MỤC LỤC
Lời nói đầu 1
Mục lục 2
Danh mục hình vẽ 3
Thuật ngữ viết tắt 4
1. Chương I: Tổng quan về tổ chức IEEE và họ chuẩn IEEE 802 6
1.1. Tổng quan về tổ chức IEEE 6
1.2. Các tiêu chuẩn IEEE 6
1.2.1 Giới thiệu 6
1.1.1. Các bộ tiêu chuẩn thuộc họ IEEE 802 7
1.1.2. Quan hệ giữa các chuẩn IEEE và mô hình OSI 8
2. Chương 2: Một số chuẩn thông dụng trong họ chuẩn IEEE 802 9
2.1. Sơ lược về một số bộ tiêu chuẩn trong họ IEEE 802 9
2.1.1. Chuẩn hóa mạng LAN/MAN hữu tuyến 10
2.1.1.1. IEEE 802.1 - các giao thức LAN tầng cao 10
2.1.1.2. IEEE 802.2 – điều khiển liên kết logic (LLC) 10
2.1.1.3. IEEE 802.3 – tiêu chuẩn cho công nghệ Ethernet 11
2.1.1.4. IEEE 802.4, .5, .6, .9, .12, .14 11
2.1.1.5. IEEE 802.17 13
2.1.2. Chuẩn hóa mạng LAN/MAN không dây 14
2.1.2.1. IEEE 802.11 – công nghệ WiFi 14
2.1.2.2. IEEE 802.15 – Công nghệ Bluetooth, ZigBee 14
2.1.2.3. IEEE 802.16 14
2.1.2.4. IEEE 802.20 15
2.1.2.5. IEEE 802.21 15
2.1.2.6. IEEE 802.22 15
2.1.3. Chuẩn hóa các thành phần khác 16
2.1.3.1. IEEE 802.10 16
2.1.3.2. IEEE 802.19 16
2.2. Các bộ tiêu chuẩn quan trọng 17
2.2.1. IEEE 802.3 và chuẩn hóa mạng Ethernet 17
2.2.2. IEEE 802.11 và chuẩn hóa mạng mạng LAN không dây (WLAN) 19
2.2.2.1. Giới thiệu bộ tiêu chuẩn IEEE 802.11 19
2.2.2.2. Một số chuẩn trong bộ chuẩn IEEE 802.11 20
2.2.3. Một số chuẩn mạng không dây khác: 27
2.2.3.1. IEEE 802.15 – Mạng WPAN 27
2.2.3.2. IEEE 802.16 – Công nghệ WiMAX (Mạng WMAN) 29
3. Kết luận và phương hướng tiếp cận tiếp theo 33
Tài liệu tham khảo 34
34 trang |
Chia sẻ: maiphuongdc | Lượt xem: 7113 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đề tài Bộ tiêu chuẩn IEEE 802.x, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
mạng theo kiểu phát tán tín hiệu thăm dò token qua các trạm và đường truyền bus.
IEEE 802.5
IEEE 802.5 là chuẩn đặc tả mạng LAN với hình trạng vòng sử dụng thẻ bài để điều khiển truy cập đường truyền. IEEE 802.5 cũng bao gồm cả tầng vật lý và tầng con MAC với các đặc tả sau:
Đặc tả dịch vụ MAC.
Giao thức MAC.
Đặc tả thực thể tầng vật lý.
Đặc tả nối trạm.
Nguyên lý: IEEE 802.5 dùng cho mạng dạng xoay vòng và trên cơ sở dùng tín hiệu thăm dò token. Mỗi trạm khi nhận được tín hiệu thăm dò token thì tiếp nhận token và bắt đầu quá trình truyền thông tin dưới dạng các frame. Phương pháp xâm nhập mạng này quy định nhiều mức ưu tiên khác nhau cho toàn mạng và cho mỗi trạm, việc quy định này vừa do người thiết kế vừa do người sử dụng tự quy định.
IEEE 802.6
IEEE 802.6 là chuẩn đặc tả một mạng tốc độ cao nối kết nhiều LAN thuộc các khu vực khác nhau của một đô thị. Mạng này sử dụng cáp quang với hình trạng dạng bus kép (dual-bus), vì thế còn được gọi là DQDB. Lưu thông trên mỗi bus là một chiều và khi cả cặp bus cùng hoạt động sẽ tạo thành một cấu hình chịu lỗi. Phương pháp điều khiển truy cập dựa theo một giải thuật xếp hàng phân tán có tên là QPDS (Queued-Packet, Distributed-Switch).
Đây là một cải tiến của một tiêu chuẩn cũ hơn (được tạo bởi ANSI) mà nó sử dụng cấu trúc mạng FDDI. Các tiêu chuẩn dựa trên FDDI bị thất bại do thực hiện tốn kém và thiếu tính tương thích với các chuẩn LAN hiện hành. Các tiêu chuẩn IEEE 802.6 sử dụng DQDB nên nó hổ trợ lên tới 150 Mbit/s tốc độ truyền tải. Tiêu chuẩn này không thành công, chủ yếu là do tiêu chuẩn FDDI mà nó dựa theo cũng không thành công.
IEEE 802.9
IEEE 802.9 là chuẩn đặc tả một mạng tích hợp dữ liệu và tiếng nói bao gồm 1 kênh dị bộ 10 Mbps cùng với 95 kênh 64 Kbps. Giải thông tổng cộng 16 Mpbs. Chuẩn này được thiết kế cho các môi trường có lưu lượng lưu thông lớn và cấp bách. Tiêu chuẩn này thường được gọi là isoEthernet. Có một số nhà cung cấp hổ trợ cho isoEthernet, nhưng nó bị mất thị trường do việc phát triển nhanh chóng của Fast Ethernet và các nhóm làm việc phát triển bộ tiêu chuẩn này đã giải tán.
IEEE 802.12
IEEE 802.12 là chuẩn đặc tả mạng cục bộ dựa trên công nghệ được đề xuất bởi AT&T, IBM và HP, gọi là 100 VG – AnyLAN. Mạng này sử dụng hình trạng mạng hình sao và một phương pháp truy cập đường truyền có điều khiển tranh chấp. Khi có nhu cầu truyền dữ liệu, trạm sẽ gởi yêu cầu đến hub và trạm chỉ có thể truyền dữ liệu khi được hub cho phép.
Chuẩn này nhằm cung cấp một mạng tốc độ cao (100 Mbps và có thể lớn hơn) có thể hoạt động trong các môi trường hỗn hợp Ethernet và Token Ring, bởi thế nó chấp nhận của hai dạng khung. 100VG – AnyLAN là đối thủ cạnh tranh đáng gờm của 100BASE-T (Fast Ethernet) nhờ một số tính năng nổi trội hơn, chẳng hạn về khoảng cách đi cáp tối đa cho phép.
IEEE 802.14
Vào những năm 1990, Ủy ban IEEE 802 thành lập một tiểu ban (802.14) để phát triển một tiêu chuẩn cho các hệ thống modem cáp. Trong khi tiến bộ đáng kể, nhóm này bị giải tán khi các nhà điều hành hệ thống Bắc Mỹ đã ủng hộ các đặc điểm kỹ thuật mới mẻ, non trẻ hơn là DOCSIS.
IEEE 802.17
IEEE 802.17 hay là RPR (Resilient Packet Ring), giao thức lớp MAC đang được IEEE chuẩn hóa, là giải pháp cho vấn đề bùng nổ nhu cầu kết nối tốc độ cao và chi phí thấp trong khu vực thành phố. Bằng cách ghép thống kê gói IP truyền trên hạ tầng vòng sợi quang, có thể khai thác hiệu quả dạng vòng quang và tận dụng ưu điểm truyền gói như Ethernet. Khi có lỗi node hay liên kết xảy ra trên vòng sợi quang, RPR thực hiện chuyển mạch bảo vệ thông minh để đổi hướng lưu lượng đi xa khỏi nơi bị lỗi với độ tin cậy đạt tới thời gian nhỏ hơn 50 ms.
RPR sử dụng vòng song hướng gồm hai sợi quang truyền ngược chiều nhau, cả hai vòng đồng thời được sử dụng để truyền gói dữ liệu và điều khiển. RPR cho phép nhà cung cấp dịch vụ giảm chi phí thiết bị phần cứng cũng như thời gian và chi phí của việc giám sát mạng. Trong RPR không có khái niệm khe thời gian, toàn bộ băng thông được ấn định cho lưu lượng. Bằng cách tính toán khả năng mạng và dự báo yêu cầu lưu lượng, RPR ghép thống kê và phân phối công bằng băng thông (fairness) cho các node trên vòng để tránh tắc nghẽn có thể mang lại lợi ích hơn nhiều so với vòng SDH/SONET dựa trên ghép kênh phân chia theo thời gian.
RPR là giao thức lớp MAC vận hành ở lớp 2 của mô hình OSI, nó không nhận biết lớp 1 nên độc lập với truyền dẫn nên có thể làm việc với WDM, SDH hay truyền dẫn dựa trên Ethernet (sử dụng GBIC - Gigabit Interface Converter). Ngoài ra, RPR đi từ thiết bị đa lớp đến dịch vụ mạng thông minh lớp 3 như MPLS. MPLS kết hợp thiết bị rìa mạng IP lớp 3 với thiết bị lớp 2 như ATM, Frame Relay. Sự kết hợp độ tin cậy và khả năng phục hồi của RPR với ưu điểm quản lý lưu lượng và khả năng mở rộng của MPLS VPN và MPLS TE được xem là giải pháp xây dựng MAN trên thế giới hiện nay.
Một nhược điểm của các phiên bản đầu tiên RPR là nó đã không cung cấp tái sử dụng không gian để truyền frame đến từ địa chỉ MAC không có mặt trên vòng. Vấn đề này được giải quyết bởi IEEE 802.17b, trong đó xác định một không gian tầng con tùy chọn (SAS). Điều này cho phép tái sử dụng không gian để truyền frame đến từ địa chỉ MAC không có mặt trong vòng. Hiện nay RPR là vấn đề khá phức tạp và chưa được chuẩn hoá đầy đủ, nhiều nhà sản xuất có sản phẩm RPR 802.17 nhưng khả năng tương thích giữa sản phẩm của các hãng khác nhau là không chắc chắn.
Hình 2.1: Vòng RPR
Chuẩn hóa mạng LAN/MAN không dây
Bao gồm các bộ tiêu chuẩn IEEE 802.11, .15, .16, .17, .20, .21, .22. Những bộ chuẩn này chủ yếu tập trung vào các mạng LAN không dây như các mạng WLAN, WPAN, WRAN, … cũng như quy định và các chuẩn công nghệ như công nghệ WiFi (802.11), Bluetooth, ZigBee (802.15), WiMax (802.16),… Cụ thể như sau:
IEEE 802.11 – công nghệ WiFi
IEEE 802.11 là một tập các chuẩn bao gồm các đặc điểm kỹ thuật liên quan đến hệ thống mạng không dây. Chuẩn IEEE 802.11 mô tả một giao tiếp “truyền qua không khí” (tiếng Anh: “over-the-air”), sử dụng sóng vô tuyến để truyền nhận tín hiệu giữa một thiết bị không dây và tổng đài hoặc điểm truy cập (access point), hoặc giữa hai hay nhiều thiết bị không dây với nhau(mô hình ad-hoc).
Bộ chuẩn này bao gồm các tiêu chuẩn con như IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, …Bộ chuẩn này là một bộ chuẩn quan trọng, sẽ được đề cập chi tiết trong phần 2.2 chương này.
IEEE 802.15 – Công nghệ Bluetooth, ZigBee
IEEE 802.15 là bộ tiêu chuẩn thứ 15 thuộc họ IEEE 802. Bộ tiêu chuẩn này chuyên về Wireless PAN (Personal Area Network). Nhóm làm việc IEEE 802.15 bao gồm 7 nhóm làm việc con như sau:
Nhóm 1: WPAN/ Bluetooth – nhóm làm việc chuyên về tiêu chuẩn Bluetooth.
Nhóm 2:
Nhóm 3: High Rate WPAN
Nhóm 4: Low Rate WPAN
Nhóm 5: Mesh Networking
Nhóm 6: BAN
Nhóm 7: VLC
Chi tiết về bộ tiêu chuẩn này sẽ được trình bày ở phần 2.2 chương này.
IEEE 802.16
IEEE 802.16 là hệ thống tiêu chuẩn truy cập không dây băng rộng (Broadband Wireless Access Standards) cung cấp đặc tả chính thức cho các mạng MAN không dây băng rộng triển khai trên toàn cầu. Hệ thống tiêu chuẩn này do nhóm làm việc IEEE 802.16 được thành lập năm 1999, nghiên cứu và đề xuất. Nhóm này là một đơn vị của hội đồng tiêu chuẩn LAN/MAN IEEE 802. Họ tiêu chuẩn IEEE 802.16 chính thức được gọi là WirelessMAN (WMAN).
Đây là một bộ chuẩn quan trọng của họ chuẩn IEEE 802, sẽ được nghiên cứu chi tiết ở phần 2.2, chương này.
IEEE 802.20
IEEE 802.20 hay là MBWA (Mobile Broadband Wireless Access). Chuẩn này bắt nguồn từ mạng Wi-Fi, chuyển qua các tiêu chuẩn cũ như IEEE 802.16e, IEEE 802.16m. Tiêu chuẩn này có thể hỗ trợ ngay cả khi đang di chuyển với tốc độ lên đến 250km/h. Trong khi chuyển vùng (roaming) của WiMAX nhìn chung bị giới hạn trong một phạm vi nhất định, thì chuẩn IEEE 802.20 giống như 3G có khả năng hổ trợ chuyển vùng toàn cầu. Ngoài ra, cũng giống như WiMAX, IEEE 802.20 cũng hổ trợ các kỹ thuật QoS nhằm cung cấp những dịch vụ có yêu cầu cao về độ trễ, … Trong mạng IEEE 802.20, việc đồng bộ đường lên và đường xuống đều được thực hiện hiệu quả. Dự kiến, chuẩn IEEE 802.20 tương lai sẽ kết hợp với một số tính năng của IEEE 802.16e và các mạng dữ liệu 3G, nhằm cung cấp và tạo ra một mạng truyền thông đa dạng (rich communication). IEEE 802.20 cùng với IEEE 802.16m, IEEE 802.22 được xem là những công nghệ tiền 4G.
IEEE 802.21
IEEE 802.21 là một tiêu chuẩn IEEE mới còn đang trong quá trình phát triển. Tiêu chuẩn này hỗ trợ các thuật toán cho phép chuyển giao liền mạng giữa các mạng cùng loại cũng như bàn giao giữa các loại mạng khác nhau, cũng hay được gọi là MIH (Media Independent Handover). Tiêu chuẩn này cung cấp thông tin cho phép bàn giao đến và đi từ các mạng GSM, GPRS, WiFi, Bluetooth, IEEE 802.11, IEEE 802.16 thông qua các cơ chế chuyển giao khác nhau.
Các nhóm làm viêc IEEE 802.21 bắt đầu làm việc vào tháng 3 năm 2004. Nhiều hơn 30 công ty đã gia nhập nhóm làm việc. Các nhóm đã sản xuất một dự thảo đầu tiên cho tiêu chuẩn gồm các định nghĩa giao thức. Quá trình bỏ phiếu cũng đã được thực hiện và bản sửa đổi tiếp theo của dự thảo cũng đang được tiến hành phát triển. Trong tương lai sẽ có những tiêu chuẩn thuộc bộ IEEE 802.21 ra đời.
IEEE 802.22
IEEE 802.22 là một tiêu chuẩn cho WRAN (Wireless Regional Area Network) sử dụng khoảng trắng trong phổ tần truyền hình – phổ tần mà TV analog không sử dụng được. Sự phát triển của tiêu chuẩn IEEE 802.22 WRAN là nhằm mục đích sử dụng kỹ thuật vô tuyến để cho phép sử dụng những phổ tần không sử dụng cho dịch vụ phát sóng truyền hình, trên cơ sở không can thiệp vào các phổ tần TV analog. Vùng phủ của công nghệ này có thể lên tầm 40 – 100km, do đó nó mang lại khả năng truy cập băng rộng đến những vùng địa lý khó khăn, khó tiếp cận, những khu vực có mật độ dân số thấp, xa xôi. Điều đó làm cho chuẩn IEEE 802.20 có tiềm năng cho một ứng dụng rộng toàn cầu.
IEEE 802.22 WRAN được thiết kế để hoạt động trong băng tần phát sóng truyền hình trong khi đảm bảo rằng không có nhiễu có hại cho các hoạt động truyền thông hiện tại. Tiêu chuẩn này dự kiến sẽ được áp dụng rộng rãi trên toàn cầu.
Chuẩn hóa các thành phần khác
Bao gồm các bộ chuẩn còn lại. Nhiệm vụ chủ yếu tập trung vào các vấn đề về bảo mật mạng cũng như điều phối các mạng với nhau, tránh can thiệp lẫn nhau.
Cụ thể như sau:
IEEE 802.10
IEEE 802.10 là một tiêu chuẩn cho các chức năng bảo mật có thể được sử dụng trong cả hai mạng LAN và MAN. IEEE 802.10 quy định cụ thể việc quản lý an ninh và quản lý chủ chốt, cũng như kiểm soát truy cập, bảo mật dữ liệu và tính toàn vẹn dữ liệu.
Các tiêu chuẩn IEEE 802.10 tạm dừng hoạt động vào tháng 1 năm 2004 và nhóm phát triển tiêu chuẩn này của IEEE 802 bị giải tán. Các giao thức Cisco Inter-Switch Link (ISL) hổ trợ VLAN trên mạng LAN Ethernet và các công nghệ tương tự dựa trên chuẩn IEEE 802.10 phần lớn đã được thay thế bởi IEEE 802.1q. Bảo mật cho mạng không dây thì đang được phát triển sang cho IEEE 802.1i.
IEEE 802.19
IEEE 802.19 hay còn gọi là Coexistence TAG ( Technical AdviSory Group) là một nhóm làm việc trong Ủy ban IEEE 802, nhằm giải quyết các vấn đề “chung sống” giữa các mạng không dây không có giấy phép (tức là các mạng không dây tự phát của người sử dụng). Nhiều chuẩn không dây IEEE 802 sử dụng những phổ tần không có giấy phép và do đó cần giải quyết vấn đề cùng tồn tại. Những thiết bị không dây không có giấy phép có thể hoạt động trong cùng một băng tần không có giấy phép ở cùng một vị trí. Điều này có thể dẫn đến sự can thiệp lẫn nhau giữa hai mạng không dây. (Hai mạng không dây không có giấy phép được cho là cùng tồn tại nếu chúng có thể hoạt động trong cùng một vị trí địa lý mà không gây nhiễu với nhau đáng kể).
Ví dụ như các chuẩn không dây có thể cùng tồn tại:
- IEEE 802.11 WLAN- IEEE 802.15 WPAN- IEEE 802.16 WMAN- IEEE 802.22 WRAN
Các bộ tiêu chuẩn quan trọng
Phần này chủ yếu đề cập chi tiết đến những bộ tiêu chuẩn quan trọng như IEEE 802.3, IEEE 802.11, …Mục đích thấy được tính chất và ứng dụng của các bộ tiêu chuẩn này.
IEEE 802.3 và chuẩn hóa mạng Ethernet
Với đòi hỏi nối mạng các máy tính với nhau, mạng LAN đã ra đời. Cùng với đó là các bộ giao thức cho phép kết nối LAN (FDDI, TokenRing,…) tuy nhiên phát triển nhất vẫn là Ethernet.
Ethernet là một họ lớn và đa dạng gồm các công nghệ mạng dựa khung dữ liệu (frame-based) dành cho mạng LAN. Ethernet định nghĩa một loạt các chuẩn nối dây và phát tín hiệu cho tầng vật lý, hai phương tiện để truy nhập mạng tại phần MAC (điều khiển truy nhập môi trường truyền dẫn) của tầng liên kết dữ liệu (data-link), và một định dạng chung cho việc đánh địa chỉ.
Ethernet và mô hình kiến trúc cơ bản đã được hình thành vào những năm 1970 và trở thành công nghệ chủ đạo để xây dựng mạng LAN vào những năm 1980. Trải qua hơn hai thập kỷ phát triển, với mục tiêu xuyên suốt là xây dựng một giao diện mềm dẻo, có độ linh hoạt và tin cậy lớn, giảm giá thành lắp đặt mạng, thuận tiện cho việc vận hành và bảo dưỡng, đáp ứng được những đòi hỏi ngày càng cao của mạng chuyển mạch gói, Ethernet ngày nay đã trở nên phổ biến trong các điểm tập trung lưu lượng của mạng Internet, và tại các kết nối của các máy tính trong mạng văn phòng. Cùng với sự phát triển của công nghệ thông tin, tốc độ Ethernet đã được cải thiện từ Mbps lên Gbps. Song song với nó, cấu hình mạng máy tính sử dụng công nghệ Ethernet cũng đã phát triển từ cấu trúc bus dùng chung lên cấu trúc mạng chuyển mạch hình sao. Đây là những nhân tố quan trọng để xây dựng các mạng máy tính có dung lượng cao, chất lượng cao, hiệu suất cao, đáp ứng được những đòi hỏi ngày càng khắt khe của yêu cầu về chất lượng (QoS).
Do đó, Ủy ban IEEE 802 đã chuẩn hóa Ethernet thành IEEE 802.3. IEEE 802.3 quy định các phương thức truy nhập và báo hiệu vật lý cho các kỹ thuật mạng MAN và LAN hữu tuyến theo CSMA/CD. Theo đó, cấu trúc mạng hình sao, hình thức nối dây cáp xoắn (twisted pair) của Ethernet đã trở thành công nghệ LAN được sử dụng rộng rãi nhất từ thập kỷ 1990 đến nay. Nó đã thay thế các chuẩn LAN cạnh tranh khác như Ethernet cáp đồng trục (coaxial cable), Token Ring, FDDI và ARCNET.
Với sự phát triển mạnh mẽ của công nghệ, tốc độ kết nối trong Ethernet không ngừng được nâng cao. Vào năm 1995, Fast Ethernet ra đời, IEEE dùng 802.3u để quy chuẩn cho các tiêu chí có liên quan đến Fast Ethernet. Tiếp đến là 802.3z (10Gbps qua cáp quang), 802.3ab (10 Gbps qua cáp UTP), 802.3ae(10Gbps),..
Hiện có 4 tiêu chuẩn nói về mạng LAN/MAN thuộc họ này.
Chuẩn IEEE 802.3-2002 nói về kỹ thuật thông tin, viễn thông và sự trao đổi thông tin giữa các hệ thống – mạng LAN và mạng MAN, xác định các yêu cầu – phần 3: phương pháp truy nhập CSMA/CD các đặc tính lớp vật lý.
Chuẩn IEEE 802.3af-2003, chuẩn này cũng như chuẩn IEEE 802.3-2002 nhưng nói về công suất thiết bị đầu cuối số liệu (DTE) qua giao diện độc lập với môi trường (MDI).
Chuẩn IEEE 802.3aj-2003, chuẩn này cũng như hai chuẩn trên nhưng phần này nói về quá trình bảo dưỡng trong mạng.
Chuẩn 802.3ak-2004, chuẩn này nói về các tham số quản lý và lớp vật lý cho hoạt động tại tốc độ 10 Gb/s, loại 10GBase-CX4.
P802.3ah (C/LM) về kỹ thuật thông tin - viễn thông và quá trình trao đổi thông tin giữa các hệ thống – mạng LAN và mạng MAN –các yêu cầu cụ thể – phần 3: phương pháp truy nhập CSMA/CD và các đặc tính lớp vật lý – các tham số điều khiển truy nhập môi trường, các tham số quản lý và lớp vật lý cho các mạng truy nhập thuê bao
P1802.3/D3.2 (C/LM) nói về phương pháp kiểm tra phù hợp cho các chuẩn của IEEE về mạng LAN và MAN - các yêu cầu cụ thể - phần 3: xem lại phương pháp truy nhập CSMA/CD và các đặc tính lớp vật lý.
Tuy nhiên, trong những năm gần đây, Wi-Fi dạng LAN không dây được chuẩn hóa bởi bộ tiêu chuẩn IEEE 802.11, đã được sử dụng bên cạnh hoặc thay thế cho Ethernet trong nhiều cấu hình mạng.
Một số thông tin thêm về các quy định về mạng khung dữ liệu IEEE 802.3 quy định một số loại mạng có đường truyền vật lý như sau:
Hình 2.2: Một số loại mạng Ethernet với đường truyền vật lý
Ví dụ về một mạng Ethernet:
Hình 2.3: Ví dụ về một mạng Ethernet
IEEE 802.11 và chuẩn hóa mạng mạng LAN không dây (WLAN)
Giới thiệu bộ tiêu chuẩn IEEE 802.11
Mạng WLAN là mạng LAN gồm các máy tính liên lạc với nhau bằng sóng radio.
Chuẩn IEEE 802.11 định nghĩa tầng vật lý và tầng MAC cho một mạng WLAN. Chuẩn này định nghĩa ba tầng vật lý khác nhau cho mạng WLAN 802.11, mỗi tầng hoạt động ở một dải tần khác nhau và sử dụng các tốc độ 1 Mbps và 2 Mbps. Thành tố cơ bản của kiến trúc 802.11 là tế bào (cell) với tên gọi trong 802.11 là BSS (Basic Service Set). Mỗi BSS thường gồm một vài máy trạm không dây và một trạm cơ sở trung tâm được gọi là AP (access point). Các máy trạm (có thể di động hoặc cố định) và trạm trung tâm liên lạc với nhau bằng giao thức MAC IEEE 802.11 không dây. Có thể kết nối nhiều trạm AP với nhau bằng mạng hữu tuyến Ethernet hoặc một kênh không dây khác để tạo một hệ thống phân tán (DS – distributed system). Đối với các giao thức ở tầng cao hơn, hệ thống phân tán này như là một mạng 802 đơn.
Các máy trạm dùng chuẩn IEEE 802.11 có thể nhóm lại với nhau để tạo thành một mạng ad hoc - mạng không có điều khiển trung tâm và không có kết nối với "thế giới bên ngoài". Trong trường hợp này, mạng được hình thành tức thời khi một số thiết bị di động tình cờ thấy mình đang ở gần nhau trong khi đang có nhu cầu liên lạc mà không tìm thấy một cơ sở hạ tầng mạng sẵn có tại chỗ (chẳng hạn một BBS 802.11 với một trạm AP). Một ví dụ về mạng ad hoc được hình thành là khi một vài người mang máy tính xách tay gặp nhau tại một bến tầu và muốn trao đổi dữ liệu mà không có một trạm AP ở gần đó. Tương tự trong như mạng Ethernet hữu tuyến 802.3, các máy trạm trong mạng WLAN 802.11 phải phối hợp với nhau khi dùng chung môi trường truyền dẫn (tần số radio). Giao thức MAC có nhiệm vụ điều khiển sự phối hợp này. MAC IEEE 802.11 là giao thức CSMA/CA.
Một số chuẩn trong bộ chuẩn IEEE 802.11
IEEE 802.11
Năm 1997, IEEE đưa ra chuẩn WLAN đầu tiên – được gọi là 802.11 theo tên của nhóm giám sát sự phát triển của chuẩn này. Lúc này, 802.11 sử dụng tần số 2,4GHz và dùng kỹ thuật trải phổ trực tiếp (Direct-Sequence Spread Spectrum-DSSS) nhưng chỉ hỗ trợ băng thông tối đa là 2Mbps – tốc độ khá chậm cho hầu hết các ứng dụng. Vì lý do đó, các sản phẩm chuẩn không dây này không còn được sản xuất nữa.
IEEE 802.11b
Từ tháng 6 năm 1999, IEEE bắt đầu mở rộng chuẩn 802.11 ban đầu và tạo ra các đặc tả kỹ thuật cho 802.11b. Chuẩn 802.11b hỗ trợ băng thông lên đến 11Mbps, ngang với tốc độ Ethernet thời bấy giờ. Đây là chuẩn WLAN đầu tiên được chấp nhận trên thị trường, sử dụng tần số 2,4 GHz. Chuẩn 802.11b sử dụng kỹ thuật điều chế khóa mã bù (Complementary Code Keying - CCK) và dùng kỹ thuật trải phổ trực tiếp giống như chuẩn 802.11 nguyên bản. Với lợi thế về tần số (băng tần nghiệp dư ISM 2,4GHz), các hãng sản xuất sử dụng tần số này để giảm chi phí sản xuất.Nhưng khi đấy, tình trạng "lộn xộn" lại xảy ra, 802.11b có thể bị nhiễu do lò vi sóng, điện thoại “mẹ bồng con” và các dụng cụ khác cùng sử dụng tần số 2,4GHz. Tuy nhiên, bằng cách lắp đặt 802.11b ở khoảng cách hợp lý sẽ dễ dàng tránh được nhiễu.
Ưu điểm của 802.11b là giá thấp, tầm phủ sóng tốt và không dễ bị che khuất.
Nhược điểm của 802.11b là tốc độ thấp; có thể bị nhiễu bởi các thiết bị gia dụng.
IEEE 802.11a
Song hành với 802.11b, IEEE tiếp tục đưa ra chuẩn mở rộng thứ hai cũng dựa vào 802.11 đầu tiên - 802.11a. Chuẩn 802.11a sử dụng tần số 5GHz, tốc độ 54Mbps tránh được can nhiễu từ các thiết bị dân dụng. Đồng thời, chuẩn 802.11a cũng sử dụng kỹ thuật trải phổ khác với chuẩn 802.11b - kỹ thuật trải phổ theo phương pháp đa phân chia tần số trực giao (Orthogonal Frequency Division Multiplexing-OFDM). Đây được coi là kỹ thuật trội hơn so với trải phổ trực tiếp (DSSS). Do chi phí cao hơn, 802.11a thường chỉ được sử dụng trong các mạng doanh nghiệp, ngược lại, 802.11b thích hợp hơn cho nhu cầu gia đình. Tuy nhiên, do tần số cao hơn tần số của chuẩn 802.11b nên tín hiệu của 802.11a gặp nhiều khó khăn hơn khi xuyên tường và các vật cản khác. Do 802.11a và 802.11b sử dụng tần số khác nhau, hai công nghệ này không tương thích với nhau. Một vài hãng sản xuất bắt đầu cho ra đời sản phẩm "lai" 802.11a/b, nhưng các sản phẩm này chỉ đơn thuần là cung cấp 2 chuẩn sóng Wi-Fi cùng lúc (máy trạm dùng chuẩn nào thì kết nối theo chuẩnfđó). Ưu điểm của 802.11a là tốc độ nhanh; tránh xuyên nhiễu bởi các thiết bị khác.
Nhược điểm của 802.11a là giá thành cao; tầm phủ sóng ngắn hơn và dễ bị che khuất.
IEEE 802.11g
Năm 2002 và 2003, các sản phẩm WLAN hỗ trợ chuẩn mới hơn được gọi là 802.11g nổi lên trên thị trường; chuẩn này cố gắng kết hợp tốt nhất 802.11a và 802.11b. 802.11g hỗ trợ băng thông 54Mbps và sử dụng tần số 2,4GHz cho phạm vi phủ sóng lớn hơn. 802.11g tương thích ngược với 802.11b, nghĩa là các AP 802.11g sẽ làm việc với card mạng Wi-Fi chuẩnp802.11b... Tháng 7/2003, IEEE phê chuẩn 802.11g. Chuẩn này cũng sử dụng phương thức điều chế OFDM tương tự 802.11a nhưng lại dùng tần số 2,4GHz giống với chuẩn 802.11b. Điều thú vị là chuẩn này vẫn đạt tốc độ 54Mbps và có khả năng tương thích ngược với chuẩn 802.11b đang phổ biến. Ưu điểm của 802.11g là tốc độ nhanh, tầm phủ sóng tốt và không dễ bị che khuất.
Nhược điểm của 802.11g là giá cao hơn 802.11b; có thể bị nhiễu bởi các thiết bị gia dụng.
IEEE 802.11h
Chuẩn này được dùng ở châu Âu ,dải tần 5 Ghz. Nó cung cấp tính năng sự lựa chọn kênh động và điều khiển công suất truyền dẫn TPC, nhằm tránh can nhiễu. Ở châu Âu người ta chủ yếu sử dụng thông tin vệ tinh, nên phần lớn các quốc gia ở đây sử dụng chỉ sử dụng Wireless LAN ở trong nhà (Indoor). Chuẩn này đang ở giai đoạn chuẩn hóa.
IEEE 802.11n
Do tính tiện dụng và dễ triển khai, mạng WLAN ngày càng thâm nhập khắp nơi để phục vụ nhu cầu trao đổi thông tin và giải trí. Với nhu cầu ngày càng cao cấp, tốc độ 11 Mbps của chuẩn 802.11b, 54Mbps của chuẩn 802.11a/g dù rất hấp dẫn nhưng cũng chưa thỏa yêu cầu của người dùng. Để đáp ứng nhu cầu ngày càng cao hơn đó, IEEE đã hình thành nhóm làm việc phát triển chuẩn 802.11n. Phạm vi làm việc của nhóm này là định nghĩa điều chỉnh lớp vật lý và lớp MAC để chuyển giao một giá trị nhỏ nhất 100Mbps thông qua một điểm truy nhập dịch vụ MAC (SAP).
802.11n sử dụng một quan điểm phát triển đang sử dụng tại các công nghệ hiện hữu trong khi giới thiệu công nghệ mới ở đó chúng cung cấp hiệu quả làm việc sự phát triển để thấy được yêu cầu của việc phát triển những ứng dụng. Sử dụng lại những công nghệ quý báu như OFDM, mã hóa sửa lỗi từ phía trước, đan xen và ánh xạ điều biến biên độ cầu phương đã được sửa và giữa lại, giá cả giảm xuống và hoàn toàn tương thích với các công nghệ trước đó.
So với các chuẩn trước, đặc tả kỹ thuật của 802.11n "thoáng" hơn nhiều: có nhiều chế độ tùy chọn, nhiều cấu hình để có thể cho ra sản phẩm có các mức tốc độ tối đa khác nhau. (Trước đây, tất cả các sản phẩm 802.11b phải có tốc độ 11Mbps; 802.11a và 802.11g phải có tốc độ 54Mbps). Điều này vạch ra ranh giới về hiệu năng trên mỗi thiết bị 802.11n: các nhà sản xuất có thể tăng hoặc điều chỉnh khả năng hỗ trợ ứng dụng, mức giá... Ứng với mỗi tùy chọn, 802.11n có thể hỗ trợ tốc độ lên đến 600Mbps, nhưng phần cứng WLAN không nhất thiết phải áp dụng tất cả các tùy chọn. Ví dụ, năm 2006, hầu hết thiết bị phần cứng WLAN 802.11n 1.0 hỗ trợ tốc độ 300Mbps.
Các cải tiến công nghệ của chuẩn 802.11n:
OFDM tốt hơn
Yêu cầu đầu tiên là phải sử dụng phương pháp ghép kênh phân chia tầng số trực giao OFDM được phát triển ở trên dựa trên 802.11a/g, sử dụng tốc độ mã lớn nhất cao hơn và nhịp độ dải thông rộng hơn. Điều đó có nghĩa là 802.11n hỗ trợ một OFDM tốt hơn. Những thay đổi đó giúp tăng tốc độ lên 65 Mbps so với 52Mbps của chuẩn 802.11a và 802.11g.
Cải thiện hiệu năng của MIMO:
Một trong những thành phần được biết rộng rãi nhất trong đặc tả kỹ thuật của bản dự thảo là MIMO. MIMO tận dụng hiện tượng tự nhiên của sóng trung tần được gọi là đa đường: thông tin được phát xuyên qua tường, cửa sổ và các vật chắn khác, anten thu tín hiệu nhiều lần qua các bộ định tuyến khác nhau ở các thời điểm khác nhau. Do đó, tín hiệu đa đường nguyên gốc có thể bị "bóp méo" dẫn đến khó giải mã và kéo theo hiệu năng Wi-Fi kém. MIMO khai thác hiện tượng đa đường với kỹ thuật đa phân chia theo không gian (space-division multiplexing). Thiết bị phát WLAN chia gói dữ liệu ra thành nhiều phần, mỗi phần được gọi là chuỗi dữ liệu (Spatial Stream) và phát từng chuỗi dữ liệu qua các anten riêng rẽ đến các anten thu.
Hình 2.4: Công nghệ MIMO
Hiện tại, 802.11n cung cấp đến 4 chuỗi dữ liệu, cho dù phần cứng không yêu cầu hỗ trợ nhiều như thế. (xem hình 2.5)
Mỗi màu tương ứng với một chuỗi dữ liệu llliệuliệu
Hình 2.5:Các chuỗi dữ liệu của 802.11n
Gấp đôi số lượng chuỗi dữ liệu đồng nghĩa với việc tăng gấp đôi tốc độ, tuy nhiên sẽ kéo theo công suất tiêu thụ tăng, khả năng mở rộng kém hơn và giá thành sản phẩm cao hơn. Trong khi đặc tả kỹ thuật 802.11n yêu cầu phải có chế độ tiết kiệm năng lượng (MIMO power-save). Điều này có nghĩa là chỉ nên sử dụng kỹ th
Các file đính kèm theo tài liệu này:
- ieee_802_5065.doc