Đồ án Tính toán thiết kế chống sét cho đường dây và trạm biến áp 110/22KV

MỤC LỤC

Trang

LỜI MỞ ĐẦU 1

CHƯƠNG MỞ ĐẦU: TÌNH HÌNH GIÔNG SÉT Ở VIỆT NAM VÀ ẢNH HƯỞNG CỦA NÓ TỚI LƯỚI ĐIỆN 2

I - Tình hình giông sét ở việt nam. 2

II. Sự ảnh hưởng của giông sét tới hệ thống điện: 4

CHƯƠNG I: TÍNH TOÁN TRỐNG SÉT ĐÁNH TRỰCTIẾP VÀO TRẠM BIẾN ÁP 6

I. Các yêu cầu kỹ thuật: 7

II. Giới thiệu sơ lược về thiết kế trạm 110/22KV: 7

III. Phạm vi bảo vệ của cột Thu sét: 8

1. Phạm vi bảo vệ của một cột thu sét (H1-1): 8

2. Phạm vi bảo vệ của hai cột và nhiều cột thu sét : 9

IV. Khoảng càch an toàn trong không khí và đất. 11

V. trình tự tính toán chống sét đánh trực tiếp. 12

1 - Bố trí các cột thu sét : 12

2 - Xác định chiều cao hiệu dụng của cột : 12

3- Kiểm tra khả năng bảo vệ đối với vật nằm ngoài phạm vi cột thu sét bảo vệ: 12

4. Kiểm tra lại toàn bộ: 12

VI. lựa chọn phương án bố trí cột: 13

1. Phương án 1: 13

2 - Phương án 2: 23

CHƯƠNG II: TÍNH TOÁN NỐI ĐẤT CHO TOÀN TRẠM 36

I. Tính toán nối đất an toàn : 39

1. Nối đất an toàn cho trạm 110KV: 39

2- Nối đất an toàn cho trạm 22KV: 41

II. tính toán nối đất chống sét cho trạm: 42

1. Mở đầu: 42

2- Tính toán nối đất chống sét cho trạm 110 KV: 45

3. Tính toán nối đất chống sét cho trạm 22KV: 50

III. Tính toán nối đất cột đường dây 110KV: 58

1- Nhiệm vụ: 58

2. Hình thức nối đất nhân tạo: 59

3 - Các phương án nối đất: 60

CHƯƠNG III: TÍNH TOÁN CHỈ TIÊU CHỐNG SÉT CHO ĐƯỜNG DÂY 110KV 63

I.Đường dây 110Kv. 66

1.Tham số cột đường dây 110KV 66

2. Các số liệu tính toán: 67

II.Tính toán tham số khi sét đánh lên đường dây 110kv 70

1.Số lần sét đánh vào đường dây: 70

2. Số lần sét đánh vòng qua dây chống sét nào dây dẫn. 71

3. Số lần sét đánh vào đỉnh cột hoặc lân cận và khoảng trượt 71

4. Tính suất cắt do sét đánh vòng qua dây chống sét vào dây dẫn. 71

5. Tính suất cắt do sét đánh vào khoảng vượt: 73

6. Tính toán suát cắt do sét đánh vào đỉnh cột và lân cận đỉnh cột. 80

7. Tính xác suất phóng điện khi sét đánh vào đỉnh cột và lân cận đỉnh cột. 88

TÀI LIỆU THAM KHẢO 91

 

 

doc100 trang | Chia sẻ: lethao | Ngày: 28/02/2013 | Lượt xem: 7343 | Lượt tải: 53download
Bạn đang xem nội dung tài liệu Đồ án Tính toán thiết kế chống sét cho đường dây và trạm biến áp 110/22KV, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
6: + Bán kính bảo vệ của cột 5 cao 14m và hx= 8m là 6,38(m) Bán kính bảo vệ của Cột 6 ở độ cao 16 m là: Vì: + Phạm vi bảo vệ của 2 cột: Vì 2 cột có độ cao khác nhau nên bán kính bảo vệ của cột 5 ở độ cao hx = 16(m) là: Vì Vì: Vì: Cặp cột 6-7: + Bán kính bảo vệ của cột cao 16m là 9 (m) + Phạm vi bảo vệ giữa hai cột: Vì -Cặp cột 7- 8: + Bán kính bảo vệ của cột cao 16m là 9 (m) + Phạm vi bảo vệ giữa hai cột. Vì -Cặp cột 8 -9: + Bán kính bảo vệ của cột cao 16m là 9 (m) + Phạm vi bảo vệ giữa hai cột. Vì -Cặp cột 9 -10: + Bán kính bảo vệ của cột cao 16m là 9m + Phạm vi bảo vệ của 2 cột: Vì -Cặp cột 10 -11: + Bán kính bảo vệ của cột 11 cao 18m là 6,38 (m). Bán kính bảo vệ của cột 10 cao 16m là 9 (m). + Phạm vi bảo vệ giữa 2 cột: vì 2 cột có độ cao khác nhau cho nên bán kính bảo vệ ở cột 11 với độ cao hx = h10 = 16m là: vì vì -Cặp cột 11-1: + Bán kính bảo vệ của cột cao18m là 6,38m +Phạm vi bảo vệ giữa hai cột: Vì * Từ những số liệu tính toán trên ta có bảng tổng kết sau đây: Bảng 1-8 STT Các cặp cột h0 (m) hx = (m) r0x (m) 1 1 - 2 16,86 11 4,39 2 2 - 3 15,14 11 3,11 3 3 - 4 14 11 2,25 4 4 - 5 13,71 11 2,03 5 5 - 6 11,93 8 2,95 6 6 - 7 11,28 8 2,46 7 7 - 8 12 8 3 8 8- 9 12 8 3 9 9 - 10 11,28 8 2,46 10 10 -11 11,93 8 2,95 11 11-1 13,71 11 2,03 Từ bảng số liệu trên ta vẽ được phạm vi bảo vệ của các cột thu sét (theo sơ đồ bố trí cột thu sét) * So sánh 2 phương án: + Về mặt kỹ thuật thì cả 2 phương án đều đảm bảo thiết kế bảo vệ trạm + Về mặt kinh tế thì phương án 1 kinh tế hơn vì phương án 1 chỉ phải dựng 10 cột trong đó có 8 cột độc lập so với phương án 2 là phải dựng tới 12 cột trong đó có tới 10 cột phải dựng độc lập. Do vậy ta chọn phương án 1 để thiết kế thi công bảo vệ trạm biến áp 110/22KV. CHƯƠNG II -----o0o----- TÍNH TOÁN NỐI ĐẤT CHO TOÀN TRẠM N hiệm vụ của nối đất là tản dòng điện xuống đất để đảm bảo an toàn cho vật cần nối có trị số bé. Trong HTĐ người ta chia làm 3 loại nối như sau: - Nối đất làm việc: Nhiệm vụ là đảm bảo cho sự làm việc bình thường của thiết bị theo chế độ đã được quy định sẵn. Loại nối đất này gồm nối đất điểm trung tính MBA đo lường và của kháng dòng trong bù ngang trên các đường dây tải điện. - Nối đất an toàn (nối đất bảo vệ): có nhiệm vụ đảm bảo an toàn cho người và thiết bị khi cách điện bị hư hỏng tức là nối đất mỗi bộ phận kim loại bình thường không mang điện như: vỏ MBA, máy cắt, các giã đỡ kim loại... khi cách điện hư hỏng trên các bộ phận này sẽ xuất hiện điện như thế nhưng do được nối đất nên giữ được mức điện thế thấp đảm bảo an toàn cho người và thiết bị khi tiếp xúc với những bộ phận này. - Nối đất chống sét: Mục đích là nhằm đảm bảo tản dòng điện sét vào trong đất khi có sét đánh xuống cột thu sét hoặc trên đường dây. Do đó sẽ hạn chế được dòng điện sét tới các thiết bị điện cần được bảo vệ. - Ở trạm biến áp về nguyên tắc phải thiết kế tách rời 2 hệ thống nối đất là nối đất làm việc và nối đất chống sét. Để đề phòng khi có dòng ngắn mạch lớn hay dòng điện sét đi vào hệ thống nối đất làm việc lớn hay nhỏ sẽ không gây nên điện thế cao trên hệ thống nối đất an toàn. - Trong thực tế công việc này rất khó thực hiện được vì nhiều lí do nên người ta thường chỉ dùng một hệ thống nối đất chung để thực hiện cả 2 nhiệm vụ. Vì lẽ đó nên hệ thống nối đất chung là phải đảm bảo yêu cầu của cả 2 loại nối đất, nghĩa là phải có điện trở nối đất nhỏ hơn hoặc bằng điện trở nối đất nhỏ nhất của một trong hai hệ thống nối đất kể trên. - Các yếu tố cần chung cho hệ thống nối đất. + Bộ phận nối đất có trị số điện trở nối đất càng nhỏ thì sẽ thực hiện được càng tốt nhiệm vụu tản dòng điện sét trong đất và điện thế trên các thiết bị được nối đất ở mức ổn định. Tuy nhiên việc giảm điện trở nối đất sẽ làm cho chi phí về đầu tư xây dựng tăng lên nhiều (do số lượng kim loại tăng…). Do đó cần phải có quy định tiêu chuẩn trị số cho phép của điện trở nối đất. * Với các thiết bị điện nối đất trực tiếp thì điện trở nối đất yêu cầu là R * Với các thiết bị có điểm trung bình tính nối đất trực tiếp thì điện trở nối đất yêu cầu là (nếu hệ thống nối đất chỉ dùng cho các thiết bị cao áp) * Với hệ thống có điểm trung tính cách điện và hệ thống nối đất cho cả thiết bị cao áp và hạ áp thì điện trở yêu cầu là: (nhưng R chỉ được Dòng điện I tuỳ theo mỗi trường hợp có trị số khác nhau. + Đối với nối đất an toàn thì điện trở được chọn sao cho các giá trị điện áp bước và điện áp tiếp xúc trong mọi trường hợp đều phải không vượt quá trị số cho phép. + Ngoài việc đảm bảo trị số điện trở nối đất quy định và giảm điện trở nối đất của hệ thống nối đất còn cần phải chú ý đến việc cải thiện sự phân bố điện thế trên toàn bộ diện tích trạm. - Hệ số mùa: Ta biết rằng đất là một môi trường phức tạp không đồng nhất về kết cấu và thành phần mà chủ yếu là do khí hậu. Do vậy thiết kế hệ thống nối đất cần tập trung và chú ý đến trị số lớn nhất về trị số tính toán điện trở suất của đất có thể cả trong các mùa. K là hệ số mùa rđ0: Điện trở suất được theo mùa - Phương pháp nối đất: Theo chức năng người ta phân làm nhiều loại. Hệ thống nối đất bao gồm các điện cực trong đất để làm giảm điện trở nối đất theo tiêu chuẩn của từng loại nối đất. Các điện cực thường là các thanh dài nằm ngang hoặc cọc thẳng đứng để điện áp bước nhỏ. Khi tính toán ta phân ra làm các loại nối đất tự nhiên và nối đất nhân tạo. Nối đất tự nhiên là sử dụng các nối đất có sẵn như dây chống sét, cột thu sét, các kết cấu kim loại của công trình các đường ống nước. Còn nối đất nhân tạo nhằm mục đích thoả mãn các yêu cầu nối đất của các công trình khi nối đất tự nhiên không đảm bảo được. - Các tham số ảnh hưởng đến nối đất : + Ảnh hưởng của kích thước hình học + Ảnh hưởng của các bố trí điện cực. + Ảnh hưởng của trị số điện trở đất. + Hiện tượng phóng điện xung kích: Khi có dòng xét đi vào điện cực nối đất, thì gây ra một điện trường lớn trên bề mặt điện cực và trong đất. Điện trường đạt đến độ giới hạn thì xảy ra quá trình phóng điện trong đất. Các tia lửa điện phóng điện phát triển xung quanh điện cực tạo ra vùng hồ quang, cực nối đất xem như là to ra và điện trở nối đất giảm, điện trở nối đất được tính bằng công thức: Với là hệ số xung kính. Tính toán nối đất cho trạm được thiết kế: trạm thiết kế là trạm 110/22KV ta tách ra làm 2 phần: 110KV và 22KV để thiết kế. I. TÍNH TOÁN NỐI ĐẤT AN TOÀN : 1. Nối đất an toàn cho trạm 110KV: Phần trạm 110KV là mạng điện có trung tính trực tiếp nối đất nên yêu cầu của nối đấtan toàn là . Điện trở nối đất gồm 2 phần. Điện trở nối đất tự nhiên (ở trạm 110KV sử dụng là dây chống sét và cột chống sét) và điện trở nối đất nhân tạo yêu cầu a- Tính toán điện trở nối đất tự nhiên: Trạm được thiết kế có dây chống sét dùng để bảo vệ đường dây được kéo vào đến xà đón dây của trạm nên phần điện trở nối đất tự nhiên là điện trở của hệ thống dây chống sét cột và nó được tính theo công thức: Trong đó: + Rcs làđiện trở của dây chống sét ( ta dùng loại C- 70 có điện trở trên một đơn vị dài là ) + Rc là điện trở nối đất của cột với n- số lộ đường dây b- Hệ thống nối đát nhân tạo của nối đất an toàn: Hệ thống nối đất an toàn ta sử dụng mạch vòng hình chữ nhật có kích thích như sau: Hình 2-1 Mạch vòng được chôn dưới phần điện tích trạm 110KV ở độ sâu 0,8m. Phần mạch vòng này cách tường rào 5m. Ta chọn loại thép dẹp 50 x 1mm = b = 50 mm = 0,05 m để làm mạch vòng. Ta có: L- Chu vi mạch vòng L = ( 50+60).2 = 220 m t- độ chèn sâu của mạch vòng t = 0,8 m. d- Đường kính quy đổi của thanh dẹt K- Hệ số phụ thuộc tỷ lệ tra bảng ta được K = 5,64. với Ta thấy cho nên ta ta phải đóng cọc dọc theo mạch vòng để giảm điện trở của hệ thống nối đất. Ta đóng các cọc dọc theo mạch vòng cứ 3m mọt cọc và mỗi cọc dài 3m có đường kính là 40mm và như vậy số cọc là ( cọc). Điện trở tản của hệ thống nối đất được tính như sau: Tra bảng ta được: thoả mãn. Vậy điện trở nối đất của hệ thống là: Như vậy thoả mãn điều kiện 2- Nối đất an toàn cho trạm 22KV: Hệ thống nối đất an toàn ta sử dụng mạch vòng hình chữ nhật có kích thước như sau: Hình 2-2 Mạch vòng được chôn dưới phần diện tích trạm 22KV ở độc sâu 0,8m phần mạch vòng này được cách tường rào 5m Ta chọn loại thép dẹp 50 x 1mm = b = 50mm = 0,05m để làm mạch vòng. Ta có: Trong đó: L - Chu vi mạch vòng: L= (30+50) 2 = 160(m) t - Độ chôn sâu của mạch vòng t = 0,8m d - Đường kính quy đổi của thành dẹp K - hệ số phụ thuốc tỷ lệ Tra bảng ta được K = 6,05 với Kmt = 1,6 Như vậy cho nên đảm bảo yêu cầu mà không phải đóng cọc. II. TÍNH TOÁN NỐI ĐẤT CHỐNG SÉT CHO TRẠM: 1. Mở đầu: Khi có dòng điện đi vào bộ phận nối đất nếu tốc độ biến thiên của dòng điện theo thời gian rất lớn thì trong thời gian đầu điện cảm sẽ ngăn cản không cho dòng điện đi tới các phần cuối của điện cực, khiến cho điện áp phân bố không đều, sau một thời gian ảnh hưởng điện cảm mất dần và điện áp sẽ phân bố đều hơn. Thời gian của quá trình quá độ nói trên phụ thuộc vào hằng số thời gian:(T là tỷ trọng với điện cảm tổng L .1 và điện dẫn gl của điện cực) Từ biểu thức trên cho thấy khi dòng điện tản trong đất là dòng một chiều hoặc xoay chiều tần số công nghiệp ảnh hưởng của L không đáng kể và bất kỳ hình thức nối đất nào (thẳng đứng hoặc nằm ngang) cũng đều biểu thị biir trị số điện trở tản. Khi dòng điện tản trong đất là dòng điện sét tham số biểu thị bởi nối đất tuỳ thuộc vào tương quan hằng số thời gian T và thời gian đầu sóng điện. Khi T<< Tđs (khi dòng điện đạt đến trị số cực đại) thì cần xét quá trình quá độ đã kết thúc và nối đất đã thể hiện như một điện trở tản. Trường hợp này ứng với các hình thức nối đất dùng cọc hoặc thanh nằm ngang có chiều dài không lớn lắm và được gọi là nối đất tập trung. Nếu điểm cực dài hằng số thời gian có thể đạt tới mức Tđs và tại thời điểm dòng điện đạt trị số cực đại - Quá trình quá độ chưa kết thúc và như đã phân tích tác dụng của điện cảm nối đất sẽ được thể hiện như một tổng trở Z có trị số rất lớn so với trị số điện trở tản, trường hợp này gọi là nối đất phân bố dài. Trong tính toán thiết kế trạm 110/22KV bộ phận thu sétư đặt trên xà của trạm thì phần nối đất chống xét buộc phải nối chung với mạch vòng nối đất an toàn của trạm. Như vậy sẽ gặp trường hợp nối đất phân bố dài, tổng trở xung kích ZXK có thể rất lớn và lớn gấp nhiều lần so với trị số điện trở tản xoạy chiều là điện ngược lên các phần mang điện của trạm. Do đó ta phải tính toán kiểm tra yêu cầu của nối đất chống sét trường hợp có dòng điện sét đi vaò hệ thống nối đất. + Dạng sóng tính toán của dòng điện sét. Trong tính toán thiết kế ta chọn dạng sóng tính toán cảu dòng điện sét là sóng xiên góc có biên độ không đổi. Dạng sóng tính toán của dòng điện sét được biểu diễn như sau: Hình 2-3 Trong đó: a - Độc dốc dòng điện sét quy định a = tga = 30(KA/ms). I = 150KA - Biên độ dòng điện sét đối với trạm biến áp Như vậy thời gian đầu sóng: * Các yêu cầu kỹ thuật đối với nối đất chống sét Ta sẽ kiểm tra theo điều kiện đẩm bảo an toàn cho cách điện của máy biến áp ( ở đây ta xét điện áp ở tại thời điểm khi có dòng điện sét đi vào hệ thống nối đất). Trong đó: I- Biên độ của dòng điện sét lấy bằng 150 (KA) Z(0,Tđs)- Tổng trở xung kích tại thời t = Tđs và ngay tại chỗ dòng điện sét đi vào điện cực. U50%- Trị số điện áp phóng điện xung kích đặt lên cách điện của máy biến áp. - Nếu điều kiện trên không thoả mãn thì phải tiến hành tính toán nối đất bổ xung tại nơi đi vào hệ thống nối đất ( tức là nối thêm 1 điện trở song song với hệ thống nhằm mục đích làm giảm tổng trở xung kính ). 2- Tính toán nối đất chống sét cho trạm 110 KV: - Do ta dùng nối đất an toàn làm nối đất chống sét cho nên trước hết ta phải hiệu chỉnh lại trị số Rnt ( điện trở nhân tạo) theo yêu cầu của nối đất chống sét có nghĩa là ta phải hiệu chỉnh hệ số mùa của nối đất an toàn theo hệ số màu của nối đất chống sét ( Tra bảng 19 - 2 giáo trình kỹ thuật điện cao áp). Kmùa( NĐCS ) = 1,4 - Đối với thanh chôn sâu 0,8m Theo tính toán của phần nối đất an toàn: Còn đối với đất chống sét. Ta có: Chia cả hai vế của ( 2) cho ( 1) ta được: Vậy điện trở nối đất nhân tạo ứng với nối đát chống sét là: a- Tính toán tổng trở sóng xung kích: - Để tính toán tổng trở sóng xung kích ta có vài giả thiết sau: + Bỏ qua điện trở nối đất tự nhiên. +Bỏ qua các thanh nối đất cân bằng áp trong trạm biến áp + Trong quá trình tính toán để dơn giản hoá ta bỏ qua quá trình phóng tia lửa điện trong đất và giả thiết điện trở suất của đất là không đổi. Mặt khác điện trở của bản thân vật liệu dùng là nối đất bé hơn rất nhiều so với điện kháng wL của nó ( ứng với trị số dòng điện sét) và ảnh hưởng đến điện dung C của điện nối đất cũng rất nhỏ hơn nhiều so với ảnh hưởng của điện dẫn nối đất. Như vậy ta có thể coi mạch vòng nói đất gồm hai tai dài L1 và L2 ghép song song với nhau và mỗi tia có chiều dài là: Hình2-4 Sơ đồ thay thế của 1 tia hệ thống nối đất. Hình2-5 Dựa vào sơ đồ thay thế trên ta có các giá trị điện cảm Lo và điện dẫn Go được tính toán như sau: Go - Điện dẫn của điện cực tính trên một đơn vị dài Lo- điện cẩm của điện cực nối đất tính trên 1 đơn vị dài Trong đó: l = L1 = L2 = 110 (m) ( chiều dài một tia) - Điện trở nối đất nhân tạo ứng với nối đất chống sét. P- Bán kính của cực nối đất do ta chọn b = 40 mm. Thay các thông số vào ta tính được. Tính toán phân bố dài khi không xét đến quá trình phóng điện trong đất từ sơ đồ thay thế ta có thể lập được hệ phương trình vi phân như sau: Giải hệ phương trình trên ta được điện áp tại thời điểm bất kỳ trên điện cực: Với hằng số thời gian: với Mặt khác: Tổng trở xung kíchđầu vào điện cực nối đất (đối với 1 tia) Tổng trở xung kích tương đương đầu vào điện cực nối đất gồm hai tia ghép song song tại thời điểm: Để tính ta xét chuỗi: (sổ tay toán học) Ta có: e-3 = 0,0497 e-4 = 0,0183 e-5 = 0,0067 e-6 = 0,0024 e-7 = 0,00091 Cho nên ta lấy cấp chính xác là 0,001 thì khi thì ta coi: Do đó giới hạn: Mặt khác ta có: Với (vì K là số nguyên dương ) Vậy ta chỉ tính đến giá trị K < 3,74 Tính K = 1 Với K = 1ta có các giá trị tương ứng là: Thay các giá trị vừa tính được ở trên vào biểu thức của Z(0,5) ta được: Với ta kiểm tra điều kiện nối đất chống sét xem có thoả mãn không nếu không thoả mãn thì ta phải tiến hành nối đất bổ sung. Ta thấy điều kiện nối đất chống sét hoàn toàn thoả mãn nên ta không phải nối đất bổ sung. 3. Tính toán nối đất chống sét cho trạm 22KV: Tiêu chuẩn của nối đất chống sét cho trạm 22KV được xác định bởi các điều kiện sau: - Không phóng điện trong không khí giữa các cột thu sét và công trình. - Không phóng điện trong đất từ nối đất của cột thu sét đến các thiết bị của trạm, khoảng cách yêu cầu: Trong tính toán lấy dòng điện sét Is = 150KA; a = 30KA/điện áp trên bộ phận nối đất được xác định. Đồng thời tính từ đây ta xác định được sK và Sđ Từ cách bố trí cột ta có: SK = 6,5m ; Sđ = 5m với L = 10hx (với hx = 8m) = 10.8=80(m) Ta có: với L- chiều dài cọc = 2,5m. Vậy muốn bảo đảm yêu cầu của chống sét trạm 22KV ta phải thiết kế hệ thống nối đất có điện trở nối đất xung kích nhỏ hơn . Để nối đất cho các cột thu sét phía 22KV ta dùng nối đất kiểu tia và cọc được nối với nhau. Tính điện trở cọc: Hình 2-6 Trong đó: L- Chiều dài cọc = 2,5 m và cọc được làm bằng thép góc 4040.4mm. d- Đường kính của cọc = 0,95.40.10-3= 0,038 m Tính điện trở thanh nằm ngang bằng thép dẹt : Trong đó: t = 0,8 m - Là độ chôn sâu . K = 1 – Là hệ số hình dáng ( tia ngang). D - Là đường kính quy đổi của thanh thép dẹp với b = 40 mm a = 10 m - Là độ dài của thanh . Ta có sơ đồ thay thế: Hình2-7 Tính toán Ud bằng phương pháp đồ thị. * Trị số xung kích của cọc : Tra bảng 9- trang 86 ( sách hướng dẫn thiết kế tốt nghiệp) ta có các dòng vẽ đồ thị biểu diễn quan hệ và điện trở suất của đất sét. Từ đồ thị này xácđịnh được ứng với các trường hợp dòng điện sét: với thì Hình 2-8 Trị số xung kích của tia . Tra bàng 10 (trang 87 - sách hướng dẫn thiết kế tốt nghiệp) ta có các dòng sét vẽ được đồ thị quan hệ và . Từ đồ thị ta có: IS = 5KA 10KA 20KA 40KA Thì = 1,05 0,93 0,83 0,74 Hình2-9 * Trị số từ bảng 10 (trang 87 - sách hướng dẫn thiết kế tốt nghiệp) ta tra được hệ số sử dụng với các dòng điện xung kích là 0,8. Từ các giá trị IS(KA) ta tính được các gía trị Uđt tương ững với chúng như bảng 2-11 Bảng 2-10 Is (KA) 5 10 20 40 0,87 0,8 0,171 0,57 RXKC 32,174 47,976 42,579 34,183 Uđc(KV) 326,087 399,70 1064,467 1709,145 1,05 0,93 0,85 0,74 RXKC 19,221 25,882 23,655 20,594 Uđt(KV) 182,634 323,524 59,387 1029,71 Với các giá trị IC = 5;10; 20;40 KA ta gióng lên đường cong Uđc rồi xẻ ngang cắt đường Uđt và hạ vuông góc với trục I ta được các giá trị Iđ và tính được IS = 3IC + 2I Hình 2-11 Uđc(KV) 326,087 599,70 1064,467 1709,146 IC(KA) 5 10 20 40 It (KA) 11 19 42 67 IS (KA) 37 68 144 254 Bảng 2-13 Từ các giá trị Uđc và IS ta sẽ thu được đồ thị quan hệ giữa Uđ và IS và ta xác định Uđ bằng cách từ I = 150KA dóng lên đồ thị và dóng sang trụ U ta có Uđ = 1200KV Phương án nối đất đảm bảo yêu cầu kỹ thuật với cột thu sét độc lập phía trạm 22KV. Từ các phần tính toán trên, ta vẽ được sơ đồ nối đất cho toàn trạm Hình 2-14 Phương án nối đất đảm bảo yêu cầu kỹ thuật với cột thu sét độc lập phía trạm 22KV. Từ các phần tính toán trên ta sẽ được sơ đồ nối cho toàn trạm Bảng tổng kết số lượng kim loại dùng cho toàn trạm Thép dẹp 50 x 1mm 300m Cọc 40 x 40 x 4mm 24 cọc = 60m Hình 2.12. Sơ đồ nối đất toàn trạm 110/22kV III. TÍNH TOÁN NỐI ĐẤT CỘT ĐƯỜNG DÂY 110KV: 1- Nhiệm vụ: Nhiệm vụ chủ yếu của nối cột đường dây là để thoát dòng điện sét khi có sét đánh vào đường dây chống sét. Ngoài ra đối với các đường dây 3 ¸ 20KV khi đi qua khu vực đông dân cư thì nối đất còn có nhiệm vụ bảo vệ an toàn còn trong hệ thống đường dây có dòng ngắn mạch lớn () do trong hệ thống điện có rơ le bảo vệ tác động nhanh do đó ở đây nhiệm vụ bảo vệ an toàn không đặt ra. Như ta đã biết khi có sét đánh dòng sét rất lớn có thể làm hỏng đường dây và trạm, do vậy nối đất cột điện trường dây là hết sức cần thiết trong xây dựng và vận hành hệ thống điện. Gọi R là RXK là điện trở nối đất ổn định và điện trở nối đất xung kích, ta có: với R là hệ số xung kích Thường đối với đường dây người ta quy định điện trở nối đất ứng với tần số công nghiệp. Đối với điện trở nối đất của đường dây cũng cần phải chú ý đến quá trình sóng điện áp và sóng điện lan truyền đến các cực. Do đó tác dụng của điện cảm của cực trong việc khuyếch tán dòng điện sét nên đối với nối đất của cột đường dây cũng chia ra là nối đất tập trung và nối đất kéo dài. Điện trở nối đất của đường dây phụ thuộc vào điện trở xuất của đất , điều đó xuất phát từ chỗ nếu điện trở suất cao thì dòng điện sẽ bé và các vùng ấy việc thiết kế xây dựng và lắp đặt hệ thống đất sẽ gặp rất nhiều khó khăn và giá thành xây dựng rất cao. Trị số quy định của điện trở nối đất ở tần số công nghiệp cho bảng dưới đây: Điện trở suất của đất r Điện trở của cột < 10 < 15 < 20 < 30 Bảng 2-15 * Chú ý: +Nếu cột cao hơn 40m thì R phải bé hơn 2 lần so với các giá trị trong bảng, với thì các cột gần trạm yêu cầu phải có R < 20 + Khi tính toán thì phải hiệu chỉnh theo mùa, điều kiện khí hậu. + Khi thiết kế, xây dựng các đường dây ta có thể lợi dụng các cột sắt của các móng hay phần cột chèn dưới đất để làm vật nối đất đó là nối đất tự nhiên. Việc tận dụng nối đất tự nhiên sẽ tiết kiệm từ 50 ¸ 10% vật liệu. Đối với những vùng đất có thì khi tính toán nối đất cột và đường dây có thể chỉ cần nối đất tự nhiên cũng có thể đảm bảo trị số nối đất quy định. Tuy nhiên ở đây ta không sử dụng đến nối đất tự nhiên này trong tính toán mà chỉ tiến hành nối đất nhân tạo. 2. Hình thức nối đất nhân tạo: - Hình thức nối đất căn cứ vào hình dạng của móng cột đường dây. + Với móng “Lọ mực” thì chỉ cần đặt thêm mạch vòng dưới hố móng hoặc làm thêm tia - cọc là đủ. + Với loại “móng cọc” thì có thể chôn cọc ngày vào lỗ móng hay dùng nối đất dạng tia - cọc. Đối với tia thì độ dài giới hạn là: Chiều dài giới hạn của tia Điện trở suất của đất 40m 60m 100m Bảng 2-16 - Ta chọn móng lọ mực để làm móng cho cột đường dây có treo một dây chống sét 110KV và ta tiến hành tính toán nối đất với dạng là tia - cọc. Ta có điện trở nên ta tính toán nối đất sao cho điện trở nối đất của cột đường dây là R<15 Ta giả thiết rằng tất cả các cột đường dây đều được thiết kế xây dựng trên một vùng đất có điện trở suất là tương đối như trước: - Sơ đồ móng đường dây: + móng cột đường dây là móng lọ mực có 4 trụ 1 hố + Nối đất bằng tia - cọc Hình 2-17 3 - Các phương án nối đất: a. phương án 1: Tia dài 6m bằng thép có b = 40mm = 0,04m tia được chôn sâu 1,5m Cọc dùng loại cọc bằng thép góc 40 x 40 x4mm Khoảng cách các cọc là 3m, chiều dài cọc là 3m - Hệ số mùa: Kmt = 1,6 ; Kmc = 1,45 * Điện trở của thanh nối: Trong đó: l = 6m, t = 1,5m ; b = 0,04m * Điện trở của cọc thép góc 40 x 40 x 4mm Trong đó: l = 3m t/ = 1/2 = 1,5m d = 0,04m * Điện trở của hệ thống nối đất tia - cọc: Trong đó: n - Là số cọc cần sử dụng là 2 cọc và - Là hệ số sử dụng được xác định trong bảng sách hướng dẫn thiết kế tốt nghiệp cao áp với a/l =1 Ta có: Ta thấy rằng do vậy hệ thống nối đất nhân tạo như trên là đạt yêu cầu. b. Phương án 2: - Gồm 2 tia mỗi tia dài 6m chèn sâu 1,5m - Cọc bằng thép góc 40 x 40 x 4mm gồm 3 cọc có chiều dài 3m và được bố trí như hình dưới. - Hệ số mùa: Kmt= 1,6; Kmc= 1,45. * Điện trở của thanh nối với : l = 6m t = 1,5 m b = 0,04 m * Điện trở của cọc thép 40 x 40 x 4mm Với: L = 3 ( m) D = 0,038( m) T/ = 1,5 m Điện trở của hệ thống nối đất tia cọc: Trong đó: n = 4 ( là số lượng cọc sử dụng) và tra trong bảng 3,5 sách hướng dẫn thiết kế tốt nghiệp kỹ thuật điện cao áp với . Ta thấy rằng do vậy hệ thống nối đát nhân tạo như trên là đật yêu cầu. * Kết luận: cả hai phương án nối đất nhân tạo trên đều đẩm bảo yêu cầu . Tuy nhiên ta chọn phương án một làm phương án thiết kế nối đất cột đường dây 110Kv vì có trị số điện trở yêu cầu, để thiết kế tốn ít vật liệu, giá thành rẻ... CHƯƠNG III TÍNH TOÁN CHỈ TIÊU CHỐNG SÉT CHO ĐƯỜNG DÂY 110KV Đường dây tải điện là phần tử dài nhất của HTĐ nên thường bị sét đấnh và chịu tác động của điện áp khí quyển, có thể dẫn đến cắt máy, cắt đường dây ảnh hưởng tới sự cung cấp điện của lưới đồng thời phá hoại thiết bị trong trạm. Do đó ta phải nghiên cứu chống sét cho đường dây tải điện, đặc biệt là những đoạn gần trạm, vì khi sét đánh có thêr tạo nên sáng truyền vào trạm gây nguy hiểm cho người và thiết bị trong trạm. Qua điện áp khí quyển xuất hiện trên đường dây là do sét đánh trực tiếp vào đường dây dẫn, dây chống sét, cột hoặc xuống đất gần đường dây. Khi xét đến chỉ tiêu kinh tế ta chỉ có thể chọn theo mức độ hợp lý về kinh tế và kỹ thuật, tan không thể chọn được mức cách điện theo yêu cầu của quá điện áp khí quyển vì trị số của nó là lớn. Với mức độ treo cao trung bình của dây trên cùng ( dây chống sét) là h, đường dây sẽ thu về các phóng điện sét trên dãi đất rộng 6h và chiều dài bằng chiều dài đường dây. Tổng số lần sét đánh thẳng lên đường dây hằng năm được tính là: Trong đó: hTB- Độ cao trung bình của dây cao nhất ( m) Nngs- số ngày sét đánh hằng năm trong khu vực dây đi qua ngày. L- chiều dài đường dây ( km) Do tham số dòng sét đánh là khác nhau, không phải lần nào cũng dẫn đến phóng điện trên cách điện. Để xảy ra phóng điện khi sét đánh thì trị số quá điện áp khí quyển phải lớn hơn mức cách điện xung kích của đường dây. Do vậy số lần phóng điện trên trên cách điện phụ thuộc vào giá trị xác suất phóng điện rpđ và số lần phóng điện được xác định: Phóng điện trên cánh điện chỉ gây cắt điện khi phóng điện xung kích trên cách điện chuyển thành hoò quang duy trì bởi điện áp làm việc xác suất trở thành hồ quang phụ thuộc vào građien điện áp làm việc dọc theo đường dây phóng điện: với Trong đó: ULV- điện áp làm việc của đường dây. Lpđ- chiều dài đường phóng điện. Vậy số lần cắt điện hàng năm do sét đấnh vào đường dây tải điện là: Để so sánh khả năng chịu sét của đường dây tải điện có tham số khác nhau người ta dùng trị số suâts cắt đường dây tức là số lần cắt khi đường dây có chiều dài L = 100km được tính là: Do đó để giảm số lần cắt diện ta phải giảm rpđ hoặc . + Giảm rpđ: bằng cách tăng cường cách điện đường dây và treo dây chống sét. Treo dây chống sét là có hiệu quả nhất. Với vùng đất có thì dây chống sét sẽ không phát huy tác dụng. Giảm: giảm được khi giảm được cường độ điện trường dọc theo đường phóng điện hay phiải tăng Lpđ( tăng số bát sứ). Ta thấy rằng đường dây 110KV đi qua vùng có sét đánh hoạt động mạnh cần được bảo vệ bằng dây chống sét. Đường dây 22KV có trung tính cách điện và cách điện của đường dây là rất yếu nên không treo dây chống sét. I.ĐƯỜNG DÂY 110KV. 1.Tham số c

Các file đính kèm theo tài liệu này:

  • doc70501.DOC