Bài 9: Chọn ngẫu nhiên 3 lá bài trong bộ bài 52 lá.
a) Tính xác suất để được 3 lá hình.
b) Tính xác suất để được 3 lá xì.
Bài 10: Một bình đựng 5 viên bi trắng, 6 viên bi đen và 4 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi.
a) Tính xác suất để được 3 viên bi cùng màu
b) Tính xác suất để được 3 viên bi khác màu.
Bài 11: Một hộp đựng 2 bi xanh, 3 bi đỏ và 4 bi vàng. Chọn ngẫu nhiên 2 viên bi. Gọi A là biến cố “Chọn được 2 bi xanh”, B là biến cố “Chọn được 2 đỏ”và C là biến cố “Chọn được 2 bi vàng”
a) Các biến cố A; B; C có đôi một xung khắc không?
b) Biến cố “Chọn được 2 viên bi cùng màu” là ?
c) Hai biến cố E “Chọn được 2 bi cùng màu” và F “Chọn được 2 bi khác màu” là biến cố gì?
Bài 12: Gieo một con xúc sắc hai lần liên tiếp. Gọi A là biến cố “Lần gieo thứ nhất được số chẵn”, B là biến cố “ Lần gieo thứ hai được số lẻ”.
a) Hai biến cố A và B có độc lập không?
b) Giao của hai biến cố A và B là biến cố gì?
8 trang |
Chia sẻ: vudan20 | Lượt xem: 887 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Toán 11 - Bài tập xác suất, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BÀI TẬP XÁC SUẤT
Bài 1: Chọn ngẫu nhiên 2 lá bài trong bộ bài 52 lá. Tính xác suất để chọn đúng 1 lá xì (ách) (cơ, rô, chuồn, bích).
Bài 2: Gieo hai đồng xu cùng lúc. Tính xác suất để được nhiều nhất một mặt sấp (S).
Bài 3: Chọn ngẫu nhiên một viên bi trong bình đựng 6 viên bi đen và 4 viên bi trắng. Tính xác suất để được một viên bi trắng.
Bài 4: Chọn ngẫu nhiên 13 lá bài trong bộ bài 52 lá. Tính xác suất để được 5 lá chuồn, 4 lá cơ, 3 lá rô, 1 lá bích.
Bài 5: Chọn ngẫu nhiên 3 số trong 50 số tự nhiên: 1; 2; 3; 4.50
Tính xác suất biến cố A: trong 3 số đó chỉ có 2 số là bội của 5.
Tính xác suất biến cố B: trong 3 số đó có ít nhất một số là số chính phương.
Bài 6: Gieo hai con xúc sắc cùng lúc.
Tính xác suất của biến cố A: được 2 số chấm xuất hiện khác nhau
Tính xác suất của biến cố B: được tổng số chấm xuất hiện bằng 7.
Bài 7: Một người viết 10 lá thư và ghi địa chỉ gửi cho 10 người bạn trên 10 phong bì. Sau đó người đó bỏ ngẫu nhiên 10 lá thư trong 10 phong bì. Tính xác suất để mỗi người bạn đều nhận được lá thư đúng là của mình.
Bài 8: Một cuộc sổ số tombola có 100 vé và 10 vé trúng. Chon ngẫu nhiên 3 vé.
Tính xác suất để được 1 vé trúng
Tính xác suất để được ít nhất 1 vé trúng.
Bài 9: Chọn ngẫu nhiên 3 lá bài trong bộ bài 52 lá.
Tính xác suất để được 3 lá hình.
Tính xác suất để được 3 lá xì.
Bài 10: Một bình đựng 5 viên bi trắng, 6 viên bi đen và 4 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi.
Tính xác suất để được 3 viên bi cùng màu
Tính xác suất để được 3 viên bi khác màu.
Bài 11: Một hộp đựng 2 bi xanh, 3 bi đỏ và 4 bi vàng. Chọn ngẫu nhiên 2 viên bi. Gọi A là biến cố “Chọn được 2 bi xanh”, B là biến cố “Chọn được 2 đỏ”và C là biến cố “Chọn được 2 bi vàng”
Các biến cố A; B; C có đôi một xung khắc không?
Biến cố “Chọn được 2 viên bi cùng màu” là?
Hai biến cố E “Chọn được 2 bi cùng màu” và F “Chọn được 2 bi khác màu” là biến cố gì?
Bài 12: Gieo một con xúc sắc hai lần liên tiếp. Gọi A là biến cố “Lần gieo thứ nhất được số chẵn”, B là biến cố “ Lần gieo thứ hai được số lẻ”.
Hai biến cố A và B có độc lập không?
Giao của hai biến cố A và B là biến cố gì?
Bài 13: Chọn ngẫu nhiên 8 lá bài trong cỗ bài 32 lá. Tính xác suất để được ít nhất 3 lá Già (K) (Đánh xì tố - chọn từ 7 trở lên)
Bài 14: Gieo một con xúc sắc. Gọi A là biến cố được số chẵn và B là biến cố được một bội số của 2. Kiểm lại rằng:
Bài 15: Một lớp học có 40 học sinh, trong đó có: 15 học sinh giỏi Toán, 10 học sinh giỏi Lý và 5 học sinh giỏi Toán lẫn Lý. Chọn ngẫu nhiên một học sinh. Hãy tính xác suất để học sinh đó giỏi Toán hay giỏi Lý.
Bài 16: Xét không gian mẫu E và hai biến cố xung khắc A và B, biết xác suất P(A) = 0,3; P(B) = 0,5. Tính
Bài 17: Cho hai biến cố bất kỳ A và B. Chứng minh rằng:
Bài 18: Chọn ngẫu nhiên một lá bài trong cỗ bài 32 lá, ghi nhận kết quả rồi trả lại lá bài trong cỗ bài và rút một lá bài khác, Tính xác suất để được già bích và già cơ.
Bài 19: Một công nhân phải theo dõi hoạt động của hai máy dệt A và B. Xác suất để người công nhân phải can thiệp máy dệt A trong 1 giờ là 1/7. và máy dệt B trong cùng thời gian trên là ½ . Tính xác suất để người công nhân không phải can thiệp máy nào trong một giờ.
Bài 20: Xác suất để xạ thủ bắn trúng bia là 0,2. Tính xác suất để trong 3 lần bắn, xạ thủ bắn trúng bia một lần.
Bài 21: Cho . Hỏi hai biến cố A và B có:
Xung khắc hay không?
Độc lập với nhau hay không?
Bài 22: Gieo 3 đồng xu cân đối. Gọi A là biến cố có ít nhất một đồng xu lật ngửa và B là biến cố có đúng 2 đồng xu lật ngửa
Tính xác suất để có ít nhất một đồng xu lật ngửa.
Tính
Bài 23: Gieo 3 đồng xu cân đối. Gọi A là biến cố có ít nhất một đồng xu lật ngửa và B là biến cố có đúng hai đồng xu lật ngửa.
Tính xác suất để có ít nhất một đồng xu ngửa.
Tính
Bài 24: Cho hai biến cố A và B, biết
Bài 25: Bình U1 đựng 3 bi đỏ và 7 bi đen; bình U2 đựng 4 bi đỏ và 6 bi đen. Lấy ngẫu nhiên 2 bi của U1 và 1 bi của U2. Gọi A là biến cố được 3 bi đỏ, B là biến cố được 3 bi mà tất cả không cùng màu và C là biến cố lấy được bi đỏ từ bình U2.
Tính P(A)
Tính xác suất để được 3 bi cùng màu
Tính
Hướng dẫn giải:
Bài 1: Chọn ngẫu nhiên 2 lá bài trong bộ bài 52 lá. Tính xác suất để chọn đúng 1 lá xì (ách) (cơ, rô, chuồn, bích).
Giải: không gian mẫu: .
Cỗ bài có 4 lá xì nên có cách chọn quân xì.
Có 48 cách chọn quân bài còn lại ( 52 – 4 xì = 48).
số phần tử biến cố . Vậy
Bài 2: Gieo hai đồng xu cùng lúc. Tính xác suất để được nhiều nhất một mặt sấp (S).
Giải: Không gian mẫu có 4 phần tử
Biến cố được nhiều nhất 1 mặt S là có 3 phần tử nên
Bài 3: Chọn ngẫu nhiên một viên bi trong bình đựng 6 viên bi đen và 4 viên bi trắng. Tính xác suất để được một viên bi trắng.
Giaỉ: Chọn ngẫu nhiên một viên bi trong bình đựng 10 bi thì có 10 cách chọn.
Có 4 cách chọn 1 bi trắng trong 4 bi trắng. Nên
Bài 4: Chọn ngẫu nhiên 13 lá bài trong bộ bài 52 lá. Tính xác suất để được 5 lá chuồn, 4 lá cơ, 3 lá rô, 1 lá bích
Giải:
Có cách chọn 13 quân bài trong bộ bài 52 lá.
Có cách chọn 5 lá chuồn trong 13 lá chuồn.
Có cách chọn 4 lá cơ trong 13 lá cơ.
Có cách chọn 3 lá rô trong 13 lá rô.
Có cách chọn 1 lá bích trong 13 lá bích.
Vậy xác suất phải tìm là:
Bài 5: Chọn ngẫu nhiên 3 số trong 50 số tự nhiên: 1; 2; 3; 4.50
Tính xác suất biến cố A: trong 3 số đó chỉ có 2 số là bội của 5.
Tính xác suất biến cố B: trong 3 số đó có ít nhất một số là số chính phương.
Giải: a)Ta có cách chọn 3 số trong 50 số
Trong các số từ 1 đến 50 có 10 số là bội của 5, do đó có cách chọn 2 số là bội của 5
Có 40 cách chọn một số không phải là bội của 5. Vậy
b)Trong các số tự nhiên từ 1 đến 50 có 7 số chính phương là 1; 4; 9; 16; 25; 36; 49
Do đó có cách chọn 3 số không là số chính phương
Vậy số cách chọn 3 số trong đó có ít nhất một số là số chính phương là
Vậy
Bài 6: Gieo hai con xúc sắc cùng lúc.
Tính xác suất của biến cố A: được 2 số chấm xuất hiện khác nhau
Tính xác suất của biến cố B: được tổng số chấm xuất hiện bằng 7.
Giải: Không gian mẫu gồm: 6.6 = 36 phần tử
Biến cố A: được 2 số chấm xuất hiện khác nhau gồm 30 phần tử. Nên
Biến cố B: được tổng số chấm xuất hiện bằng 7:
Vậy
Bài 7: Một người viết 10 lá thư và ghi địa chỉ gửi cho 10 người bạn trên 10 phong bì. Sau đó người đó bỏ ngẫu nhiên 10 lá thư trong 10 phong bì. Tính xác suất để mỗi người bạn đều nhận được lá thư đúng là của mình.
Giải: Bỏ 10 thư vào 10 phong bì có 10! cách bỏ. Chỉ có 1 trường hợp mỗi người nhận đúng thư của mình. Vậy
Bài 8: Một cuộc sổ số tombola có 100 vé và 10 vé trúng. Chon ngẫu nhiên 3 vé.
Tính xác suất để được 1 vé trúng
Tính xác suất để được ít nhất 1 vé trúng.
Giải: Số cách chọn 3 trong 100 vé là:
a) Biến cố A được 1 vé trúng và 2 vé không trúng là: . Vậy
b) Biến cố được 3 vé không trúng là . Do đó biến cố B được ít nhất 1 vé trúng là
Vậy
Bài 9: Chọn ngẫu nhiên 3 lá bài trong bộ bài 52 lá.
Tính xác suất để được 3 lá hình.
Tính xác suất để được 3 lá xì.
Giải: Chọn 3 lá bài trong 52 lá thì số cách chọn là:
Cỗ bài có 12 lá hình nên số cách chọn 3 lá hình là: , Nên
Cỗ bài có 4 lá xì nên số cách chọn được 3 lá xì là . Nên
Bài 10: Một bình đựng 5 viên bi trắng, 6 viên bi đen và 4 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi.
Tính xác suất để được 3 viên bi cùng màu
Tính xác suất để được 3 viên bi khác màu.
Giải: Không gian mẫu có: phần tử
Biến cố A được 3 viên bi cùng màu có phần tử, Vậy
Biến cố B được 3 viên bi khác màu có 5 . 6. 4 = 120 phần tử. Vậy
Bài 11: Một hộp đựng 2 bi xanh, 3 bi đỏ và 4 bi vàng. Chọn ngẫu nhiên 2 viên bi. Gọi A là biến cố “Chọn được 2 bi xanh”, B là biến cố “Chọn được 2 đỏ”và C là biến cố “Chọn được 2 bi vàng”
Các biến cố A; B; C có đôi một xung khắc không?
Biến cố “Chọn được 2 viên bi cùng màu” là?
Hai biến cố E “Chọn được 2 bi cùng màu” và F “Chọn được 2 bi khác màu” là biến cố gì?
Giải: a) Các biến cố A; B; C đôi một xung khắc
b)Biến cố là “được chọn hai viên bi cùng màu”
c) E; F là hai biến cố đối vì nếu E xảy ra thì F không xảy ra.
Bài 12: Gieo một con xúc sắc hai lần liên tiếp. Gọi A là biến cố “Lần gieo thứ nhất được số chẵn”, B là biến cố “ Lần gieo thứ hai được số lẻ”.
Hai biến cố A và B có độc lập không?
Giao của hai biến cố A và B là biến cố gì?
Giải: a) A; B là hai biến cố độc lập vì việc xảy ra hay không xảy ra của A không ảnh hưởng tới việc xảy ra hay không xảy ra biến cố B
b) Giao của hai biến cố AB là biến cố “Lần gieo thứ nhất được số chẵn và lần gieo thứ hai được số lẻ”.
Bài 13: Chọn ngẫu nhiên 8 lá bài trong cỗ bài 32 lá. Tính xác suất để được ít nhất 3 lá Già (K) (Đánh xì tố - chọn từ 7 trở lên)
Giải: Gọi A là biến cố được 3 lá Già và B là biến cố được 4 lá Già thì là biến cố được ít nhất 3 lá Già. Ta có . A và B là hai biến cố xung khắc
Vậy
Bài 14: Gieo một con xúc sắc. Gọi A là biến cố được số chẵn và B là biến cố được một bội số của 2. Kiểm lại rằng:
Giaỉ: Ta có Do đó
Vậy
Suy ra
Bài 15: Một lớp học có 40 học sinh, trong đó có: 15 học sinh giỏi Toán, 10 học sinh giỏi Lý và 5 học sinh giỏi Toán lẫn Lý. Chọn ngẫu nhiên một học sinh. Hãy tính xác suất để học sinh đó giỏi Toán hay giỏi Lý.
Giải:A là biến cố học sinh giỏi Toán, B là biến cố học sinh giỏi Lý
Ta có AB là biến cố học sinh giỏi Toán và Lý
là biến cố học sinh giỏi Toán hay Lý.
Và:
Vậy:
Bài 16: Xét không gian mẫu E và hai biến cố xung khắc A và B, biết xác suất P(A) = 0,3; P(B) = 0,5. Tính
Giải: A và B là hai biến cố xung khắc nên P(AB) = 0 và
là biến cố đối của A nên
là biến cố đối của B nên
Bài 17: Cho hai biến cố bất kỳ A và B. Chứng minh rằng:
Giải: Ta có vì sự xảy ra của A là kết quả của sự xảy ra ( của A và của B) hay (sự xảy ra của A và không xảy ra của B). Mà AB và là hai biến cố xung khắc.
Vậy
Bài 18: Chọn ngẫu nhiên một lá bài trong cỗ bài 32 lá, ghi nhận kết quả rồi trả lại lá bài trong cỗ bài và rút một lá bài khác, Tính xác suất để được già bích và già cơ.
Giải:
Gọi A là biến cố “Chọn lá bài thứ nhất là lá già bích”. B là biến cố “chọn được lá bài thứ hai là lá già cơ”. Ta tìm P(AB)
Mà A và B là hai biến cố độc lập vì ta trả lại lá bài thứ nhất trước khi rút lá bài thứ hai.
Do đó: P(AB) = P(A).P(B) =
Bài 19: Một công nhân phải theo dõi hoạt động của hai máy dệt A và B. Xác suất để người công nhân phải can thiệp máy dệt A trong 1 giờ là 1/7. và máy dệt B trong cùng thời gian trên là 1/5 . Tính xác suất để người công nhân không phải can thiệp máy nào trong một giờ.
Giaỉ: Xác suất để máy A hư độc lập với xác suất để máy B hư.
Ta có: với là biến cố máy A không hư
Và với là biến cố máy B không hư.
Vậy xác suất để người công nhân không phải can thiệp vào máy nào trong 1 giờ là
Bài 20: Xác suất để người xạ thủ bắn trúng bia là 0,2. Tính xác suất để trong 3 lần bắn, xạ thủ bắn trúng bia một lần.
Giải: Gọi A là biến cố xạ thủ bắn trúng và là biến cố xạ thủ bắn không trúng bia.
Ta có P(A) = 0,4 và
Xác suất để xạ thủ bắn trúng bia lần 1 và không trúng hai lần sau là: P1 = 0,4.0,6.0,6=0,14
Xác suất để xạ thủ bắn trúng lần 2 và không trúng lần 1 và lần 3 là P2 = P1
Xác suất để xạ thủ bắn trúng lần 3 và không trúng hai lần đầu là P3 = P1
Vậy xác suất để xạ thủ bắn trúng 1 lần là P = 0,14.0,14.0,14 = 0,42
Bài 21: Cho . Hỏi hai biến cố A và B có:
Xung khắc hay không?
b)Độc lập với nhau hay không?
Giải: a) Vì nên A và B không xung khắc
Ta có Vậy A và B là hai biến cố độc lập
Bài 22: Gieo 3 đồng xu cân đối. Gọi A là biến cố có ít nhất một đồng xu lật ngửa và B là biến cố có đúng 2 đồng xu lật ngửa
Tính xác suất để có ít nhất một đồng xu lật ngửa.
b)Tính
Giải: Không gian mẫu:
Xác suất để được ít nhất một đồng xu lật ngửa là
Ta có
A và B là hai biến cố độc lập nên
Ta có:
Bài 24: Cho hai biến cố A và B, biết
Giải: Ta có:
Bài 25: Bình U1 đựng 3 bi đỏ và 7 bi đen; bình U2 đựng 4 bi đỏ và 6 bi đen. Lấy ngẫu nhiên 2 bi của U1 và 1 bi của U2. Gọi A là biến cố được 3 bi đỏ, B là biến cố được 3 bi mà tất cả không cùng màu và C là biến cố lấy được bi đỏ từ bình U2.
Tính P(A)
Tính xác suất để được 3 bi cùng màu
Tính
Giải:
a) Lấy 2bi từ bình U1 đựng 10 bi (3 đỏ và 7 đen) và 1 bi từ bình U2 đựng 10 bi (4 đỏ và 6 đen).
Gọi A là biến cố lấy được 3 bi đỏ.
Biến cố A chỉ xảy ra khi lấy được 2 bi đỏ từ U1 và 1 bi đỏ từ U2
Xác suất lấy được 2 bi đỏ từ U1 là
Xác suất lấy được 1 bi đỏ từ U2 là
Vậy
b)Gọi E là biến cố lấy được 3 bi cùng màu. Biến cố E xảy ra khi lấy được 3 bi đỏ hay 3 bi đen
Xác suất lấy được 2 bi đen từ U1 là
Xác suất lấy được 1 bi đen từ U2 là
Do đó xác suất lấy được 3 bi đen là
Hai biến cố lấy được 3 bi đỏ và 3 bi đen là hai biến cố xung khắc.
Vậy xác suất lấy được 3 bi cùng màu là
B là biến cố lấy được 3 bi không cùng màu, B là biến cố đối của E.
Vậy
c)Gọi C là biến cố được bi đỏ từ U2
Ta có BC là biến cố lấy 3 bi không cùng màu và bi lấy từ U2 có màu đỏ. Biến cố BC xảy ra khi:
Lấy được 2 bi đen trong U1 và 1 bi đỏ trong U2:
Lấy được 1 bi đỏ và 1 bi đen trong U1 và 1 bi đỏ trong U2:
Hai biến cố này xung khắc nên
Các file đính kèm theo tài liệu này:
- Chuong II 5 Xac suat cua bien co_12498314.doc