Đề tài Lý thuyết độ phức tạp và ứng dụng

CHƯƠNG MỞ ĐẦU

1. Tên đề tài

2. Lý do chọn đề tài

3. Mục đích, nhiệm vụ của đề tài

CHƯƠNG I. TỔNG QUAN VỀ THUẬT TOÁN

1.1 Định nghĩa thuật toán

1.2 Các đặc trưng của thuật toán

1.3 Phân tích thuật toán và đánh giá thời gian thực hiện thuật toán

1.3.1 Phân tích thuật toán

1.3.2 Tại sao lại cần có thuật toán hiệu quả

1.3.3 Các bước phân tích thuật toán

1.3.4 Tính hiệu quả của thuật toán

1.3.5 Đánh giá thời gian thực hiện thuật toán

1.4 Các vấn đề liên quan đến thuật toán

1.4.1 Thiết kế thuật toán

1.4.2 Tính đúng đắn của thuật toán

1.4.3 Biểu diễn thuật toán

CHƯƠNG II. LÝ THUYẾT ĐỘ PHỨC TẠP

2.1 Máy tính Turing tất định

2.1.1 Định nghĩa

2.1.2 Cấu tạo

2.1.3 Hoạt động

2.2 Máy tính Turing không tất định

2.1.1 Định nghĩa

2.1.2 Cấu tạo

2.1.3 Hoạt động

2.3 Các bài toán quyết định

2.4 Các bài toán lớp P, NP và mối quan hệ giữa lớp P và lớp NP

2.4.1 Các bài toán lớp P

2.4.2 Các bài toán lớp NP

2.4.3 Mối quan hệ giữa lớp P và lớp NP

2.5 Bài toán lớp NPC

2.5.1 Phép dẫn với thời gian đa thức

2.5.2 Bài toán lớp NPC

2.5.3 Mối quan hệ giữa các bài toán lớp P, NP và NPC

2.5.4 Một số bài toán NPC

2.5.4.1 Bài toán SAT

2.5.4.2 Bài toán 3-CNF-SAT

2.5.4.3 Bài toán Vertex-Cover

2.5.4.4 Bài toán Clique

2.5.4.5 Bài toán Subset-Sum

2.5.4.6 Bài toán Knapsack

2.5.4.7 Bài toán Hamilton Cycle

2.5.4.8 Bài toán Traveling Salesman

CHƯƠNG III. MẬT MÃ VÀ MẬT MÃ KHOÁ CÔNG KHAI RSA

I. Mật mã

1. Định nghĩa về mật mã và hệ mật mã

1.1 Một số khái niệm trong mật mã

1.2 Định nghĩa về hệ mật mã

2.Một số yêu cầu đối với hệ mật mã

II. Mật mã khoá công khai RSA

1. Đặt vấn đề

2. Giải thuật RSA

2.1 Chọn khoá

2.2 Mã hoá

2.3 Giải mã

2.4 Ví dụ minh hoạ

3. Ðộ an toàn của hệ RSA

4. Ứng dụng của hệ mật mã RSA

5. Chữ ký điện tử

5.1 Giới thiệu về chữ ký điện tử và vấn đề xác nhận

5.2 Sơ đồ chữ ký RSA

5.3 Tấn công chữ ký điện tử

CHƯƠNG IV. DEMO VỚI RSA

 

 

doc30 trang | Chia sẻ: netpro | Lượt xem: 5591 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đề tài Lý thuyết độ phức tạp và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
(giả sử mỗi lần chuyển 1 đĩa hết 1 giây 1.3.3 Phân tích hiệu quả thực hiện của thuật toán Khi phân tích hiệu quả của thuật toán người ta quan tâm đến hai yếu tố: - Độ phức tạp về thời gian: Là số bước tính toán hay số phép toán (phép toán sơ cấp) cần để thực hiện thuật toán - Độ phức tạp không gian: Là yêu cầu về bộ nhớ lưu trữ cần có để thuật toán có thể thực hiện được. Yếu tố này chủ yếu phụ thuộc vào cấu trúc dữ liệu được sử dụng Ngoài ra khi lựa chọn thuật toán người ta còn căn cứ vào tính đơn giản, dễ hiểu, dễ cài đặt của thuật toán. 1.3.4 Phân tích thời gian thực hiện thuật toán Thời gian thực hiện một giải thuật (hay chương trình thể hiện giải thuật đó) phụ thuộc vào rất nhiều yếu tố: - Kích thước của dữ liệu đưa vào - Các kiểu lệnh và tốc độ xử lý của máy tính, ngôn ngữ viết chương trình và chương trình dịch ngôn ngữ ấy Nhưng những yếu tố này không đồng đều với mọi loại máy trên đó cài đặt giải thuật, vì vậy không thể dựa vào chúng khi xác lập T(n). 1.3.4.1 Độ phức tạp về thời gian của giải thuật Nếu thời gian thực hiện một giải thuật là T(n) = cn2 (với c là hằng số) thì ta nói: Độ phức tạp về thời gian của giải thuật này có cấp là n2 (hay cấp độ lớn của thời gian thực hiện giải thuật là n2) và ta ký hiệu T(n) = O(n2) (ký hiệu chữ O lớn) Một cách tổng quát có thể định nghĩa: Một hàm f(n) được xác định là O(g(n)) f(n) = O(g(n)) và được gọi là cấp g(n) nếu tồn tại các hằng số c và n0 sao cho: f(n) ≤ cg(n) khi n ³ n0 nghĩa là f(n) bị chặn trên bởi một hằng số nhân với g(n), với mọi giá trị của n từ một điểm nào đó. Thông thường các hàm thể hiện độ phức tạp về thời gian của giải thuật có dạng: log2n, n, nlog2n, n2,n3, 2n, n!, nn log2n n nlog2n n2 n3 2n 0 1 0 1 1 2 1 2 2 4 8 4 2 4 8 16 64 16 3 8 24 64 512 256 4 16 64 256 4096 65536 5 32 160 1024 32768 2147483648 Các hàm như 2n, n!, nn được gọi là hàm loại mũ. Một giải thuật mà thời gian thực hiện của nó có cấp là các hàm loại mũ thì tốc độ rất chậm. Các hàm như log2n, n, nlog2n, n2,n3 được gọi là các hàm loại đa thức. Giải thuật với thời gian thực hiện có cấp hàm đa thức thì thường chấp nhận được. 1.3.4.2 Xác định độ phức tạp về thời gian * Quy tắc tổng: Giả sử T1(n) và T2(n) là thời gian thực hiện hai đoạn chương trình P1 và P2 mà T1(n) = O(f(n)); T2(n) = O(g(n)) thì thời gian thực hiện P1 và P2 kế tiếp nhau sẽ là: T1(n) + T2(n) = O(max(f(n),g(n))) Ví dụ: Trong một chương trình có 3 bước thực hiện mà thời gian thực hiện từng bước lần lượt là O(n2), O(n3) và O(nlog2n) thì thời gian thực hiện 2 bước đầu là O(max(n2, n3)) = O(n3). Thời gian thực hiện chương trình sẽ là O(max(n3, nlog2n)) = O(n3). Một ứng dụng khác của quy tắc này là nếu g(n) ≤ f(n) với mọi n ³ n0 thì O(f(n) + g(n)) cũng là O(f(n)). Chẳng hạn: O(n4 + n2) = O(n4) và O(n+log2n) = O(n). * Quy tắc nhân: Nếu tương ứng với P1 và P2 là T1(n) = O(f(n)), T2(n) = O(g(n)) thì thời gian thực hiện P1 và P2 lồng nhau sẽ là: T1(n)T2(n) = O(f(n)g(n)) Ví dụ: Câu lệnh gán: x:=x+1 có thời gian thực hiện bằng c (hằng số) nên được đánh giá là O(1). Câu lệnh for i:=1 to n do x:=x+1; có thời gian thực hiện O(n.1) = O(n) Câu lệnh: for i:=1 to n do for j:=1 to n do x:=x+1; có thời gian được đánh giá là O(n.n) = O(n2) Cũng có thể thấy O(cf(n)) = O(f(n)). Ví dụ O(n2/2) = O(n2) 1.4 Các vấn đề liên quan đến thuật toán 1.4.1 Thiết kế thuật toán Có một số kỹ thuật thiết kế thuật toán chung như: - Chia để trị (divide and conque) - Phương pháp tham lam (greedy method) - Phương pháp quy hoạch động (dynamic programing) Nắm được các kỹ thuật thiết kế thuật toán là rất quan trọng giúp tìm ra các thuật toán mới cho các bài toán mới. 1.4.2 Tính đúng đắn của thuật toán Khi đưa ra một thuật toán ta phải chứng minh được thuật toán đó khi thực hiện sẽ cho kết quả đúng với mọi bộ dữ liệu vào hợp lệ. 1.4.3 Biểu diễn thuật toán Có nhiều phương pháp biểu diễn thuật toán. Có thể biểu diễn thuật toán bằng cách liệt kê từng bước, bằng ngôn ngữ tự nhiên, bằng sơ đồ khối… Tuy nhiên để đảm bảo tính chính xác của thuật toán thì để biểu diễn thuật toán người ta thường dùng các cách sau: Liệt kê từng bước, dùng sơ đồ khối, dùng ngôn ngữ lập trình(thường là giả mã lệnh) CHƯƠNG II LÝ THUYẾT ĐỘ PHỨC TẠP Máy tính Turing Máy tính Turing là một máy tính toán trừu tượng, vừa có khả năng của máy tính thực sự, vừa cho phép định nghĩa về mặt toán học về những gì có thể tính toán được 2.1 Máy tính Turing tất định 2.1.1 Định nghĩa Máy Turing tất định là một bộ M = (S, A , d1, d2, d3 , q0, ‚, qr) trong đó S: Là bảng chữ cái A: Tập hữu hạn trạng thái bên trong d1: Là hàm kí tự d1: (S È {‚}) ´ A ® (S È {‚}) d2: Là hàm dịch chuyển d2: (S È {‚}) ´ A ® {-1,0,1} d2: Là hàm trạng thái d3: (S È {‚}) ´ A ® A q0: Trạng thái ban đầu (q0 Î A) qr: Trạng thái kết thúc (qr Î A) ‚: Ký tự rỗng 2.1.2 Cấu tạo Máy tính Turing tất định là một máy trừu tượng bao gồm: - Một bảng chữ cái S - Băng vô hạn có thể mở rộng về một phía hoặc cả hai phía. Trên băng được chia thành các ô chứa một kí hiệu lấy từ bảng chữ cái S - Một tập trạng thái bên trong A - Một đầu đọc ghi luôn đặt vào một ô trên băng và ta nói đầu đọc ghi đang nhìn ô đó. Đầu đọc ghi này có thể di chuyển mỗi lần một ô (về cả hai phía trên băng). Tại một ô có thể đọc hay ghi một kí tự vào ô đó - Một bộ điều khiển có thể ở bất kì trạng thái nào trong một tập hữu hạn trạng thái, trong đó có một trạng thái ban đầu và một trạng thái kết thúc 0 1 0 1 1 0 Tập trạng thái bên trong Máy Turing tất định 1.2.3 Hoạt động - Đầu đọc ghi đọc kí tự trên ô của băng, phụ thuộc vào trạng thái bên trong mà đầu đọc viết một kí tự thuộc (S È ‚) lên ô - Đầu đọc ghi dịch chuyển một ô sang phải, sang trái hoặc là đứng yên tại chỗ - Trạng thái bên trong được được thay đổi tuỳ thuộc vào kí hiệu được đọc và trạng thái ban đầu Điều đáng ngạc nhiên là máy Turing làm được tất cả những việc mà các máy tính khác làm được Máy tính Turing có thể có nhiều băng nhưng nó không làm được gì nhiều hơn máy tính Turing một băng (tương đương với máy tính một băng) 2.2 Máy tính Turing không tất định 2.1.1 Định nghĩa Máy Turing không tất định là một bộ M = (S, A , d1, d2, d3 , q0, ‚, qr) trong đó S: Là bảng chữ cái A: Tập hữu hạn trạng thái bên trong d1: Là hàm kí tự d1: (S È {‚}) ´ A ® (S È {‚}) d2: Là hàm dịch chuyển d2: (S È {‚}) ´ A ® {-1,0,1} d2: Là hàm trạng thái d3: (S È {‚}) ´ A ® A q0: Trạng thái ban đầu (q0 Î A) qr: Trạng thái kết thúc (qr Î A) ‚: Ký tự rỗng 2.1.2 Cấu tạo Máy tính Turing tất định là một máy trừu tượng bao gồm: - Một bảng chữ cái S - Băng vô hạn có thể mở rộng về một phía hoặc cả hai phía. Trên băng được chia thành các ô chứa một kí hiệu lấy từ bảng chữ cái S - Một tập trạng thái bên trong A - Một đầu đọc ghi luôn đặt vào một ô trên băng và ta nói đầu đọc ghi đang nhìn ô đó. Đầu đọc ghi này có thể di chuyển mỗi lần một ô (về cả hai phía trên băng). Tại một ô có thể đọc hay ghi một kí tự vào ô đó - Một bộ xử lý phỏng đoán song song 0 1 1 0 1 0 Tập trạng thái bên trong 1 Đầu đọc ghi Bộ phận phỏng đoán Máy tính Turing không tất định 2.1.3 Hoạt động - Đầu đọc ghi đọc kí hiệu nhận được trên băng, viết kí tự mốc dịch chuyển, đổi trạng thái như máy Turing tất định - Bộ phỏng đoán xử lý song song giúp máy xử lý dữ liệu một cách song song. Do đó máy Turing không tất định có thể xử lý đồng thời các phỏng đoán. - Giả sử máy làm việc với một input x Î S được đặt vào các ô từ 1 đến çxçcủa băng. Giai đoạn phỏng đoán được thực hiện trên phần băng bên trái của dữ liệu vào trước khi quá trình tính toán bắt đầu và được thực hiện bởi cơ chế phỏng đoán và đầu phỏng đoán. Quá trình này cho phép viết lên các ô bên trái mỗi ô một kí hiệu nào đó cho đến khi dừng lại ta có một từ trên phía trái của phần băng chứa input (gọi là từ được dự đoán ), và giai đoạn phỏng đoán hoàn thành Máy bắt đầu hoạt động như một máy tính Turing tất định thông thường. Yếu tố không tất định ở chỗ trong giai đoạn phỏng đoán việc biết kí tự vào các ô bên trái của dữ liệu vào là không xác định, tức là có thể viết theo nhiều khả năng khác nhau, xuất phát từ một dữ kiện ban đầu, máy tính Turing không tất định có nhiều quá trình tính toán có thể khác nhau do từ được dự đoán có nhiều khả năng khác nhau Sự khác nhau của máy tính Turing tất định và máy tính Turing không tất định 2.3 Các bài toán quyết định * Định nghĩa bài toán quyết định Bài toán quyết định là bài toán mà câu trả lời của nó chỉ là “yes” hoặc “no” (tương ứng với true/1 hay false/0) Về nguyên tắc mọi bài toán đều có thể biểu diễn lại dưới dạng bài toán quyết định tương ứng *Ví dụ về bài toán quyết định Ví dụ 1: Bài toán kiểm tra số nguyên tố Instance: Cho một số nguyên tố n>2 Question: n có phải là số nguyên tố hay không? Ví dụ 2: Bài toán HC (Hamilton cycle) Instance: Cho đồ thị vô hướng G = (V,E) Question: Hỏi đồ thị vô hướng G = (V,E) có chu trình Hamilton hay không? 2.4 Lớp P, NP và mối quan hệ giữa lớp P và lớp NP 2.4.1 Lớp P * Định nghĩa: Lớp P là lớp những bài toán giải quyết được bằng máy tính Turing tất định trong thời gian đa thức * Ví dụ: Thuật toán Ơclide tìm UCLN của hai số là thuật toán giải được trong thời gian đa thức. Do đó bài toán tìm UCLN của hai số m và n thuộc lớp P 2.4.2 Lớp NP * Định nghĩa: Lớp NP là lớp các bài toán có thể giải được bằng máy Turing không tất định trong khoảng thời gian đa thức * Ví dụ: Bài toán chu trình Hamilton Instance: Cho đồ thị vô hướng G = (V,E) Question: Hỏi đồ thị vô hướng G = (V,E) có chu trình Hamilton hay không? 2.4.3 Mối quan hệ giữa lớp P và lớp NP NP P Mối quan hệ giữa lớp P và NP 2.5 Bài toán lớp NPC 2.5.1 Phép dẫn với thời gian đa thức * Định nghĩa: Cho n P1 và P2 là hai bài toán quyết định Py là lớp các Instance ứng với YES Py là lớp các Instance ứng với NO Một cách biến đổi f biến mỗi Instance của P1 thành Instance của P2 được gọi là phép dẫn thời gian đa thức nếu nó thoả mãn: - Phép dẫn f thực hiện được trong thời gian đa thức bởi máy tính Turing - Mỗi dữ kiện thuộc P1(y) thành dữ kiện thuộc P2(y) - Mỗi dữ kiện thuộc P1(n) thành dữ kiện thuộc P2(n) f f(x) dữ kiện P2 thuật toán P2 thuật toán P1 Yes/NO dữ kiện P1 Hình : Minh hoạ một phép dẫn bài toán P1 thành P2 trong thời gian đa thức 2.5.2 Bài toán lớp NPC *Định nghĩa: Một bài toán thuộc lớp NP mà mọi bài toán thuộc lớp NP khác đều dẫn được về nó với thời gian đa thức được gọi là bài toán NPC * Tính chất: Một bài toán P là NPC nếu nó thoả mãn: 1, P Î NP 2, Với " P’ Î NP thì P’ dẫn được về P với thời gian đa thức Như vậy để chứng minh một bài toán là NPC ta cần chứng minh hai điều: 1, Bài toán đó phải thuộc lớp NP 2, Mọi bài toán thuộc lớp NP đều dẫn được về bài toán đó với thời gian đa thức 2.5.3 Mối quan hệ giữa các bài toán lớp P, NP và NPC Mối quan hệ giữa P, NP và NPC được biểu diễn như hình sau: NPC P NP Mối quan hệ giữa lớp P, NP và NPC 2.5.4 Một số bài toán NPC 2.5.4.1 Bài toán SAT Bài toán SAT được phát biểu dưới dạng quyết định như sau: - Instance: Cho biểu thức Boolean f(x1,…,xn) - Question: Cho biết f có thỏa được hay không? Định lý Cook: Bài toán SAT là NPC 2.5.4.2 Bài toán 3-CNF-SAT Bài toán 3-CNF-SAT được phát biểu dưới dạng bài toán quyết định như sau: - Instance: C = {C1, C2,…,Cm} là các biểu thức logic độ dài 3 - Question: $ bảng chân lý để tất cả các Ci đều đúng 2.5.4.3 Bài toán Vertex-Cover Instance: Cho đồ thị G =(V,E) và số kÎN* thoả mãn k £ çVç Question: Tồn tại hay không một tập con V’ của V sao cho çV’ç<k và mỗi cạnh {u,e} Î E thì một trong 2 đỉnh u hoặc e (hoặc cả đỉnh u và e ) phải thuộc V’ 2.5.4.4 Bài toán Clique Instance: Cho đồ thị G = (V,E) và số kÎN* thoả mãn k £ çVç Question: Tồn tại hay không một tập con V’ của V sao cho çV’ç³ k mà mọi cặp đỉnh trong V’ đều được nối bởi 1 cạnh trong E 2.5.4.5 Bài toán Subset-Sum Bài toán tổng hợp con (Subset-Sum) cho một tập hữu hạn S Ì N và một đích t Î N. Hỏi có một tập con S’ Í S mà tổng các thành phần của nó có bằng giá trị t đã cho hay không? Chẳng hạn như S = {1,4,16,64,256,1040,1041,1093,1284,1334,1500} và t = 3754 thì tập con S’ = {1,16,64,256,1040,1093,1284} là một nghiệm Bài toán Subset-Sub được phát biểu dưới dạng bài toán quyết định như sau: Instance: Cho tập hợp S = {s1,s2,…,sn} trong đó Si Î N, N là một số nguyên dương; t là một số nguyên Question: Tồn tại hay không một tập con của S mà tổng các phần tử của nó bằng t 2.5.4.6 Bài toán Knapsack Cho S là một tập gồm n đối tượng phân biệt, mỗi đối tượng i có kích thước là một số nguyên si và giá trị tương ứng là wi. Với 2 số nguyên là s và w cho trước, câu hỏi đặt ra là có tồn tại tập hợp T Í S sao cho si £ s và wi ³ w Bài toán Knapsack được phát biểu dưới dạng bài toán quyết định như sau: Instance: Cho tập S = {(si,wi),…,(sn,wn)} với si Î Z, wi Î R+ Question: Có tồn tại T Í S sao cho si £ s và wi ³ w 2.5.4.7 Bài toán Hamilton Cycle Bài toán chu trình Hamilton là bài toán đi xác định xem với một đồ thị G = (V,E) cho trước có chứa một chu trình Hamilton(chu trình đơn chứa mọi đỉnh của G). Bài toán được phát biểu dưới dạng bài toán quyết định như sau: Instance: Cho đồ thị G = (V,E) Question: G có chứa một chu trình đơn đi quan mọi đỉnh hay không? 2.8.4.8 Bài toán Traveling Salesman Bài toán Traveling Salesman được phát biểu dưới dạng bài toán đồ thị là: Cho đồ thị G cùng tham số k nguyên, mỗi cạnh e của G có một trọng số nguyên c(e). Câu hỏi đặt ra là có tồn tại một chu trình thăm tất cả các đỉnh của G (mỗi đỉnh đúng một lần) mà tổng trọng số các cạnh đã đi qua không vượt quá k không? Bài toán được phát biểu dưới dạng bài toán quyết định như sau: Instance: Cho tập n thành phố C = {C1,…,Cn} với khoảng cách d(Ci,Cj) Î Z+ và một số nguyên dương B Question: Có tồn tại một hoán vị p trên {1,2,…,n} sao cho: d(Cp(i),Cp(i+1)) + d(Cp(m),Cp(1)) £ B hay không? Ta có sơ đồ tổng quát để chứng minh một bài toán là NPC như sau Bài toán LÎLP LP SAT 3-CNF-SAT Vertex-Cover Subset-Sum Knapsack Clique Hamilton Traveling salesman Hình Sơ đồ chứng minh một số bài toán NPC CHƯƠNG III. MẬT Mà VÀ MẬT Mà KHOÁ CÔNG KHAI RSA I. Mật mã 1. Định nghĩa về mật mã và hệ mật mã 1.1 Một số khái niệm trong mật mã Bản rõ: Là thông điệp gốc chứa thông tin cần mã hoá Bản mã: Là thông điệp chứa các kí tự sau khi đã được mã hoá Mã hoá: Là quá trình che dấu thông tin bằng phương pháp nào đó để làm ẩn nội dung bên trong Giải mã: Là quá trình biến đổi lại bản mã thành bản rõ Khoá (Key): Là một giá trị dùng để thực hiện một thuật toán mã hoá. Khoá có thể là một số, một xâu kí tự …Khoá này có thể nhận một hay nhiều giá trị Quá trình mã hoá và giải mã được thực hiện như trong sơ đồ sau: Bản rõ Bản mã Bản rõ gốc Mã hóa Giải mã Sơ đồ quá trình mã hoá và giải mã 1.2 Định nghĩa về hệ mật mã * Đinh nghĩa hệ mật mã Một hệ mật mã bao gồm 5 thành phần (P,C,K,E,D), trong đó: P: Tập hợp hữu hạn các bản rõ có thể C: Tập hợp hữu hạn các bản mã có thể K: Tập hợp các bản khoá có thể E: Tập hợp các quy tắc mã hoá có thể D: Tập hợp các quy tắc giải mã có thể Các thành phần trên phải thoả mãn tính chất sau: Với mỗi k Î K thì tồn tại duy nhất hàm ek Î E và dk Î D sao cho thoả mãn đồng thời 2 tính chất sau: ek : P ® C và dk: C ® P dk(ek(x)) = x và e(d(x)) = x với " x Î P Hàm ek được gọi là hàm lập mã (khoá lập mã) Hàm dk được gọi là hàm giải mã (khoá giải mã) Cặp (ek,dk) được gọi là một khóa của hệ mật mã 2. Một số yêu cầu đối với hệ mật mã Một hệ mật mã phải đảm bảo các yêu cầu sau: Bí mật: Thông tin chỉ được tiết lộ cho người được phép Toàn vẹn: Thông tin không thể bị thay đổi mà không bị phát hiện Xác thực: Người gửi (hay người nhận) có thể chứng minh đúng là họ đã gửi (hay nhận) thông tin Không thể chối bỏ: Người gửi (hay người nhận) có thể chối bỏ việc họ đã gửi (hay nhận) thông tin II. Mật mã khoá công khai RSA 1. Đặt vấn đề Hệ mật mã khoá công khai này do ba nhà khoa học Rivest- Shamir-Adleman đề ra trước tiên và thường được gọi vắn tắt là RSA. Hệ mã RSA dựa trên bài toán phân tích số nguyên n thành tích các thừa số nguyên tố, gần như không thể tìm lại được hai số nguyên tố lớn p và q từ tích của chúng là n = p*q. Mặt khác, lại có thể sinh ra rất nhanh số nguyên tố ngẫu nhiên lớn Việc mã hoá công khai dựa vào số n trong khi đó việc giải mã lại đòi hỏi phải biết được p và q 2. Giải thuật RSA 2.1 Chọn khoá Hệ RSA bao gồm một cặp khoá (N,e) và (N,d). Để tìm các giá trị d,e và n tiến hành như sau: Bước1: Chọn p và q là hai số nguyên tố ngẫu nhiên lớn (trong ứng dụng thực tế p và q lên đến khoảng vài trăm chữ số), p và q được giữ bí mật. Bước 2: Đặt N=p*q và j(N) = (p-1)(q-1) N càng lớn thì việc phân tích ra thừa số nguyên tố càng phức tạp Bước 3: Chọn e (e > 1(j(N))) nguyên tố cùng nhau với j(N) và một số d thoả mãn hệ thức: ed º 1 mod Vì e và j(N) nguyên tố cùng nhau nên hệ thức trên có nghiệm Một cách dễ dàng để đảm bảo e là nguyên tố cùng nhau với j(N) là là chọn e là số nguyên tố lớn hơn p-1 hoặc q-1 thoả mãn UCLN(e,j(N)) = 1 Cặp số nguyên (N,e) lập thành một mã khoá công khai Cặp số nguyên (N,d) lập thành một mã khoá bí mật N: Modul từ tích pq e: Số mũ mã hoá công khai d: Số mũ mã hoá bí mật 2.2 Mã hoá * Phương pháp tiến hành: Để mã hoá văn bản rõ P theo phương pháp RSA, trước tiên ta hiển thị bản rõ như một từ trên bộ chữ cái {0,1,…,9}. Từ này đươc chia thành các khối với kích thước thích hợp p1, p2,…,pk (với k là số nguyên). Các khối này được mã hoá riêng rẽ bằng cách dùng cặp (N,e). Bản rõ P được mã hoá bằng cách nâng từng khối lên luỹ thừa e theo modul N Bản rõ P= p1, p2,…,pk Bản mã C = c1, c2,…,ck Tức là Ci = Pie mod N Một kích thước thích hợp của các khối là số nguyên j duy nhất thoả mãn bất đẳng thức: 10j-1 0) * Thuật toán mã hoá RSA (mã hoá bản rõ P dùng khoá công khai (N,e)): Bước 1: Thêm vào P một số kí tự ngẫu nhiên nào đó nếu cần thiết để chiều dài của P là bội số của độ dài khối Bước 2: Tính số khối: NumberOfBlock = Length(P)/BlockLength Bước 3: Khởi tạo j = 1 For i = 1 to NumberOfBlock do Lấy ra kí tự con pi từ P gồm BlockLength kí tự bắt đầu từ vị trí j Chuyển pi sang dạng số ci Tính ci = cie mod N Tăng j thêm BlockLength 2.3 Giải mã Việc giải mã với RSA bằng cách nâng mỗi khối ci lên luỹ thừa d theo modul N để phục hồi bản rõ Pi = Cid mod N = (Pie)d mod N đối với mỗi khối ci e, d phải được chọn sao cho Ped mod N = W * Thuật toán giải mã RSA Giải mã dùng khoá bí mật d Khởi tạo P = xâu rỗng For i = 1 to NumberOfBlock do Tính ci = cid mod N Chuyển ci sang xâu kí tự pi P = P + pi Return P Chọn p và q Tính N = p*q Tính j(n) Chọn e Tính d để: edº1(mod j(n)) C = Pe (mod N) P = C d (mod N) e d Sơ đồ quá trình thực hiện giải thuật RSA 2.4 Ví dụ minh hoạ B1: Chọn p = 47, q = 59 là hai số nguyên tố B2: Ta có: p*q=47*59 = 2773 (p-1)(q-1) = 46*58 = 2668 Þ N = 2773 và mod j(N) = 2668 B3: Xác định e và d, chọn e = p + 1, tăng e cho đến khi UCLN (e,j(N) ) = 1 và ta tính được d = 1089 e*d mod j(N) = 49 * 1089 mod 2668 = 53361 mod 2668 = 1 Như vậy, xác định xong cặp khoá (N,e), (N,d) Các kí tự trong bản rõ được chuyển số bằng cách dùng bảng mã sau: A B C D E F G H I J K L M 00 01 02 03 04 05 06 07 08 09 10 11 12 N O P Q R S T U V W X Y Z 13 14 15 16 17 18 19 20 21 22 23 24 25 Trong trường hợp quan tâm đến kí tự dấu cách thì coi kí tự này có mã 00, A có mã 01,…, Z có mã 26 Cho bản rõ P = “VIDUMINHHOA” Chia P thành các khối gồm 2 kí tự, thêm vào P kí tự X để độ dài của no là bội của số khối Þ P = “VIDUMINHHOAX” Vì mỗi kí tự tương ứng có mã số là hai chữ số nên các khối của bản rõ dưới dạng sẽ gồm bốn chữ số, tức là 103 < N < 104 W1 w2 w3 w4 w5 w6 Bản rõ: VI DU MI NH HO AX Dạng số: 2108 0320 1208 1307 0714 0023 c1 c2 c3 c4 c5 c6 Mỗi khối trong các khối trên sau đó được nâng lên luỹ thừa 17 theo modul 2773 Bản mã có dạng 083207281251138609170746 3. Ðộ an toàn của hệ RSA Tính bảo mật của RSA chủ yếu dựa vào việc giữ bí mật khóa giải mã hay giữ bí mật các thừa số p,q của N. Một vài phương thức tấn công điển hình của kẻ địch: Trường hợp1: Kẻ địch biết được mođun N, khóa công khai e và bản tin mã hóa C, khi đó kẻ địch sẽ tìm ra bản tin gốc kẻ địch thường tấn công vào hệ thống mật mã bằng phương thức sau đây: Trước tiên dựa vào phân tích thừa số mođun N. Tiếp theo sau chúng sẽ tìm cách tính toán ra hai số nguyên tố p và q, và có khả năng thành công khi đó sẽ tính được f(N) = (p-1)(q-1) và khóa bí mật d. Ta thấy N cần phải là tích của hai số nguyên tố, vì nếu N là tích của hai số nguyên tố thì thuật toán phân tích thừa số đơn giản cần tối đa N1/2 bước, bởi vì có một số nguyên tố nhỏ hơn N1/2. Mặt khác, nếu N là tích của n số nguyên tố, thì thuật toán phân tích thừa số đơn giản cần tối đa N1/n bước. Trường hợp2: Chúng ta xét trường hợp khi kẻ địch nào đó biết được mođun N và f(N), khi đó kẻ địch sẽ tìm ra bản tin gốc (Plaintext) bằng cách sau: Biết f(N) thì có thể tính p,q theo hệ phương trình: p´q = N, (p-1)(q-1) = f(N) do đó p và q là nghiệm của phương trình bậc hai: x2 - (n - f(N) +1) + n = 0 Ví dụ: n=84773093, và biết f(N) = 84754668. Giải phương trình bậc hai tương ứng ta sẽ được hai nghiệm p=9539 và q=8887. Ðộ an toàn của thuật toán RSA dựa trên cơ sở những khó khăn của việc xác định các thừa số nguyên tố của một số lớn. Bảng dưới đây cho biết các thời gian dự đoán, giả sử rằng mỗi phép toán thực hiện trong một micro giây. Số các chữ số trong số được phân tích Thời gian phân tích 50 4                   giờ 75 104               giờ 100 74                 năm 200 4.000.000     năm 300 5´1015           năm 500 4´1025           năm 4. Ứng dụng của hệ mật mã RSA Hệ mã hóa RSA được ứng dụng rộng rãi chủ yếu cho Web và các chương trình email. Ngày nay, RSA còn được sử dụng rộng rãi trong các công nghệ bảo mật, sử dụng cho thương mại điện tử 5. Chữ ký điện tử 5.1 Giới thiệu về chữ ký điện tử và vấn đề xác nhận Chữ ký điện tử là một phương pháp ký một thông điệp được lưu trữ ở dạng thư tín điện tử. Hiểu theo nghĩa thông thường một thông điệp được ký có thể được truyền trên mạng máy tính. Khi truyền tin trên mạng, các văn bản được truyền đi dưới dạng số hoá. Vấn đề đặt ra là người gửi có nhận trách nhiệm về văn bản gửi đi đó không? Việc xác nhận trách nhiệm của người gửi đối với văn bản đó cũng là thể hiện trong thủ tục truyền tin nhưng rõ ràng nảy sinh ra nhiều vấn đề mà cách xác nhận trong việc chuyển văn bản kiểu truyền thống chưa gặp phải. Vấn đề thứ nhất: Trong cách truyền thống chữ kí của người gửi dưới dạng một văn bản viết tay là bằng chứng xác nhận trách nhiệm của người gửi đối với văn bản đó. Với văn bản điện tử, người ta có thể cắt dán và lắp ghép các dãy bit một cách dễ dàng. Giả sử người đó có một chữ kí dưới dạng một văn bản thì ai dám đảm bảo là chữ ký đó chịu trách nhiệm đối với toàn văn bản. Như vậy một chữ ký điện tử nếu có phải được ký cho từng bit của văn bản, chứ không phải là một chữ ký rời ở cuối văn bản Vấn đề thứ hai là xác nhận chữ ký: Chữ ký tay được xác nhận bằng cách so với nguyên mẫu. Chữ ký điện tử là một dãy các bit không thể thử bằng cách so sánh vật lý với một mẫu cho sẵn mà phải xác nhận bằng thuật toán dựa vào mối quan hệ toán học nào đó Vấn đề thứ ba là việc sao chép một dạng văn bản cùng chữ ký: Nếu là chữ ký viết tay thì dễ phân biệt bản gốc với bản sao do đó không dùng lại được văn bản có chữ ký thật. Văn bản điện tử cùng chữ ký thì có thể nhân bản tuỳ ý không ai phân biệt được bản gốc hay bản sao, cho nên nguy cơ dùng lại là có thật. Phải tránh nguy cơ đó chẳng hạn bằng cách dán nhãn thời gian cho văn bản được ký Ðịnh nghĩa sơ đồ chữ ký:  Một sơ đồ chữ ký số là bộ 5 (P,A, K,S,V) thoả mãn các điều kiện dưới đây: P là tập hữu hạn các bức điện (thông điệp) có thể. A là tập hữu hạn các chữ ký có thể. K không gian khoá là tập hữu hạn các khoá có thể, mỗi k Î K gồm hai thành phần, k = (K’,K’’) trong đó + K’ là khoá bí mật dùng để ký + K’’ là khoá công khai dùng để xác nhận chữ ký Với mỗi k Î K tồn tại một thuật toán ký sigk S và là một thuật toán  xác minh verk V. Mỗi sigk : PA và verk: P×a {true,false} là những hàm sao cho mỗi thông điệp xP và mối chữ ký ya thoả mãn phương trình dưới đây. True nếu y=sig(x) False nếu y≠sig(x) verk = Với mỗi k thuộc K hàm sigk  và  verk    là các hàm có thời gian đa thức. verk  sẽ là hàm công khai, sigk là bí mật. Không thể dể dàng tính toán để giả mạo chữ ký của B trên thông điệp x. Nghĩa là x cho trước, chỉ có B mới có thể tính được y để verk = True. Một sơ đồ chữ ký không thể an toàn vô điều kiện vì C có thể kiểm tra tất cả các chữ số y có thể có trên thông điệp x nhờ dùng thuật toán verk công khai cho đến khi anh ta tìm thấy một chữ ký đúng. Vì thế, nếu có đủ thời gian, C luôn luôn có thể giả mạo chữ ký của B. Như vậy, giống như trường hợp hệ thống mã khoá công khai, mục đích của chúng ta là tìm các sơ đồ chữ ký s

Các file đính kèm theo tài liệu này:

  • docBáo cáo nghiên cứu khoa học-đề tài Lý thuyết độ phức tạp và ứng dụng (Chuyên ngành - Khoa học máy tính).doc
Tài liệu liên quan