Tiểu luận Tính toán thiết kế trạm xử lý nước thải sinh hoạt tập trung cho khu đô thị có 10.000 dân

MỤC LỤC

LỜI MỞ ĐẦU .3

I. ĐẶC TÍNH NƢỚC THẢI, THÔNG SỐ ĐẦU VÀO VÀ YÊU CẦU ĐẦU RA:.4

I.1. Đặc tính nƣớc thải: .4

I.2. Thông số nƣớc thải đầu vào và tiêu chuẩn nƣớc thải đầu ra: .4

I.2.1. Lƣu lƣợng nƣớc thải: .4

I.2.2. Đặc tính nƣớc thải đầu vào: .5

II. PHƢƠNG ÁN XỬ LÝ NƢỚC THẢI. .9

II.1. Tổng quan xử lí nƣớc thải sinh hoạt. .9

II.2. Đề xuất công nghệ. . 11

II.2.1 Phƣơng án 1: . 11

II.2.2 Phƣơng án 2: . 13

II.3.Lựa chọn công nghệ: . 14

III. TÍNH TOÁN CÔNG TRÌNH ĐƠN VỊ. .15

III.1. Cổng xả nƣớc thải tập trung vào công trình xử lý. . 15

III.3. Bể tiếp nhận. . 18

III.3.1 Tính toán bể tiếp nhận. . 19

III.3.2 Hệ thống bơm nƣớc. . 19

III.4. Mƣơng dẫn nƣớc. . 19

III.5. Song chắn rác tinh. . 19

III.6. Bể vớt dầu. . 22

III.7. Bể điều hòa. . 25

IV. TÍNH TOÁN BỂ AEROTEN LÀM VIỆC THEO MẺ - SBR. . 28

V. TÍNH TOÁN TRẠM KHỬ TRÙNG NƢỚC THẢI. . 36

V.1. Tính toán lƣợng Clo cần dung. . 37

V.2. Tính toán máng trộn – máng trộn vách ngăn có lỗ. . 38

V.3. Tính toán bể tiếp xúc. . 39

V.4. Tính toán máy ép bùn băng tải. . 39

KẾT LUẬN .41

TÀI LIỆU THAM KHẢO .42

pdf42 trang | Chia sẻ: netpro | Lượt xem: 3112 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Tiểu luận Tính toán thiết kế trạm xử lý nước thải sinh hoạt tập trung cho khu đô thị có 10.000 dân, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ải đạt mức B theo QCVN14:2008 với các thông số nhƣ trên. II. PHƢƠNG ÁN XỬ LÝ NƢỚC THẢI. II.1. Tổng quan xử lí nƣớc thải sinh hoạt. Với nƣớc thải sinh hoạt hiện nay trên thế giới nói chung và Việt Nam nói riêng, công nghệ xử lí thƣờng là sự kết hợp của phƣơng pháp xử lí cơ học và phƣơng pháp xử lí sinh học với các bƣớc cụ thể nhƣ sau:  Tiền xử lí: có nhiệm vụ loại bỏ khỏi nƣớc thải tất cả các vât có thể gây tắc nghẽn đƣờng ống, làm hƣ hại máy bơm, làm giảm hiệu quả xử lí của giai đoạn sau, cụ thể: - Loại bỏ vật lơ lửng có kích thƣớc lớn trong nƣớc thải: bông, gỗ, giẻ lau, vỏ hoa quả… - Loại bỏ cặn nặng nhƣ cát, mảnh kim loại, thủy tinh… - Loại bỏ phần lớn dầu mỡ Trong tiền xử lí có các bƣớc sau: - Song chắn rác thô: loại bỏ rác có kích thƣớc lớn, thƣờng đƣợc đặt phía trƣớc đƣờng ống khi vào hệ thống xử lí - Song chắn rác tinh, loại bỏ cặn có kích thƣớc nhỏ hơn, những loại cặn này thƣờng gây tắc nghẽn hệ thống phân phối khí và các thiết bị làm thoáng cho các bƣớc xử lí sau.  Xử lí sơ bộ: có nhiệm vụ lắng cát và tách dầu mỡ ra khỏi nƣớc thải, đồng thời điều hòa lƣu lƣợng và nồng độ nƣớc thải. CNMT- K51 10 Trong bƣớc xử lí sơ bộ thƣờng qua các giai đoạn sau: - Bể lắng cát và vớt dầu mỡ: thƣờng đạt sau song chắn rác và trƣớc bể điều hòa để loại bỏ cặn thô nhƣ cát, sỏi…để bảo vệ các thiết bị cơ khí dễ bị mài mòn, giảm cân nặng ở các công đoạn xử lí sau. - Bể điều hòa: đặt sau bể lắng cát và trƣớc bể lắng sơ cấp. Dùng để điều hòa lƣu lƣợng cũng nhƣ nồng độ nƣớc thải. Trong bể có hệ thống khuấy trộn để bảo đảm hòa tan và san đều nồng độ các chất bẩn trong thể tích toàn bể, không cho cặn lắng trong bể. - Bể lắng đợt 1: dung cho nƣớc thải nhằm loại bỏ ra khỏi nƣớc thải ba loại căn khác nhau: cặn cứng (cát), cặn lơ lửng có bề mặt thay đổi có khả năng keo tụ và dính kết trong quá trình lắng, các bông cặn có khả năng liên kết và có nồng độ lớn.  Xử lí sinh học: mục đích quá trình xử lí sinh học là lợi dụng các hoạt động sống và sinh sản của vi sinh vật để khử các hợp chất hữu cơ chứa Cacbon, Nito và Photpho trong nƣớc thải. Đây là bƣớc xử lý quan trọng cho nƣớc thải sinh hoạt, quyết định chất lƣợng nƣớc đầu ra. Có rất nhiều công nghệ khác nhau đƣợc áp dụng cho bƣớc xử lí sinh học nƣớc thải nhƣ dung bể thổi khí lien tục (aeroten) bể sinh học hoạt động theo mẻ (SBR), công nghệ kết hợp quá trình yếm khí – thiếu khí – hiếu khí AAO, công nghệ thiếu khí, hiếu khí, kênh oxy hóa hoàn toàn... Mỗi công nghệ đều có ƣu và nhƣợc điểm khác nhau, việc lựa chọn thƣờng dựa vào nồng độ các trạng thái các chất hữu cơ dễ bị oxi hóa trong nƣớc thải, điều kiện môi trƣờng khí hậu…  Xử lí cặn trong nƣớc thải: trong nƣớc thải có các chất không hòa tan nhƣ : cát, cặn lắng, rác…đƣợc phơi khô, hoặc giảm ép thể tích và vận chuyển về bãi chon lấp. CNMT- K51 11  Giai đoạn khử trùng: nhằm tiêu diệt vi sinh vật có hại, là giai đoạn bắt buộc với một số loại nƣớc thải nhằm bảo đảm nƣớc khi ra thải ra ngoài không gây hại đến môi trƣờng xung quanh.  Xử lí mùi phát tán: mùi sinh ra ở các bể thu gom nƣớc thải ban đầu đƣợc thu gom và hấp phụ trƣớc khi thải vào môi trƣờng không khí. II.2. Đề xuất công nghệ. Dựa trên đặc điểm nƣớc thải trƣớc xử lý, yêu cầu nƣớc thải sau xử lý, công nghệ xử lý nƣớc thải hiện nay, mặt bằng công trình và yêu cầu của chủ đầu tƣ, nhóm đề xuất 2 công nghệ. II.2.1 Phƣơng án 1:  Tiếp nhận: hầm tiếp nhận;  Điều hòa: bể điều hòa lƣu lƣợng;  Xử lý cơ học: song chắn rác thô, song chắn rác tinh, bể lắng cát thối khí, bể lắng đợt một;  Xử lý sinh học: tháp lọc sinh học, bể lắng đợt 2;  Xử lý cặn: sân phơi cát, bể chứa bùn, máy ép bùn băng tải;  Khử trùng: bằng dung dịch CaOCl2 2.5%. Sơ đồ công nghệ: CNMT- K51 12 Nƣớc Cặn tƣơi Bùn tuần hoàn Bơm Bùn hoạt tính dƣ Hầm tiếp nhận Song chắn rác Bể lắng cát thổi khí Bể điều hòa Lắng I Aeroten L ắng II Bể chứa Nước tưới cây, rửa đưòng Nguồn tiếp nhận NaClO Nén bùn Ép bùn Bùn thải Thùng Rác Sân phơi cát CNMT- K51 13 Thuyết minh sơ bộ công nghệ: Nƣớc thải sinh hoạt đƣợc thu gom bằng hệ thống thoát nƣớc thải sinh hoạt riêng dẫn về trạm xử lý, vào bể tiếp nhận có song chắn rác thô (ke hở 30mm) cào rác thủ công và hệ thống sục khí nhằm tránh khả năng lắng cặn của nƣớc thải. Sau khi nƣớc thải trong bể tiếp nhận đạt đến một mức nhất định sẽ đƣợc bơm đến song chắn rác tinh (ke hở 16mm) có cào rác cơ giới trƣớc khi đến bể lắng cát thổi khí. Tại bể lắng cát thổi khí, các chất rắn vô cơ, có trọng lƣợng lớn sẽ bị tách ra khỏi nƣớc và đƣợc xả vào sân phơi cát sau một khoảng thời gian nhất định do diều kiện vận hành hệ thống thực tế quyết định. Sau đó nƣớc thải đƣợc dẫn đến bể điều hoà lƣu lƣợng với hệ thống sục khí dể chống khả năng lắng cặn tại bể, tại đây đồng thời cũng xảy ra quá trình đông tụ sinh học (sử dụng một phần màng vi sinh vật đƣợc sinh ra để tuần hòan lại bể lắng). Sau đó nƣớc đƣợc bơm lên bể lắng đợt 1. Nƣớc sau khi qua lắng đợt 1 đƣợc dẫn đến ngăn chứa trung gian. Nƣớc từ ngăn chứa trung gian đƣợc bơm tháp lọc sinh học. Tại tháp lọc sinh học nƣớc thải đƣợc xử lý bằng quá trình sinh học dính bám hiếu khí. Nƣớc sau khi ra khỏi tháp lọc sinh học, đƣợc dẫn đến bể lắng đợt hai. Bể lắng đợt hai làm nhiệm vụ tách nƣớc sau xử lý sinh học với màng sinh vật. Nƣớc sau xử lý sinh học đƣợc khử trùng bằng dung dịch CaOCl2 2,5%. Dung dịch CaOCl2 đƣợc cho vào trên đƣờng ống dẫn nƣớc từ bể lắng đợt hai đến bể chứa, nƣớc tiếp tục quá trình tiếp xúc tại bể chứa nƣớc sau xử lý. II.2.2 Phƣơng án 2:  Tiếp nhận: hầm tiếp nhận;  Điều hòa: bể điều hòa lƣu lƣợng CNMT- K51 14  Xử lý cơ học: song chắn rác thô, song chắn rác tinh, bể vớt dầu;  Xử lý sinh học: aeroten làm việc theo mẻ (SBR);  Xử lý cặn: sân phơi bùn, máy ép bùn băng tải.  Khử trùng: khử trùng bằng hơi clo. Sơ đồ công nghệ Thuyết minh sơ bộ công nghệ: Nƣớc thải sinh hoạt thu gom bằng hệ thống thoát nƣớc thải sinh hoạt riêng (có xây dựng các hố ga để thu bùn cặn và thu cát) đƣợc dẫn về trạm xử lý, vào bể tiếp nhận có song chắn rác thô (ke hở 30mm) cào rác thủ công. Nƣớc thải trong bể tiếp nhận đạt đến một mức nhất định sẽ khởi động bơm, bơm nƣớc thải vào mƣơng dẫn đến song chắn rác tinh. Nƣớc thải đi qua song chắn rác tinh sẽ vào bể vớt dầu, từ bể vớt dầu nƣớc thải sẽ chảy xuống bể điều hòa với hệ thống sục khí để chống lắng cặn. Nƣớc thải từ bể điều hòa đến một thời điểm nhất định đƣợc bơm sang bể SBR. Tại bể SBR, tuần tự tiến hành các quá trình tạo phản ứng sinh hóa giữa nƣớc thải và bùn hoạt tính (bằng sục khí), lắng trong, tháo nƣớc trong, tháo bùn cặn. Nƣớc sau khi ra khỏi bể SBR đƣợc dẫn vào máng trộn. Ở đây, nƣớc thải đƣợc trộn với clo lỏng, từ máng trộn nƣớc thải đƣợc dẫn vào bể tiếp xúc để clo chuyển hóa thành các chất diệt trùng. Sau khi diệt trùng, nƣớc thải theo cống thoát ra ngoài. II.3.Lựa chọn công nghệ: Cả 2 phƣơng án trên đều cho hiệu quả xử lý tốt, nƣớc thải sau xử lý đạt yêu cầu. Tuy nhiên, phƣơng án 2 có một số ƣu điểm nổi trội hơn phƣơng án 1 là: số đơn vị công trình ít hơn, khối lƣợng xây dựng ít hơn, chi phí đầu tƣ ban đầu thấp hơn. Do đó chọn phƣơng án 2 là phƣơng án thiết kế. CNMT- K51 15 III. TÍNH TOÁN CÔNG TRÌNH ĐƠN VỊ. III.1. Cổng xả nƣớc thải tập trung vào công trình xử lý. Chọn đƣờng kính cống xả tập trung vào hệ thống xử lý nƣớc thải là cống hình trữ nhật có bề ngang 300 mm (0.3m), chiều cao 200 mm. Độ dốc là 0.004. Tra bảng thủy lực với các thông số : Qmax = 31 m/s B = 300 mm H = 200 mm Song chắn rác thô Bể gom - điều hòa bơm Nƣớc thải từ khu dân cƣ Bể Aerotan làm việc theo mẻ (SBR) Bể khử trùng Máy ép bùn Nƣớc sau xử lý đạt QCVN 14-2008 cột B Máy thổi khí Bơm bùn Bùn khô Clo Thùng chứa rác CNMT- K51 16 i = 0.004 ta có: v = 0.8 m/s h = 0.13 m – chiều cao mực nƣớc ứng với Qh. max Vkl = 0.74 m/s – vận tốc không lắng. Cống đƣợc đặt sâu 0.5m so với mặt đất. III.2. Song chắn rác thô: Song chắn rác đặt cùng chiều cao so với cống dẫn nƣớc thải. Chọn song chắn rác có kích thƣớc khe hở là 30 mm. Tiết diện song chắn hình chữ nhật có kích thƣớc s*l = 8*50 mm. Song chắn rác đặt nghiêng một góc 60 0 so với mặt nằm ngang. Số khe hở trên song chắn rác (có tính đến hiện tƣợng thu hẹp dòng chảy qua song chắn): n= k bhV q s 1 trong đó: q = 0.031 m 3 /s - lƣu lƣợng tối đa của nƣớc thải, m3/s Vs = 0.75 m/s - tốc độ nƣớc chảy qua song chắn, h1 = 0.13 m - độ sâu nƣớc ở chân song chắn, chọn bằng độ sâu nƣớc ở cống dẫn nƣớc thải. k: 1.05 - hệ số tính đến hiện tƣợng thu hẹp dòng b = 0.03 m - khoảng cách giữa các thanh chắn. 122.1105.1* 03.0*13.0*75.0 031.0 n (khe hở) Chiều rộng thiết kế song chắn: Bs=S*(n-1) + b*n Trong đó: S: chiều dày thanh chắn: S= 8mm = 0.008m b: khoảng cách giữa các thanh chắn. b= 30mm = 0.03m CNMT- K51 17 Bs=0.008*( 12-1) + 0.03*12 = 0.448 (chọn Bs = 0.5 m) Góc mở rộng của buồng đặt song chắn rác lấy bằng 200, chiều dài đoạn mở rộng tính theo công thức: l1=     KS KS BB tg BB 37.1 202 0 1.37*(0.5 – 0.3) = 0.274 m Chiều dài đoạn thu hẹp sau song chắn: l2=0.5*l1 = 0.5*0.274 = 0.137 m Chiều dài đoạn mƣơng mở rộng chọn theo cấu tạo l=1.5m. vậy chiều dài mƣơng chắn rác thô là: lxd = l1 + l + l2 = 0.274 + 1.5 + 0.137 = 1.911 m ( chọn là 2 m) Tổn thất áp lực qua song chắn thô: k g v h 2 2  Trong đó: vk = 0.8 m/s – vận tốc nƣớc chảy trong mƣơng trƣớc song chắn ( ứng với lƣu lƣợng lớn nhất) k: 2 – hệ số tính đến hệ số tổn thất áp lực do rác mắc vào song chắn. : hệ số tổn cục bộ tại song chắn:  sin 3 4        b S Với : 1.67 – hệ số phụ thuộc vào tiết diện ngang của thanh song chắn với α= 600 - góc nghiêng của song chắn so với mặt phẳng nằm ngang.  sin 3 4        b S = 60sin 03.0 008.0 *67.1 3 4        = 0.248 Tổn thất qua song chắn rác: CNMT- K51 18 k g v h 2 2  = 2* 8.9*2 8.0 *248.0 2 h = 0.016 m Chiều cao xây dựng song chắn rác thô: Hxd = hmax + hbảo vệ + h = 0.13 + 0.016 + 0.35 = 0.496 = 0.5 m lƣợng rác giữ lại trong ngày xác định theo công thức: W= 1000*365 *Na a: lƣợng rác tính trên đầu ngƣời trong năm, l/ngƣời/năm, theo TCXDVN51-2008 : Khe hở song chắn (mm) 16-20 25-35 40-60 60-80 90-100 Lƣợng rác giữ lại (l/ngƣời/năm) 8 3 2.3 1.6 1.2 Vậy a = 3 (l/ngƣời/năm). N: số ngƣời sử dụng hệ thống, N=10000.  W1 082.0 1000*365 10000*3  (m 3/ngày) Với lƣợng rác phát sinh <0.1m3/ngày, ta áp dụng hệ thống thu rác thủ công. Trọng lƣợng rác phát sinh là: P1=W1*G = 0.082*750 = 61.5 kg G = 750kg/m 3 – khối lƣợng riêng của rác Trọng lƣợng rác trong lấy ra từ song chắn rác trong từng giờ: Ph= hk P * 24 = 2* 24 5.61 =5.125 kg/h Kh= 2, hệ số không điều hòa giờ của rác. Khoảng thời gian giữa các lần cào rác tại song chắn rác thô với cào rác thủ công do điều kiện thực tế vận hành. III.3. Bể tiếp nhận. Bể tiếp nhận làm nhiệm vụ tiếp nhận nƣớc thải đã qua song chắn rác thô và bơm nƣớc đến bể vớt dầu. CNMT- K51 19 III.3.1 Tính toán bể tiếp nhận. Bể tiếp nhận đƣợc thiết kế để có thể chứa một lƣợng nƣớc thải trong ½ giờ ứng với lƣu lƣợng lớn nhất – 55.8 m3/h. Kích thƣớc bể tiếp nhận: B*L*H = 5*5.6*2 m Chọn chiều cao xây dựng bể tiếp nhận là 2.5 m. III.3.2 Hệ thống bơm nƣớc. Bố trí 3 bơm nƣớc loại máy bơm hố móng nhãn hiệu DVX 200 AUT (2 làm việc , 1 dự phòng) có công suất tối đa 33m3/h, cột áp 3.6 m. III.4. Mƣơng dẫn nƣớc. Nƣớc thải đƣợc dẫn từ bể tiếp nhận sang bể vớt dầu bằng mƣơng có tiết diện hình chữ nhật. Thông số tính toán Lƣu lƣợng tính toán ( l/s) q tb = 15.5 31max tbq 44.7min tbq Độ dốc i: 0.0045 0.0045 0.0045 Bề ngang b (mm): 250 250 250 Vận tốc v (m/s): 0.691 0.826 0.555 Độ đầy h (m): 0.090 0.150 0.052 Chiều cao xây dựng mƣơng: H= hmax + hbảo vệ Với hmax = 0.150 m, hbảo vệ lấy là 0.35m H = 0.150+ 0.35 = 0.5m. III.5. Song chắn rác tinh. Chọn song chắn rác có kích thƣớc khe hở là 16 mm. Tiết diện song chắn hình chữ nhật có kích thƣớc s*l = 8*50 mm. Song chắn rác đặt nghiêng một góc 60 0 so với mặt nằm ngang. CNMT- K51 20 Chiều sâu lớp nƣớc ở song chắn rác lấy bằng chiều cao lớp nƣớc cửa mƣơng dẫn nƣớc thải: h1 = hmax = 0.150m Số khe hở của song chắn rác là: k bhV q n s 1 max Trong đó: k=1.05 –hệ số tính đến hiện tƣợng thu hẹp dòng chảy. qmax = 31 l/s Vs: vận tốc dòng nƣớc qua song chắn, (0.8 – 1) chọn Vs= 0.9 m/s b= 0.016 m – khoảng cách giữa các khe hở của song chắn.  05.1* 016.0*15.0*9.0 31 n 15 (khe) Chiều rộng song chắn tính theo công thức: Bs= S*(n-1) + b*n Trong đó: S: chiều dày thanh chắn = 0.008 m Vậy Bs= 0.008*(15-1) + 0.016*15 = 0.35 m Kiểm tra lại vận tốc lại vận tốc dòng chảy tại vị trí mở rộng của mƣơng trƣớc song chắn ứng với lƣu lƣợng nƣớc thải nhỏ nhất nhằm tránh sự lắng cặn tại đó. Vận tốc này phải lớn hơn 0.4 m/s. Với qmin = 7.44 l/s = 0.00744 m 3 /s: min min min *hB q v s  = 052.0*35.0 00744.0 = 0.409 m/s Độ dài phần mở rộng l1: l1= 1.37*(Bs-Bk) = 1.37*(0.35 – 0.25) = 0.137 m Độ dài phần thu hẹp l2: l2 = 0.5*l1 = 0.5*0.137 = 0.0685 m. Chiều dài đoạn mƣơng mở rộng chọn theo cấu tạo l=1.5m. Vậy chiều dài mƣơng chắn rác tinh là: lxd = l1 + l + l2 = 0.137 + 1.5 + 0.0685 = 1.7055 m ( chọn là 1.7 m) Tổn thất áp lực qua song chắn tinh: k g v h 2 2  CNMT- K51 21 Trong đó: vk = 0.826 m/s – vận tốc nƣớc chảy trong mƣơng trƣớc song chắn (ứng với lƣu lƣợng lớn nhất) k: 2 – hệ số tính đến hệ số tổn thất áp lực do rác mắc vào song chắn. : hệ số tổn cục bộ tại song chắn:  sin 3 4        b S Với : 1.79 – hệ số phụ thuộc vào tiết diện ngang của thanh song chắn theo số liệu trang 75 – giáo trình công nghệ xử lý nƣớc thải – nhà xuất bản khoa học kỹ thuật năm 1999 – với tiết diện tròn, d = 0.01m α= 600 - góc nghiêng của song chắn so với mặt phẳng nằm ngang.  sin 3 4        b S = 60sin 016.0 01.0 *79.1 3 4        = 0.83 Tổn thất qua song chắn rác: k g v h 2 2  = 2* 8.9*2 826.0 *83.0 2 h = 0.06 m Chiều cao xây dựng song chắn rác tinh: Hxd = hmax + hbảo vệ + h = 0.150 + 0.3 + 0.06 = 0.51 = (chọn là 0.5 m) lƣợng rác giữ lại trong ngày xác định theo công thức: W= 1000*365 *Na N: số ngƣời sử dụng hệ thống, N=10000. a: lƣợng rác tính trên đầu ngƣời trong năm, l/ngƣời/năm, theo TCXDVN51-2008 : Khe hở song chắn (mm) 16-20 25-35 40-60 60-80 90-100 Lƣợng rác giữ lại (l/ngƣời/năm) 8 3 2.3 1.6 1.2 Vậy a = 8 (l/ngƣời/năm). CNMT- K51 22  W1 22.0 1000*365 10000*8  (m 3/ngày) Với lƣợng rác phát sinh > 0.1m3/ngày, ta áp dụng hệ thống thu rác cơ giới. Trọng lƣợng rác phát sinh là: P1=W1*G = 0.22*750 = 165 kg G = 750kg/m 3 – khối lƣợng riêng của rác Trọng lƣợng rác trong lấy ra từ song chắn rác trong từng giờ: Ph= hk P * 24 = 2* 24 165 = 13.75 kg/h Kh= 2, hệ số không điều hòa giờ của rác. Khoảng thời gian giữa các lần cào rác tại song chắn rác tinh với cào rác cơ giới do điều kiện thực tế vận hành. III.6. Bể vớt dầu. Bể vớt dầu có kết cấu và cách tính toán tƣơng tự bể lắng ngang. Việc tính toán bể vớt dầu đƣợc tiến hành theo chỉ dẫn điều 7.53 TCXDVN 51-2008: Chiều dài bể vớt dầu đƣợc tính: L = 0* * UK HV Trong đó: V = 5 mm/s : Tốc độ dòng chảy lấy theo quy phạm. H = 2 m : Chiều cao công tác của bể. K: hệ số phụ thuộc vào loại bể lắng, đối với bể lắng ngang K = 0.5 U0: Độ lớn thuỷ lực của hạt dầu, chọn U0 = 0.5 mm/s. Vậy chiều dài của bể là: L = 0* * UK HV = 5.0*5.0 2*5 = 40 m Thời gian lƣu nƣớc trong bể: CNMT- K51 23 t = v L = 3600*10*5 40 3 = 2.2 (h) Diện tích tiết diện ƣớt của bể vớt dầu: w = v Q = 310*5 031.0  = 6.2 m 2 Chiều ngang tổng cộng của bể lắng ngang: B = H w = 2 2.6 = 3.1 m Tốc độ nổi của hạt dầu: Ứng với U0 = 0.5 mm/s khoảng 65% các hạt dầu bị giữ lại ở lớp váng. Trên bề mặt bể ta bố trí một thiết bị để gạt váng dầu, tốc độ làm việc của thiết bị tùy thuộc điều kiện vận hành thực tế của nhà máy quyết định. Trong bể, ngoài quá trình nổi của hạt dầu thì cũng đồng thời xảy ra quá trình lắng cặn nên ngoài mục đích vớt dầu ta cũng thu đƣợc một lƣợng cặn dƣới đáy bể. Đáy bể đƣợc làm dốc về phần đầu để cặn lắng tự chảy vào hố thu cặn. Hiệu quả khử BOD5 và SS R = tba t * Trong đó: R: hiệu quả khử BOD5, SS (biểu thị bằng %) t: thời gian lƣu nƣớc, giờ a,b: hằng số thực nghiệm, chọn theo bảng: bảng: giá trị của hằng số thực nghiệm a,b ở t0> 200C Chỉ tiêu a đơn vị b Khử BOD5 Khử SS 0.018 0.0075 0.02 0.014 CNMT- K51 24 RBOD = tba t * = 2.2*02.0018.0 2.2  = 35 % RSS = tba t * = 2.2*014.00075.0 2.2  = 57 % Hàm lƣợng BOD5 và SS còn lại trong nƣớc thải là: BOD5 còn lại = 350 * (1 - 0.35) = 228 SS còn lại = 350 * (1 - 0.57) = 151 Lƣợng bùn cặn phát sinh: Wc = c hh pp TECQ *)%100( ***  m 3 Trong đó: Chh: hàm lƣợng chất lơ lửng trong nƣớc thải ban đầu, Chh = 350 mg/l E: hiệu suất lắng BOD5 của bể lắng, E = 57% T: chu kì xả cặn, T = 1 ngày P: độ ẩm của cặn lắng, p = 95% Pc: tải trọng thể tích của cặn, pc = 1.02 T/m 3 = 1.02*10 6 g/m 3 Wc = c hh pp TECQ *)%100( ***  = 610*02.1*)%95100( 1*57.0*350*1320  = 5.17 m 3/ngày Chiều cao vùng chứa nén cặn: H0 = BL W c * = 1.3*40 17.5 = 0.05 m Chiều cao xây dựng bể: Hxd = Hbv + H + H + Hth + Hc Trong đó: Hbv: chiều cao bảo vệ, Hbv = 0.35 m H: chiều cao công tác của bể, H = 2 m CNMT- K51 25 Hth: chiều cao lớp nƣớc trung hòa của bể, hth = 0.4 m Hc: chiều cao lớp cặn, Hc = 0.05 m Hxd = Hbv + H + H + Hth + Hc = 0.35 + 2 + 0.4 + 0.05 = 2.8 m III.7. Bể điều hòa. Lƣu lƣợng và chất lƣợng nƣớc thải từ hệ thống thu gom chảy về nhà máy xử lý thƣờng xuyên dao động, do đó bể điều hòa có tác dụng ổn định lƣu lƣợng và chất lƣợng dòng, khắc phục những vấn đề vận hành do sự dao động lƣu lƣợng nƣớc thải gây ra và nâng cao hiệu suất các quá trình xử lý ở phía sau. Nƣớc thải vào bể có pH không ổn định nên tại bể điều hòa có đầu đo pH tự động. PH đƣợc điều chỉnh nhờ dung dịch NaOH và dung dịch H2SO4 đặc (98%). Ngoài ra, máy nén khí cung cấp oxy để tạo ra sự xáo trộn hoàn toàn và tránh gây mùi hôi thối. Thể tích bể: W = Qmax*T Trong đó: Qmax - lƣu lƣợng nƣớc thải lớn nhất, Qmax = 111.6 m 3 /h. T - thời gian lƣu nƣớc trong bể điều hoà, chọn t = 6 giờ. → W = 111.6*6 = 670 m3 Chọn chiều cao công tác của bể là h = 4 m → Diện tích bể là: F = h W = 167.5 Chọn bể hìnhvuông, kích thƣớc: D = 13 m Chọn chiều cao dự trữ của bể là 0.5 m Chiều cao xây dựng của bể là : H = 4 + 0.5 = 4.5 m Để duy trì tình trạng hiếu khí nhằm hoà tan và san đều nồng độ các chất bẩn trong toàn thể tích bể và tránh lắng cặn, cần cung cấp không khí với tốc độ CNMT- K51 26 0.010.015m3/m3 thể tích.min [trang 344, Waste Water Engineering, Mecalf and Eddy, fourth edition, Mc Graw Hill]. Chọn tốc độ cấp khí là 0.015m3/m3min. Lƣu lƣợng khí cần thiết Qkhí = 0.015m 3 /m 3 .min x 670 m 3 = 10.05 m 3 khí/min = 603 m3 /h = 0.1675 m 3 /s. Chọn thiết bị sục khí dạng đĩa nhãn hiệu Rotobubble diffuser: Vật liệu: ABS và nhựa PU; Kích thƣớc: đƣờng kính 144 mm, cao 71mm; Lƣu lƣợng 100  450 lpm. Giả sử lƣu lƣợng khí q = 250 lpm = 250l/min = 0.25 m3/min. Số lƣợng đĩa: N = 10.05 m3/min : 0.25 m3/min = 40.2 đĩa Chọn số lƣợng đĩa là 49 cái, đƣợc bố trí theo 7 hàng, mỗi hàng có 7 đĩa. Tính đƣờng kính ống dẫn khí chính: Bể điều hòa có 1 đƣờng ống dẫn khí chính, vận tốc khí trong ống từ 1015 m/s. Chọn v = 13m/s Đƣờng kính ống dẫn khí chính: Dc = v Q * *4  = 13*14.3 1675.0*4 =0.128 m Chọn ống sắt tráng kẽm có đƣờng kính 150 mm. Kiểm tra vận tốc khí trong ống: v = 14.3*15.0 1675.0*4 2 = 9.5 m/s Tính đƣờng kính ống dẫn khí nhánh CNMT- K51 27 Có 6 ống nhánh, lƣu lƣợng qua mỗi ống nhánh: q = 0.1675 m 3 /s : 6 = 0.028 m 3 /s Vận tốc khí trong ống nhánh =10 15 m/s, chọn von = 12m Đƣờng kính ống dẫn khí nhánh Dc = v Q * *4  = 12* 028.0*4  =0.0545 m Chọn ống sắt tráng kẽm 60 mm. Kiểm tra vận tốc khí trong ống: v = *06.0 028.0*4 2 = 9.9 m/s Ap lực cần thiết cho hệ thống máy thổi khí xác định theo công thức Hct = hd + hc +hf + H Trong đó: hd: tổn thất áp lực do ma sát dọc theo chiều dài ống dẫn, m, hc: tổn thất cục bộ, m, hf : tổn thất qua thiết bị phân phối, m, H: chiều cao hữu ích của bể, m. Tổng tổn thất hd và hc thƣờng không vƣợt quá 0.4m, Tổn thất hf thƣờng không vƣợt quá 0.5m. Do đó, áp lực cần thiết: Hct =0.4 + 0.5 + 4.0 = 4.9m CNMT- K51 28 Hệ số an toàn khi sử dụng máy thổi khí = 2. Lƣợng không khí thiết kế chọn máy thổi khí là : Qkhí = (603 m 3 /h x 2) = 1206 m 3 /h Lƣu lƣợng của mỗi máy thổi khí Qblower = 1206 m 3/h : 2 máy = 603 m3/h Chọn 2 máy thổi khí (một làm việc, một dự phòng), hiệu VB–110–E2 có: Lƣu lƣợng max 16 m3/phút, Chọn 4 (hai làm việc, 2 dự phòng) máy bơm CM 80-160 D hiệu Pentax cho bể điều hòa để bơm nƣớc sang 2 bể SBR, mỗi bể SBR ứng với 1 máy bơm hoạt động và 1 máy dự phòng. Máy bơm CM 80-160 có: Lƣu lƣợng tối đa 168 m3/h, đạt đƣợc cột áp 15 m, công suất 12.3 kW. Bảng IV.1.Các thông số của bể điều hòa STT Thông số Đơn vị Giá trị 1 2 3 4 Thời gian lƣu Chiều cao bể Chiều dài bể Chiều rộng bể giờ m m m 6 4.5 13 13 IV. TÍNH TOÁN BỂ AEROTEN LÀM VIỆC THEO MẺ - SBR. Ta thiết kế bể aeroten hoạt động theo mẻ kế tiếp với các thông số đầu vào:  Công suất tổng cộng: 1320 m3/ngày  Số lƣợng bể: 2  Hàm lƣợng BOD5 đầu vào trung bình: 228 mg/l CNMT- K51 29  Hàm lƣợng cặn lơ lửng: 151 mg/l  Hàm lƣợng chất hữu cơ trong cặn lơ lửng: 65% Thông số đầu ra:  BOD5 đầu ra đạt: 50 mg/l  Hàm lƣợng cặn lơ lửng đầu ra: 50 mg/l  Độ tro của cặn: 0.2 hay cặn bay hơi bằng 0.8 cặn lơ lửng Các chỉ tiêu thiết kế:  65% cặn lơ lửng là cặn hữu cơ  BOD21 trong tế bào bằng 1.42 nồng độ tế bào đã chết  BOD5 = 0.68 BOD21 Xác định nồng độ BOD hòa tan trong nƣớc thải đã qua xử lý: BOD5 đầu ra = BOD5 hòa tan + BOD5 trong cặn lơ lửng BOD5 trong cặn lơ lửng = 50 * 0.65 * 0.68 * 1.42 = 31.4  Lƣợng BOD5 hòa tan trong nƣớc thải sau xử lý: 50 – 31.4 = 18.6 mg/l Thời gian thổi khí (thời gian xử lý) nƣớc thải t của bể SBR: t =  *)1(* 0 Tr SS   trong đó: S0: BOD5 đầu vào, S0 = 228 S: BOD5 đầu ra, S = 18.6  : liều lƣợng bùn hoạt tính theo chất khô (g/l), chọn  = 3 g/l Tr: độ tro của bùn hoạt tính, với nƣớc thải sinh hoạt Tr = 0.2 T: nhiệt độ của nƣớc thải về mùa đông, T = 200C p: tốc độ oxy hóa riêng của các chất hữu cơ (mg BOD5/ mg chất khô không tro của bùn trong 1 h): CNMT- K51 30 p = pmax*  *1 1 * *** * 000 0  SKCKCS CS L trong đó: pmax: tốc độ oxy hóa riêng lớn nhất (mg BOD5/ g chất khô không tro của bùn) trong 1 h, Pmax = 85 C0: nồng độ oxy hòa tan cần thiết duy trì trong bể aeroten, C0 = 2 mg/l KL: hằng số đặc trƣng cho tính chất của chất hữu cơ trong nƣớc thải, KL = 33 mgBOD/l K0: hằng số kể đến ảnh hƣởng của oxy hòa tan, K0 = 0.625 mgO2/l. : hệ số kể đến sự kìm hãm quá trình sinh học bởi các sản phẩm phân hủy bùn hoạt tính, : 0.07 (l/h) p = pmax*  *1 1 * *** * 000 0  SKCKCS CS L = 85* 3*07.01 1 * 6.18*625.02*332*6.18 2*6.18  = 22.8 (mg BOD5/g chất khô không tro của bùn) t =  )1( 0 Tr SS   = 8.22*)2.01(*3 6.18228   = 3.83 h ( chọn là 4h) chọn thời gian lắng: 3 h chọn thời gian điền đầy nƣớc vào bể 2 h chọn thời gian xả nƣớc trong: 1 h chọn thời gian xả cặn dƣ + thời gian chờ: 2 h tổng thời gian một chu kì làm việc của bể: 12 h số chu kì hoạt động trong 1 ngày: 2 chu kì. Với công suất cần xử lý là 1320 m3, chọn xây dựng 2 bể SBR có cùng kích thƣớc làm việc, mỗi bể làm việc 2 chu kì mỗi ngày. công suất xử lý 1 chu kì của mỗi bể là: 330 m3 CNMT- K51 31 Chọn 50% thể tích bể chứa nƣớc trong tháo đi mỗi chu kì, thể tích cần thiết của mỗi bể là: V = 5.0 Q = 5.0 330 = 660 m 3 Chọn chiều cao làm việc của mỗi bể là 6 m Diện tích bể: 110 Chọn xây bể hình tròn, đƣờng kính của bể: D = 14.3 *4 V = 14.3 110*4 = 11.8 m (chọn là 12 m) Chiều sâu rút nƣớc: 50% H = 3m Chiều cao phần chứa bùn: 42%H = 2.52 m Chiều cao an toàn của lớp bùn: 8%H = 0.48 m Tính toán thông số của mỗi bể SBR: - Lƣợng bùn hoạt tính cần duy trì trong bể: Nồng độ bùn hoạt tính lơ lửng trong bể: X =       M F V SQ * * 0 Trong đó: F/M: tỷ số BOD5 có trong nƣớc thải và bùn hoạt tính (mg BOD5/ mg bùn), F/

Các file đính kèm theo tài liệu này:

  • pdfTính toán thiết kế trạm xử lý nước thải tập trung cho khu đô thị có 10.000 dân.pdf
Tài liệu liên quan