượng nhờ đó sẽ giảm số lượng các đài trạm cần thiết cho tải lưu lượng định trước. Ta biết rằng sử dụng lại tần số ở các cell khác nhau thì bị giới hạn bởi nhiễu đồng kênh C/I giữa các cell đó nên C/I sẽ là một vấn đề chính cần được quan tâm. Dễ dàng thấy rằng, với một kích thước cell nhất định, khoảng cách sử dụng lại tần số phụ thuộc vào số nhóm tần số N. Nếu N càng lớn, khoảng cách sử dụng lại tần số càng lớn và ngược lại. b. Các thông số tái sử dụng tần số Việc sử dụng lặp tần số có thể được xác định theo phương trình sau cho mỗi kích thước cụm tế bào: 26 Trong đó: D là khoảng cách trung bình sử dụng lặp tần. R là bán kính tế bào. N là kích cỡ cụm. Hình 14: Khoảng cách tái sử dụng tần số Các mẫu tái sử dụng tần số được ký hiệu tổng quát : mẫu M/N Trong đó: M= tổng số site / cluster N = tổng số cell / cluster l Hệ số sử dụng lại tần số: 1/N => Mỗi cell được cấp phát 1/N tổng số kênh tần số vô tuyến trong 1 cluster . Trong một môi trường tán xạ di động mặt đất, cường độ công suất máy thu được tại một khoảng R từ thiết bj phát liên quan đến biểu thức sau: 27 Trong đó thường lấy bằng 4. là một hằng số liên quan tới môi trường mặt đất, Đối với một cấu hình gồm 7 tế bào sử dụng lặp tần, tỷ số sóng mang - giao thoa xảy ra do một máy mobile trong vùng 6 tế bào nằm trong khoảng cách D so với máy mobile sử dụng lặp tần tối thiểu, nghĩa là, bên ngoài vành đai thứ nhất của mẫu cụm tế bào sử dụng lặp tần, được cho bởi phương trình: = = q: là tham số suy giảm giao thao đồng kênh, được cho bởi phương trình: Biểu thức trên giả thiết rằng công suất phát ra bởi tất cả các tế bào là tương đương và sự giao thao đồng kênh tín hiệu nhận được từ các tế bào hoạt động dựa trên cùng loại tần số tại vành đai thứ hai của cụm tế bào có thể được lược bỏ. Do vậy, đối với , một mẫu cụm 7 tế bào có thể cho một tỷ số C/I là 18dB. Để giảm thiểu hiệu ứng của việc giao thoa đồng kênh, sử dụng các kỹ thuật điều khiển công suất tài điểm đầu cuối mobile và trạm cơ sở để đảm bảo chất lượng dịch vụ Ngoài ra ta còn có công thức tính C/I tại máy di động MS như sau: Trong đó x là hệ số truyền sóng. 28 4.3.Các mẫu tái sử dụng tần số 4.3.1. Mẫu 3/9 Mẫu tái sử dụng tần số 3/9 có nghĩa các tần số sử dụng được chia thành 9 nhóm ấn định trong 3 vị trí trạm gốc. Mẫu này có khoảng cách giữa các đài đồng kênh là D = 5.2R. Hình 15 Các tần số ở mẫu 3/9 Ấn định tấn số A1 1 10 19 28 37 B1 2 11 20 29 38 C1 3 12 21 30 39 A2

Các file đính kèm theo tài liệu này:

  • docLý thuyết về 05 loại nhiễu trong thông tin di động.doc