Kết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực

MỤC LỤC 1

A/ Giới thiệu chung về hệ chuyên gia : 2

I/ Tổng quan về hệ chuyên gia : 4

1. Thiết kế một hệ chuyên gia : 4

2.Các vấn đề phù hợp để xây dựng HCG : 6

3.Quy trình công nghệ tri thức : 7

4.Hệ chuyên gia dựa trên LUẬT : 8

6.Hệ chuyên gia dựa trên MÔ HÌNH : 10

B/Hệ chuyên gia sửa chữa sự cố máy tính (ESRC): 12

a/ Khả năng sử dụng và cấu trúc hệ thống : 12

b/ Biểu diễn tri thức : 16

c/ Bộ phận giải thích : 18

d/ Quản trị tri thức : 20

Kết luận chung : 21

C/Ví dụ về một số hệ chuyên gia khác : 21

A/Kết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực: 21

Tóm tắt : 21

1. Đặt vấn đề 21

2. Hệ chuyên gia dự báo MBA dựa vào phương pháp phân tích khí hoà tan (DGA) – xây dựng dữ liệu nhân tạo cho quá trình luyện mạng nơron dựa trên cơ sở hệ chuyên gia (HCG) 22

3. Ứng dụng mạng MLP chẩn đoán sự cố tiềm ẩn trong MBA 23

4. Xây dựng hệ chuyên gia dựa trên các hướng dẫn của Viện Năng lượng Liên Xô (cũ) [5] 24

5. Kết hợp hệ chuyên gia và mạng nơron để chẩn đoán sự cố tiềm ẩn trong MBA 25

6. Kết luận 25

B/Hệ chuyên gia đánh giá năng lực thiết kế giải thuật cho các bài toán lập trình : 26

1. Giới thiệu 26

2. Cơ sở lý thuyết 26

3. Hệ chuyên gia đánh giá năng lực thiết kế giải thuật cho các bài toán lập trình 26

 

 

doc33 trang | Chia sẻ: oanh_nt | Ngày: 01/07/2013 | Lượt xem: 1399 | Lượt tải: 4download
Bạn đang xem nội dung tài liệu Kết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ầu với việc kĩ sư tri thức cố gắng làm quen với phạm vi xác định vấn đề , điều này giúp ích cho việc giao tiếp với chuyên gia dễ dàng hơn .Nó thường được thực hiện bằng những bài phỏng vấn mở đầu với chuyên gia ,bằng quan sát chuyên gia trong quá trình họ làm việc , hoặc thông qua việc đọc những tài liệu liên quan đến lĩnh vực đó . Tiếp theo kĩ sư và chuyên gia bắt đầu khai thác những tri thức giải quyết vấn đề của chuyên gia này bằng cách đưa ra các câu hỏi, các ví dụ, các trường hợp ,… Ngay sau khi kỹ sư có cái nhìn tổng qua về lĩnh vực vấn đề và đã cùng chuyên gia giải quyết một số bài toán , anh ta bắt đầu vào thiết kế hệ thống : chọn phương pháp biểu diễn tri thức , như luật hay frame ,xác định các chiến lược tìm kiếm ,… Sau cùng kỹ sư thiết kế một phiên bản dùng thử và cùng chuyên gia kiểm tra hiệu quả , đồng thời với việc sửa chữa , cập nhật . Đặc trưng thứ hai của HCG là cần xem chương trình như không bao giờ có kết thúc . Một cơ sở heuristic lớn sẽ luôn luôn có những hạn chế của nó , vì tri thức luôn đổi mới vì vậy luôn luôn phải cập nhật thông tin. Có hai loại hệ chuyên gia được sử dụng : Hệ chuyên gia dựa trên luật ( Rules- based ES ) Hệ chuyên gia dựa trên mô hình ( Model – base reasoning ) 4.Hệ chuyên gia dựa trên LUẬT : Các HCG dựa trên luật biểu diễn tri thức dưới dạng if… then .Cách tiếp cận này thích hợp với mô hình cơ bản và là một trong những kỹ thuật cổ điển và được sử dụng rộng rãi nhất dùng cho biểu diễn tri thức về một lĩnh vực trong HCG . Với HCG dựa trên luật , dữ liệu cho trường hợp cụ thể được giữ trong bộ nhớ làm việc ; động cơ suy diễn thực hiện chu trình nhận dạng – hành động của hệ sinh ;cơ chế điều khiển này có thể hướng từ dữ liệu hay hướng từ mục tiêu . Tuy nhiên với một HCG thì tiếp cận hướng từ mục tiêu sẽ tạo điều kiện cho quá trình giải thích hơn : vì trong một hệ hướng mục tiêu , việc suy luận theo đuổi một mục tiêu nào đó , mục tiêu đó bị chia thành nhiều mục tiêu con và cứ như vậy ; kết quả là việc tìm kiếm luôn luôn được hướng dẫn thông qua sự phân cấp mục tiêu và mục tiêu con này . Để có ví dụ cụ thể về vấn đề giải quyết theo hướng mục tiêu , ta xét một HCG nhỏ dùng để chuẩn đoán trục trặc của xe hơi : Luật 1: IF (động cơ nhận được xăng AND động cơ khởi động được ) THEN ( trục trặc là do bugi ) Luật 2: IF (động cơ không khởi động được AND đèn không sang ) THEN ( trục trặc do ăcquy hoặc dây cáp ) Luật 3: IF (động cơ không khởi động được AND đèn sang ) THEN ( trục trặc là do motơ khởi động ) Luật 4: IF (còn xăng trong bình chứa nhiên liệu AND còn xăng trong bộ chế hoà khí ) THEN (động cơ nhận được xăng ) Kết luận về HCG dựa trên luật : +/ Ưu điểm : Khả năng sử dụng trực tiếp các tri thức thực nghiệm của các chuyên gia Tính modul của luật làm cho việc xây dựng và bảo trì luật dễ dàng Có thể thực hiện tốt trong các lĩnh vực hạn hẹp Có tiện ích giải thích tốt Các luật ánh xạ một cách tự nhiên vào không gian tìm kiếm trạng thái Dễ dàng theo dõi một chuỗi các luật và sửa lỗi Sự tách biệt giữa tri thức và điều khiển giúp đơn giản hoá quá trình phát triển của HCG +/ Khuyết điểm : Các luật đạt được từ chuyên gia mang tính heuristic rất cao. VD : trong y học luật “If sốt cao Then bị nhiễm trùng “ mà không thể hiện lí thuyết sau hơn trong y học có quan sát ( là cơ chế cơ thể phản ứng để chống lại vi khuẩn ) Các luật heuristic “ dễ vỡ “ , không xử lí được các trường hợp ngoài dự kiến ; phải cần một chuyên gia có quan sát kỹ lưỡng mới phát hiện ra , nếu không đúng với dữ liệu thì hệ thống không gíải quyết được . Có khả năng giải thích chứ không chứng minh được Các tri thức thường rất phụ thuộc vào công việc , không thể sử dụng cho công việc khác . Khó bảo trì các cơ sở luật lớn . Hệ chuyên gia dựa trên MÔ HÌNH : Dựa vào lỗi của HCG dựa trên luật , thì HCG dựa trên mô hình được đưa ra . HCG dựa trên mô hình là một hệ thống mà sự phân tích căn cứ dựa vào mô tả chi tiết và chức năng của một hệ thống vật lí .Trong thiết kế và sử dụng , HCG dựa trên mô hình tạo ra một sự mô phỏng bằng phần mềm đối với chức năng của cái mà chung ta muốn tìm hiểu hay sửa chữa . Một hệ thống chuẩn đoán dựa trên mô hình đòi hỏi : 1.Mô tả cho mỗi bộ phận trong thiết bị . Từ những mô tả này mà hệ chuẩn đoán có thể mô phỏng hành vi của từng thiết bị 2.Một mô tả cấu trúc bên trong của thiết bị . Đây thường là một biểu diễn của các thành phần và mối quan hệ qua lại giữa chung .Những thông tin này sẽ giúp cho hệ thống mô phỏng sự tương tác giữa các thành phần của thiết bị 3.Việc chuẩn đoán một lỗi cụ thể đòi hỏi sự quan sát việc thực hiện thật sự của thiết bị , thông thường là việc đo các thông số vào/ ra của nó Vì vậy, nhiệm vụ của hệ sẽ xác định bộ phận nào có lỗi dựa trên các hành vi quan sát được . Điều này đòi hỏi phải có thêm các luật mô tả các chế độ có lỗi đã biết cho các bộ phận khác nhau và sự kết nối giữa chung.Hệ suy luận khi đó cần tìm ra những lỗi có khả năng nhất có thể giải thích hành vi quan sát được của hệ thống . Kết luận về hệ suy luận dựa trên mô hình : Một số ưu điểm của hệ này như sau : Tạo khả năng sử dụng tri thức về cấu trúc và chức năng của lĩnh vực trong giải quyết vấn đề Vượt qua hạn chế của HCG dựa trên luật , HCG này có khuynh hướng mạnh ,” khó vỡ “ Một số tri thức có thể chuyển tải cho công việc khác Có khả năng cung cấp các lời giải thích rõ rang cho các nguyên nhân . Một số hạn chế của hệ : Mô hình chỉ mang tính trừu tượng , không thể chi tiết và khái quát hoá được chính xác . Hạn chế về thế giới đóng - tức là những gì không nằm trông mô hình coi như không tồn tại . Khi mô hình không chính xác hoặc không phù hợp thì coi như không có cách giải quyết hợp lí Hệ thống tạo ra có thể lớn và chậm ; độ phức tạp cao , có nhiều tình huống ngoại lệ . B/Hệ chuyên gia sửa chữa sự cố máy tính (ESRC): Giới thiệu : ESRC là một hệ thống được viết ra nhằm mục đích giúp cho những người sử dụng máy tính có khả năng nhận biết được “ bệnh “ của máy tính khi có sự cố xảy ra , đồng thời đưa ra giải pháp tối ưu có thể thực hiện . Trong phần dưới đây sẽ trình bày về cấu trúc hệ thống và cách thức sử dụng của ESRC . a/ Khả năng sử dụng và cấu trúc hệ thống : -Cách sử dụng : ESRC sẽ “ nói chuyện” với người sử dụng thông qua đối thoại trên màn hình .Cuộc nói chuyện do ESRC thực hiện nên những thông tin được người sử dụng đưa vào tại từng thời điểm bị hạn chế .Kết quả đưa ra dưới dạng ngôn ngữ tự nhiên , ở đó các câu và các biểu thức được ghép lại với nhau theo sơ đồ của các phần tử tạo câu .Thông tin đưa vào được chọn từ các biểu thức có dạng cho sẵn hoặc các biểu thức và số liệu rất đơn giản , ngắn gọn . -Mục tiêu: ESRC chỉ có những kiến thức để xác định : Các nguyên nhân gây làm cho máy không hoạt động . Cách sửa chữa một số hỏng hóc cơ bản hoặc hướng dẫn người dung cách xử lí tối ưu . Do vậy, ESRC có hạn chế là chỉ đưa ra được một trường hợp hỏng hóc nào đó mà không thể xác định được tác dụng qua lại , tính tương tác giữa các hỏng hóc của máy tính . -Khả năng của ESRC : Bản than ESRC có các tính năng sau : Đưa ra các giả thuyết : từ những sự cố ban đầu dễ nhận thấy , ESRC đưa ra các giả thuyết về các nguyên nhân gây ra gần nhất có thể bị . Yêu cầu kiểm tra , xử lí : Để khẳng định lại giả thuyết của mình , ESRC yêu cầu người sử dụng kiểm tra máy tính với các nguyên nhân mà nó đưa ra ở trên theo từng trường hợp một, từng bước một Đưa ra phương pháp giải quyết : Đối với từng nguyên nhân mà ESRC đưa ra , nó sẽ cho kết quả là từng cách sửa chữa, giải quyết hợp lí nhất . Giải thích hoạt động của hệ thống : ESRC sẽ giải thích các kết quả , các câu hỏi mà nó đã đặt ra với người sử dụng nếu muốn : Với kết quả , ESRC sẽ giải thích nguyên nhân , căn cứ mà nó đưa ra kết quả đó . Với câu hỏi thì ESRC sẽ giải thích với mục đích , “ suy nghĩ “ nào mà nó đưa ra câu hỏi đó . -Phạm vi sử dụng : Phạm vi sử dụng của ESRC trải trên các mảng sau : Từ các hiện tượng ban đầu mà người sử dụng truyền đạt cho ESRC, ESRC sẽ từng bước đưa ra kết quả nhỏ rồi hướng dẫn người sử dụng cách kiểm tra sự cố để đến khi có được kết quả cuối cùng . Từ kết quả mà ESRC kết luận , nó sẽ đưa ra cách sửa chữa hoặc phương pháp giải quyết tối ưu . Hướng dẫn người sử dụng cách thức kiểm tra máy tính , sửa chữa một số hỏng hóc cở bản , có kinh nghiệm trong việc chuẩn đoán khi máy tính không hoạt động . -Nhu cầu : Ý tưởng xây dựng hệ chuyên gia ESRC này được đưa ra trong hoàn cảnh hiện nay có rất nhiều người sử dụng máy tính các loại nhưng khả năng hiểu biết cơ bản của họ về máy tính lại rất hạn chế .Khi gặp một số trục trặc nhỏ về máy tính là gần như họ không có khả năng sửa chữa hoặc kiểm tra máy ( ví dụ như lỏng RAM , đứt dây nối bên trong ,….) , cuối cùng lại nhờ người khác hoặc đưa đến chuyên gia để giải quyết những vấn đề đơn giản này .Từ đây xuất hiện ra ý tưởng là có một chuyên gia “ máy tính “ có khả năng nhận biết được phần lớn , chính xác các hỏng hóc của máy tính và đưa ra các phương pháp xử lí tối ưu , nhanh nhất . Cấu trúc của ESRC ở hình dưới , ta có thể nhận thấy một số lệch lạc giữa thông tin mà ESRC có được và tri thức của chuyên gia : + Bên cạnh cơ sở tri thức còn có thêm 2 cơ sở dữ liệu khác chứa thông tin tức thời của máy tính : Dữ liệu về thời gian sử dụng của máy tính ,các hỏng hóc trước đây có thể gặp qua ,… Dữ liệu “động “ gồm các kết quả hoặc kết quả trung gian tạo ra trong qua trình làm việc, hỏi đáp của hệ thống . + Việc thực hiện đối thoại được phối hợp với các quyết định của cơ sở tri thức .Như vậy các mẫu câu hỏi và trả lời của ESRC đều gắn liền với các quy tắc đó .Thứ tự xử lí các quy tắc đó được điều khiển bởi chính các quy tắc quyết định và tổ chức của dữ liệu “động “. Dữ liệu động Dữ liệu về máy tính Phần tử quản trị tri thức Phần tử giải thích Bộ xử lí của ESRC Người sử dụng Cơ sở tri thức (quy tắc quyết định) b/ Biểu diễn tri thức : Khái quát : Trong ESRC có 3 loại dữ liệu và tri thức được thể hiện : +/ Dữ liệu về máy tính : Những thông tin về máy tính , về các sự cố của máy tính thường xảy ra (được cung cấp bởi các chuyên gia trong quá trình họ làm việc với hệ thống ) +/ Dữ liệ động : là những dữ liệu được tạo ra sau một hoạt động của ESRC trên các dữ liệu về máy tính bị hỏng và dữ liệu động như là những kết quả của hệ ( nghĩa là không phải do chuyên gia cung cấp ). +/ Kiến thức chuyên ngành về máy tính : các kiến thức về máy tính được lưu trong ESRC chính là các quy tắc kiểm quyết định kiểu kiểm tra . Các quy tắc này còn gọi là các quy tắc sản xuất ,trong đó kiểm tra là một sự kiện ( có thể đánh giá đúng hoặc sai ) trên dữ liệu về máy tính và dữ liệu “động “ . Để biểu thị dữ liệu và các kiến thức y học chung ta có các thành phần tri thức sau : +/ Dữ liệu về máy tính và dữ liệu “ động “: Bộ ba liên hợp mà trong đó mỗi đối tượng liên hợp với một thuộc tính và các giá trị của chung . Các cây ngữ cảnh trong đó bộ ba liên hợp được lưu trữ . Các nhân tố đảm bảo ,phục vụ cho việc đảm bảo dữ liệu và các quy tắc quyết định . +/ Kiến thức về máy tính : Hệ thống quy tắc dẫn xuất xây dựng trên các quy tắc quyết định Biểu diễn dữ liệu Như trên ta thấy người ta sử dụng 3 thành phần kĩ thuật phục vụ cho việc biểu diễn dữ liệu trong ESRC : Bộ ba liên hợp gồm bộ ba : đối tượng - thuộc tính – giá trị . Ví dụ : RAM – Bộ nhớ truy cập ngẫu nhiên – 128M/256M/512M. Các nhân tố đảm bảo là độ đo tiêu chuẩn để dảm bảo tính hợp lệ của các dữ liệu , mà các giá trị của nó nằm trong khoảng [-1;1]( sai hoàn toan ; đúng hoàn toàn ). Các cây ngữ cảnh phục vụ cho việc lưu trữ và thể hiện mối liên quan lẫn nhau của bộ ba liên hợp . Bộ ba liên hợp . Một khai báo rằng đối tượng OB có tính chất E sẽ biểu thị một bộ ba liên hợp ( OB ATTR E) trong đó ATTR ( thuộc tính ) và E là giá trị của thuộc tính đó : Ví dụ “ Bộ nhớ RAM ( dung lượng ) 256M “ sẽ biểu thị qua : ( RAM MEMORY 256) mà ở đây : Đối tượng : RAM Thuộc tính : MEMORY Giá trị thuộc tính : 256M của đối tượng RAM là MEMORY . Giá trị của bộ 3 liên hợp được biêu diễn dưới dạng các danh sách của thuộc tính của ngôn ngữ mà ESRC được xây dựng trên đó ( ví dụ như trong C# thì sẽ được thể hiện dưới dạng bảng – datagirt ).Với nhiều loại đối tượng và thuộc tính ta có các giá trị chuẩn mà sẽ được đưa vào một cách tự động khi tạo ra bộ ba liên hợp . Cây ngữ cảnh : Bộ 3 liên hợp đươc lưu trữ trong các cây ngữ cảnh mà chung được taọ ra như sau : Cây ngữ cảnh là cây xây dựng tưng bước một Các nút sẽ được nối dài bởi các bộ ba liên hợp Một nhánh nảy từ A-> B khi mà đối tượng của B ( nghĩa là loại đối tượng của đối tượng hiển thị bới nút B ) có liên quan trực tiếp đến đối tượng A . Chú ý là mối liên hệ giữa các đối tượng ở đây gọi là ngữ cảnh (context ) và ví vậy chung ta có kết quả là các cây ngữ cảnh . Việc lưu trữ các bộ ba liên hợp dưới dạng cây ngữ cảnh cho ta đạt được 2 mục tiêu : Quan hệ nối nhau trong cây ngữ cảnh là một sự biểu diễn các ràng buộc phụ thuộc nhau phân bậc loại không xác định chính xác , tuỳ theo khuôn khổ ứng dụng . Do việc lấy bộ ba liên hợp được tiến hành qua cấu trúc cây ngữ cảnh , cho nên thông qua cây này ta đạt được một sự điều khiển sắp xếp độ quan trọng của dữ liệu .Ngược lại ta cũng có thể sư dụng quan hệ kết quả của việc khai thác dữ liệu của cây ngữ cảnh . c/ Bộ phận giải thích : Khái quát chung : ESRC đưa ra các kết luận căn cứ vào việc sử dụng các quy tắc mà tính sử dụng được xác định qua sự hợp lệ của phần kiểm tra trên các dữ liệu động và dữ liệu về tình trạng máy tính hiện thời .Phần tử giải thích của ESRC giải thích các kết luận của nó thông qua việc giải thích nó đã sử dụng quy tắc nào, trên cơ sở dữ liệu nào . Phần tử của ESRC chỉ hoạt động theo yêu cầu của người sử dụng . Nó sẽ trả lời các câu hỏi : Về các quy tắc nào được sử dụng liên tiếp để đưa ra được kết luận Về việc sử dụng các quy tắc trên cơ sở các dữ liệu “động” và các dữ liệu về tình trạng máy tính hiện thời . Câu hỏi về các quy tắc đã sử dụng .Phần giải thích dựa vào cơ sở tri thức trả lời 2 loại câu hỏi : Các câu hỏi chung không có tác dụng đưa đến một kết luận nào của ESRC . Các câu hỏi về quá trình đưa tới kết luận Các câu hỏi chung được chuẩn bị sẵn . Có 2 loại câu hỏi được ESRC xử lí : Hỏi về quy tắc làm nhiệm vụ xác định VD : Người (chọn câu hỏi trên màn hình ): Tại sao bạn lại cho rằng máy không hoạt động được là do quạt Chip ? Máy (câu trả lời có sẵn ): Vì khi cắm điện vào, case có nhận điện nhưng quạt không quay (đk bắt buộc để khởi động ) nên có khả năng là do hỏng quạt ( Quy tắc QT001 – có sẵn ) Hỏi về mục đích câu hỏi của ESRC cho người sử dụng VD : Người : Tại sao bạn lại yêu cầu tôi kiểm tra RAM ? Máy : Theo như hiện tượng bạn nêu ra ( case hoạt động nhưng màn hình không lên + tiếng tit tit …) và quạt Chíp vẫn chạy nên có khả năng là do RAM lỏng hoặc hỏng ( Quy tắc QT004 ) Trong cả 2 trường hợp ESRC này, việc tạo ra câu trả lời khá đơn giản bằng cách tìm lần lượt các từ khoá trong các phần kiểm tra hoặc hành động của từng quy tắc .Nếu trong một quy tắc nào đó tồn tại một trong các từ khoá đó , thì quy tắc đó được đưa vào câu trả lời . Câu hỏi về quá trình đưa tới kết luận : Đối với các loại câu hỏi này thì ESRC phải giải thích nó đi tới kết luận như thế nào .VD: Người : Tại vì đâu bạn khẳng định là do hỏng nguồn ? Máy : Từ quy tắc QT0012 – tôi có thể kết luận là bạn bị hỏng nguồn ( trùng hợp 2 hiện tượng , có các hiện tượng hỏng hóc giống nhau ). Câu hỏi dữ liệu “động” và dữ liệu về tình trạng máy tính hiện tại có 2 loại : +/ Hỏi về mối quan hệ giữa các dữ liệu: những câu hỏi này được trả lời bằng cách tìm theo các từ khoá trong cơ sở dữ liệu +/ Hỏi về mục đích đưa ra câu trả lời cho người sử dụng d/ Quản trị tri thức : Quản trị tri thức là phẩn tốn kém nhất trong cấu trúc hệ chuyên gia . Ở đây nói lên 2 nguyên nhân : Một chuyên gia trên một lĩnh vực rộng lớn trội lên trước hết nhờ khối lượng tri thức có thể tài liệu hoá được . Tuyên bố hoàn thành một hệ chuyên gia chính là đưa hệ vào sử dụng .Ngay từ đó, quản trị tri thức phải thực hiện hàng loạt quan sát và hỏi chuyên gia .Công việc này do “ kĩ sư – tri thức “đam nhiệm và sau đó biểu diễn các tri thức thu nhận được dưới dạng thích hợp để hệ thống chuyên gia có thể truy xuất được . Có 2 phương án để đảm bảo và cơ khí hoá việc quản trị tri thức : Tổng hợp nội dung tri thức mới bằng cách sử dụng các phương pháp mô tả trong phần trước . Hội thoại bằng chương trình với chuyên gia trong chu trình tạo - kiểm tra : người ta tạo một ví dụ cho hệ thống chuyên gia và mời một chuyên gia đến làm giám khảo . Khi người chuyên gia xác định được sai sót , hệ thống sẽ giải thích quá trình hoạt động của nó . Kết luận chung : Hệ chuyên gia giúp sửa chữa máy tính nếu hoàn thành sẽ là một thành công trong việc giúp người sử dụng có một cái nhìn tổng quát hơn về máy tính và có thể dần nắm bắt được các sự cố của máy tính khi xảy ra hỏng hóc cũng như đưa ra cho người sử dụng những cách giải quyết tối ưu khi có sự cố lớn sảy ra . Do một số điều kiện về trình độ cũng như khả năng kết hợp với các chuyên gia máy tính nên chương trình này chưa thể hoàn thành được . Rất hi vọng có thể hoàn thành chương trình này trong thời gian sớm nhất . C/Ví dụ về một số hệ chuyên gia khác : A/Kết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực: Tóm tắt : Những sự cố tiềm ẩn trong máy biến áp lực (MBA) được dự báo bằng nhiều phương pháp khác nhau, khi máy đang mang điện (on line) hay cắt điện (off line). Phương pháp phân tích khí hoà tan (DGA) là một trong số các phương pháp dự báo phổ biến. Dựa vào cơ sở của phương pháp DGA, việc xây dựng và kết hợp được hệ chuyên gia với mạng nơron nhân tạo sẽ góp phần nâng cao khả năng dự báo các sự cố tiềm ẩn trong MBA. 1. Đặt vấn đề Máy biến áp lực (MBA) là một trong những phần tử quan trọng trong hệ thống điện, độ tin cậy cung cấp điện của nó liên quan trực tiếp đến độ tin cậy của cả hệ thống điện. Để nâng cao tuổi thọ MBA và tăng độ tin cậy cung cấp điện, MBA thường xuyên được giám sát bằng nhiều phương pháp, một trong số đó là phương pháp DGA. Các phương pháp DGA truyền thống chẩn đoán sự cố tiềm ẩn trong MBA phải cần đến kinh nghiệm của các chuyên gia và tiêu tốn thời gian. Trong khi đó, sự kết hợp giữa hai phương pháp là hệ chuyên gia và mạng nơron nhân tạo vào việc chẩn đoán sẽ mang lại hiệu quả với khả năng chẩn đoán nhanh và chính xác. 2. Hệ chuyên gia dự báo MBA dựa vào phương pháp phân tích khí hoà tan (DGA) – xây dựng dữ liệu nhân tạo cho quá trình luyện mạng nơron dựa trên cơ sở hệ chuyên gia (HCG) Dầu MBA được làm từ những hợp chất hữu cơ, dưới tác dụng vật lý của nhiệt, điện sẽ sinh ra các khí hoà tan như là H2, CH4, C2H6, C2H4, C2H2, CO, CO2 [1¸5] theo những quy luật nhất định. Vì vậy, đã có nhiều chuyên gia đưa ra các phương pháp khác nhau để dự đoán sự cố xảy ra trong MBA như: phương pháp Dornenburg (Dor.), phương pháp Rogers (Rog.), tiêu chuẩn IEC 599 (IEC.), phương pháp khí chính (K.gas) [1, 2]. Dựa vào tri thức của các chuyên gia theo các tiêu chuẩn đã nêu, có thể xây dựng một hệ chuyên gia để dự báo các sự cố tiềm ẩn trong MBA. Quá trình học của mạng nơron cần một lượng lớn dữ liệu, đầu vào là các số liệu thực tế. Tuy nhiên, trong thực trạng hệ thống điện Việt Nam hiện nay, rất khó để tập hợp lượng dữ liệu đủ lớn cho quá trình luyện do phương pháp DGA mới được sử dụng trong thời gian gần đây. Hơn nữa, việc thu thập dữ liệu DGA từ các hệ thống điện nước ngoài sẽ tiêu tốn thời gian và chi phí cao. Sử dụng kết quả của hệ chuyên gia, có thể xây dựng một tập hợp các mẫu dữ liệu nhân tạo cho quá trình luyện theo nguyên tắc kết quả dự báo mà hệ chuyên gia đề xuất sẽ được lưu vào tập mẫu dữ liệu nhân tạo dùng cho quá trình luyện. Chương trình tạo dữ liệu nhân tạo sử dụng kết quả của hệ chuyên gia, giao diện của chương trình như ở hình 2. Việc xây dựng bộ dữ liệu nhân tạo được thực hiện như sau: 1. Nhấn vào nút lệnh “Tạo dữ liệu”: chương trình sẽ tạo ra một mẫu dữ liệu ngẫu nhiên. 2. Nhấn nút lệnh “Dự báo”: chương trình sẽ thực hiện dự báo với mẫu dữ liệu ngẫu nhiên đã tạo. 3. Lưu dữ liệu nếu chương trình đề xuất được kết quả (xem hình 2). Dữ liệu sẽ không thể lưu nếu chương trình không đề xuất được kết quả. Với sự tổng hợp tri thức của nhiều chuyên gia theo nhiều phương pháp, tập dữ liệu này cho phép đạt được độ chính xác cao cho quá trình luyện mạng. 3. Ứng dụng mạng MLP chẩn đoán sự cố tiềm ẩn trong MBA Mạng nơron nhiều lớp (the multilayer perceptron – MLP) là một giải pháp tốt để chẩn đoán sự cố tiềm ẩn trong MBA. Trong đó các mạng MLP 6x21x5 và các mạng 5 đầu vào, 3 đầu ra sẽ cho kết quả dự báo tốt [1]. Các tác giả bài báo đã xây dựng mạng MLP phục vụ vho việc chẩn đoán sự cố tiềm ẩn trong MBA. Lớp đầu vào gồm có các nút tương ứng với nồng độ của các khí: H2, CH4, C2H6, C2H4, C2H2, CO (6 đầu vào). Lớp đầu ra gồm 5 nút được mã hoá ứng với 5 trường hợp: bình thường, sự cố vầng quang điện, sự cố hồ quang điện, sự cố quá nhiệt dầu, sự cố quá nhiệt cellulose. Lớp đầu ra 3 nút ra ứng với các trường hợp: bình thường, sự cố phóng điện, sự cố quá nhiệt. 4. Xây dựng hệ chuyên gia dựa trên các hướng dẫn của Viện Năng lượng Liên Xô (cũ) [5] Hướng dẫn của Viện Năng lượng Liên Xô (cũ) chẩn đoán các hỏng hóc theo kết quả phân tích khí hoà tan trong dầu của MBA bằng phương pháp sắc ký khí đã và đang được sử dụng tại Nga và các nước SNG. Các tác giả bài báo đã xây dựng một chương trình hệ chuyên gia (Gui.) dựa vào các tiêu chí của hướng dẫn bao gồm: - Các yêu cầu chung: các khí được coi là có mặt trong dầu khi vượt quá độ nhạy ngưỡng được cho ở bảng 1. Bảng 1: Độ nhạy ngưỡng các khí Khí H2 CH4 C2H6 C2H4 C2H2 CO O2 Độ nhạy ngưỡng (ppm) 5 5 5 5 0.5 50 500 - Xác định dạng và tính chất hỏng hóc theo tiêu chí tỷ số nồng độ của cặp khí, bao gồm các trường hợp: bình thường, sự cố phóng điện, sự cố quá nhiệt, sự cố phóng điện và quá nhiệt. - Thành phần khí trong dầu MBA và các dạng hỏng hóc có thể: được sử dụng trong chẩn đoán sự cố vầng quang điện, hồ quang điện, quá nhiệt dầu và sự cố quá nhiệt cellulose. - Các yếu tố vận hành có thể làm thay đổi khí trong dầu. - Tính toán tốc độ tăng khí trong dầu, tính toán chu kỳ kiểm tra, nhiệt độ sự cố. 5. Kết hợp hệ chuyên gia và mạng nơron để chẩn đoán sự cố tiềm ẩn trong MBA Kết hợp 2 hệ chuyên gia trên và mạng MLP, chương trình chẩn đoán sự cố tiềm ẩn trong MBA được xây dựng có lưu đồ thuật toán như ở hình 4. Trên hình 3 trình bày giao diện chương trình chẩn đoán MBA, ví dụ chẩn đoán MBA với các mẫu dữ liệu thu được từ kết quả phân tích qua máy sắc ký khí của Trung tâm Thí nghiệm điện (Công ty Điện lực 3). Khâu lấy quyết định 1 và kết luận dựa theo nguyên tắc: Nếu có ít nhất 2 phương pháp có kết quả giống tương đương thì sẽ đề xuất kết quả dự báo sự cố tương đương. Khâu lấy quyết định 2 dùng để phân loại sự cố nhiệt (trong dầu hay trong cellulose). Tuy nhiên, kết quả dự báo sự cố tương đương còn tuỳ thuộc vào số phân loại sự cố được chọn. Chương trình được thực hiện với các chức năng dự báo nhanh (5 đầu vào), dự báo chi tiết (6, 7 đầu vào hay 2 mẫu dữ liệu đầu vào), lưu và xuất dữ liệu. 6. Kết luận Việc kết hợp kiến thức của các chuyên gia với phương pháp MLP một cách tổng hợp và logic cho phép xây dựng được một chương trình dự báo tốt, có tốc độ xử lý nhanh. Chương trình chẩn đoán MBA lực được xây dựng trên cơ sở phương pháp DGA và phần mềm MATLAB là công cụ phục vụ cho giao tiếp người – máy để chẩn đoán kịp thời các sự cố tiềm ẩn trong MBA và có ý nghĩa kinh tế - kỹ thuật quan trọng trong vận hành hệ thống điện. B/Hệ chuyên gia đánh giá năng lực thiết kế giải thuật cho các bài toán lập trình : 1. Giới thiệu Đánh giá thiết kế giải thuật trong bài toán lập trình là công việc phức tạp, khó hình thức hóa và khó giải quyết một cách tự động. Để giải quyết bài toán, chúng tôi đề xuất một cách giải quyết bài toán này sử dụng lập luận theo kinh nghiệm (Case-Based Reasoning – CBR). Theo cách tiếp cận này, đánh giá một thiết kế giải thuật mới sẽ được xây dựng và hiệu chỉnh từ tập các đánh giá thiết kế giải thuật đã có một độ tương tự nhất định với thiết kế giải thuật mới. 2. Cơ sở lý thuyết Lập luận theo tình huống (CBR) là một cách tiếp cận tương đối mới trong việc xây dựng hệ chuyên gia và có một số ưu điểm so với các cách tiếp cận truyền thống khác. Đây là phương pháp tìm lời giải bài toán trên cơ sở hiệu chỉnh lời giải của các bài toán khác đã có. Đơn vị biểu diễn tri thức trong hệ CBR là ca lập luận mẫu được tạo nên bởi hai thành phần là mô tả bài toán và lời giải mẫu tương ứng. Các bước trong quá trình lập luận theo tình huống bao gồm: thu thập các ca lập luận mẫu tương tự (tìm kiếm), hiệu chỉnh lời giải, xem xét lại lời giải và lưu lời giải mẫu. Phương pháp này tương đối phù hợp với các bài toán các bài toán có miền rộng, không thể đặc tả tường minh hoặc các bài toán gặp khó khăn trong việc xây dựng cơ sở tri thức biểu diễn bằng luật [1, 2]. 3. Hệ chuyên gia đánh giá năng lực thiết kế giải thuật cho các bài toán lập trình Giải pháp được tôi lựa chọn để giải quyết bài toán đánh giá năng lực thiết kế giải thuật c

Các file đính kèm theo tài liệu này:

  • docKết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực.DOC
Tài liệu liên quan