Đề tài Phép quy nạp trong hình học

Phép quy nạp trong hình học

Phép quy nạp là một phép toán khá phổ biến và thông dụng, nó được ứng dụng rất nhiều trong đại số, và lý thuyết số. Phép quy nạp thường được sử dụng để chứng minh các tính chất và các định lý. Có những bài toán chỉ có thể dùng phép quy nạp mới có thể giải được. Không chỉ trong đại số và lý thuyết số mà trong hình học, phép quy nạp cũng là một phương pháp độc đáo và lý thú không chỉ ứng dụng trong việc tính toán các đại lượng hình học đơn thuần mà nó còn được áp dụng trong việc chứng minh định lý hình học, trong giải các bài toán dựng hình, quỹ tích cả trong mặt phẳng và trong không gian, ở hình học sơ cấp và hình học cao cấp.

 

doc59 trang | Chia sẻ: netpro | Lượt xem: 5002 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Đề tài Phép quy nạp trong hình học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Trong khoa học, chúng ta cần có một phương pháp khác hẳn đó là Phương pháp quy nạp. Phương pháp này có mục đích làm cho quan niệm của chúng ta gần với kinh nghiệm ở mức độ có thể được. Nó đòi hỏi sự ưa thích nhất định đối với cái gì thực tế tồn tại. Nó đòi hỏi chúng ta sẵn sàng từ những quan sát nâng lên trình độ khái quát, đồng thời sẵn sàng từ sự khái quát rộng lớn nhất trở về với những quan sát cụ thể nhất. Nó đòi hỏi ta nói “có thể” và có “khả năng” với hàng nghìn mức độ khác nhau. Nó đòi hỏi nhiều điều khác và đặc biệt là ba điều sau đây: Một là chúng ta phải sẵn sang duyệt lại bất kì quan niệm nào của chúng ta. Hai là chúng ta phải thay đổi quan niệm chỉ khi có lí do xác đáng. Ba là chúng ta không được thay đổi quan niệm một cách tùy tiện, không có cơ sở đầy đủ. Những nguyên tắc ấy tưởng như tầm thường nhưng phải có những đức tính khác thường mới theo được. 5. Phương pháp giải bằng quy nạp toán học. Để chứng minh một mệnh đề Q(n) đúng với mọi ta thực hiện 2 bước theo thứ tự: Bước 1: Kiểm tra mệnh đề là đúng với n=p Bước 2: Giả sử mệnh đề đúng với n=k (), ta phải chứng minh rằng mệnh đề đúng với n=k+1. B. Phép quy nạp trong hình học Phép quy nạp là một phép toán khá phổ biến và thông dụng, nó được ứng dụng rất nhiều trong đại số, và lý thuyết số. Phép quy nạp thường được sử dụng để chứng minh các tính chất và các định lý. Có những bài toán chỉ có thể dùng phép quy nạp mới có thể giải được. Không chỉ trong đại số và lý thuyết số mà trong hình học, phép quy nạp cũng là một phương pháp độc đáo và lý thú không chỉ ứng dụng trong việc tính toán các đại lượng hình học đơn thuần mà nó còn được áp dụng trong việc chứng minh định lý hình học, trong giải các bài toán dựng hình, quỹ tích cả trong mặt phẳng và trong không gian, ở hình học sơ cấp và hình học cao cấp. Bài toán mở đầu :Cho n là một số tự nhiên lớn hơn hoặc bằng 6. Chứng minh rằng : luôn chia được một hình vuông thành n hình vuông nhỏ (các hình vuông sau khi chia không nhất thiết phải bằng nhau) Xuất phát từ 1 bài toán đơn giản nhất: chia 1 hình vuông thành 4 hình vuông nhỏ. Ta có cách giải như sau : P1: Bao gồm 3 bài toán cơ sở :  n=6,7,8 (đã được giải trong hình) P2: Ta chứng minh nếu bài toán đúng với n=k thì nó cũng đúng với n=k+3. Khá đơn giản, bằng cách chọn 1 hình vuông bất kì trong k hình vuông đã có, chia nó làm 4 hình vuông nhỏ hơn và đó là điều phải chứng minh. Nhận xét: Qua bài toán này, ta rút ra kết luận rằng P1 không nhất thiết chỉ là 1 bài toán, nó có thể là 2,3 bài hoặc nhiều hơn ! Để hiểu rõ hơn về các ứng dụng của phép quy nạp trong hình học ta đi sâu vào hệ thống bài tập dành riêng cho mỗi loại toán hình học. I. Phép quy nạp trong tính toán hình học. Trong lý thuyết số và đại số, phép qui nạp toán học là một phương pháp hiệu quả trong việc tính toán các giá trị đại số và các đại lượng toán học. Trong hình học để giải các bài toán tính toán thì việc áp dụng phép qui nạp để thực hiện hoàn toàn có thể và nó có thể thực hiện một cách chính xác. Thí dụ 1: Tính tổng các góc trong của một n-giác không tự cắt. Giải: Ta có thể thấy ngay: Tổng các góc trong của một tam giác là 180. Tổng các góc trong của một tứ giác là 360. Nhận xét: Mọi tứ giác có thể chia thành hai tam giác nên tổng các góc trong của một tứ giác bằng hai lần tổng các góc trong của một tam giác. Với k < n, giả sử đã chứng minh được tổng các góc trong của một k-giác bất kì là (k-2).180. Bây giờ ta xét với n-giác . - Trước hết ta chứng minh rằng trong một đa giác bất kỳ ta có thể tìm được một đường chéo x chia đa giác đó thành đa giác có số cạnh ít hơn. Gọi A, B, C là ba đỉnh liên tiếp bất kỳ của đa giác. Ta vẽ các tia lấp đầy góc trong ABC và cắt biên của đa giác. Có hai trường hợp sẽ xãy ra: TH: Các tia cắt đường biên trên cùng một cạnh của đa giác (Hình 2a), khi đó đường chéo AC chia n-giác thành một tam giác và một (n-1)-giác. TH: Các tia cắt biên không trên cùng một cạnh của đa giác (Hình 2b). Khi đó một tring các tia sẽ đi qua đỉnh I nào đó của đa giác và đường chéo AI sẽ chia đa giác thành hai đa giác có số cạnh ít hơn số cạnh của đa giác ban đầu. Bây giờ ta chứng minh bài toán: Trong n-giác ta vẽ đường chéo chia n-giác đó làm k-giác và (n-k+2)-giác . Với giả thiết đã cho thì tổng các góc trong của k-giác và (n-k+2)-giác lần lượt là (k-2).180 và [(n-k+2)-2].180. Suy ra tổng các góc trong của n-giác là: = (k-2).180+ [(n-k+2)-2].180= (n-2).180 ( là tổng các góc trong của n-giác) Như vậy mệnh đề đúng với mọi n. Thí dụ 2 Giả sử r và R là các bán kính đường tròn nội tiếp và ngoại tiếp của đa giác đều 2 cạnh có chu vi p cho trước. Chứng minh rằng r= và R=. Giải: * Ta có: r= ; R= * Giả sử AB là cạnh của đa giác đều 2 cạnh chi vi p, nội tiếp đường tròn tâm O; C là trung điểm của cung AB; M và N là trung điểm của các đoạn thẳng AC và BC; P và Q là các giao điểm của AB và MN với OC. Bởi vì MN=AB và , nên MN là cạnh của đa giác đều 2 chu vi p cho trước với tâm là O. Rõ ràng . Bởi vì OMQ OCM, nên , tức là Thí dụ 3: Tính cạnh a của 2-giác đều nội tiếp đường tròn bán kính R. Giải: - Với n=2: 2-giác là hình vuông cạnh a=R. Khi đó theo công thức gấp đôi cạnh đa giác: a= Ta tính được: Cạnh của bát giác đều , Cạnh của 16-giác đều Cạnh của 32-giác đều Nhờ đó có thể giả sử rằng với , cạnh của một 2-giác đều nội tiếp là: (1) n lần - Giả sử cạnh của một 2-giác đều nội tiếp đường tròn được biểu diễn bởi (1). Khi đó nhờ công thức gấp đôi cạnh đa giác ta có: n-1 lần Từ đó suy ra (1) đúng với mọi n. Từ công thức (1), khi n tăng vô hạn chu vi đường tròn bán kính R(C=) sẽ là giới hạn của biểu thức: và do đó: n-2 lần n-2 lần n-2 lần Bài tập ứng dụng: Bài 1: Dùng công thức (1) chứng minh rằng là giới hạn của biểu thức: Khi các thừa số (các căn thức bậc hai) ở mẫu tăng lên vô hạn (Công thức Vieta *). Các thừa số được lập thành nhờ ba thừa số đầu (đã cho). Hướng dẫn: Gọi là diện tích của 2-giác đều nội tiếp đường tròn bán kính R và là trung đoạn. Từ công thức (1) ta có: Và n-3 lần (giả sử n3) Hơn nữa ta có: Từ đó suy ra rằng: Vì S= 2R và , còn bằng giới hạn của: Và cuối cùng dùng công thức Bài toán 2: Trong một n-giác lồi, các đường chéo không bộ ba đường nào đồng qui, chia nó làm bao nhiêu miền. Hướng dẫn: Đường chéo sẽ chia (n+1)-giác lồi ra thành một tam giác và một n-giác . Gọi F(n) là số của n-giác được chia bởi các đường chéo. Ta tính số miền sinh thêm do nối đỉnh A(đó là các miền do các đường chéo xuất phát từ A giao với các đường chéo còn lại, con số này lớn hơn 1). Bằng cách này ta tìm được hệ thức: F(n+1) = F(n) + (n-1) + 1.(n-2) + 2.(n-3) + ...+ (n-3).2 + (n-2).1 Ta viết lại hệ thức: F(n+1) = F(n) + (n-1) + = F(n) + Tính tổng các giá trị của F(n), F(n-1), … , F(4) ta được: F(n)= Bài 3: Tìm qui tắc tính P(n) số cách chia một n-giác lồi ra làm các tam giác bởi những đường chéo không cắt nhau. Hướng dẫn: -Xét với tam giác ta có P(3)=1 - Với mọi k<n, Giả sử ta tính được P(k) -Bằng cách xét n-giác lồi ta đi tính P(n). Cách lấy là cạnh của một trong các tam giác được chia. Khi đó đỉnh thứ 3 của tam giác này sẽ là một trong các điểm còn lại. Bằng cách lập luận ta có hệ thức sau: P(n) = P(n-1) + P(n-2).P(3) + P(n-30.P(4) + … P(3).P(n-2) +P(n-1) Cuối cùng ta tính được: P(n) = với mọi n. Bài toán 4: Tính số N các đường chéo không cắt nhau dùng để chia một n-giác thành các tam giác. Hướng dẫn: Với tam giác thì số đường chéo có được là 0. Với Tứ giác thì số đường chéo có được là 1. * Với k < n, giả sử ta biết được mỗi k-giác sẽ có k-3 đường chéo không cắt nhau chia k-giác đó thành các tam giác (không phụ thuộc vào việc chọn các đường chéo). * Xét với n-giác . Từ lập luận tổng N đường chéo và n cạnh của n-giác suy ra: 2N + n = 3(n-2) N= n – 3. II. Chứng minh định lí hình học bằng phép quy nạp. Phép quy nạp là một trong những phương pháp hữu hiệu nhất để chứng minh các định lý các mệnh đề mà các phương pháp không thể chứng minh được. Dưới đây ta sẽ nghiên cứu một số thí dụ và bài toán chứng minh định lý mệnh đề bằng phép quy nạp. Thí dụ 1: Cho n điểm A1, A2, … An. và n số thực a1, a2,… an . Chứng minh rằng tồn tại duy nhất điểm O sao cho .( O là tâm tỉ cự của hệ điểm Ai và bộ số ai) Giải: Với n=1 khi đó OA1 rõ ràng O là duy nhất Giả sử bài toán trên đúng với n. Tức là Với n điểm A1, A2, … An. và n số thực a1, a2,… an . khi đó tồn tại duy nhất điểm O’ sao cho . * Xét hệ với n điểm A1, A2, … An , An+1. và n+1 số thực a1, a2,… an , an+1 an+1 khi đó ta có Do O’ và An+1 cố định và không đổi nên (*) chứng tỏ rằng O’ cố định và duy nhất. Thí dụ 2 : Chứng minh rằng hợp thành của n-phép tịnh tiến là một phép tịnh tiến. Giải Thật vậy ta chứng minh bằng phương pháp quy nạp Xét n phép tịnh tiến ,…, Với n=2 : = ( đúng) Giả sử đúng với n= k.Tức là: ……….= Ta cần chứng minh đúng với n=k+1 Nghĩa là: ……….= Thật vậy,ta có: ……….=(……….) == = Vậy hợp thành của n phép tịnh tiến chính là phép tịnh tiến Thí dụ 3: Cho đa giác lồi nội tiếp trong đường tròn. Từ một đỉnh của đa giác vẽ các đường chéo tạo thành các tam giác nội tiếp không chồng lên nhau. Trong mỗi tam giác vẽ đường tròn nội tiếp. Chứng minh rằng tổng bán kính của tất cả các đường tròn này là một đại lượng không đổi và không phụ thuộc vào cách chọn đỉnh của đa giác. Giải Trước hết ta chứng minh bổ đề: Bổ đề: Trong một tam giác ta có: r = R( cosA + cosB + cosC –1 ) Thật vậy: mà suy ra r = R( cosA + cosB + cosC –1 ) Ta chứng minh bài toán trên: Với trường hợp đa giác là tam giác A1 A2 A3 Theo bổ đề ta có r1 = R( cosA1 + cosA2 + cosA3 –1 ) mặt khác 3 đỉnh của tam giác chia đường tròn thành 3 cung gọi aijlà số đo cung AiAj khi đó ta có sđ =sđ =a23 sđ =sđ =a31 sđ =sđ =a12 giả sử với đa giác n cạnh, và mọi cách chia như vậy ta luôn có n-2 tam giác và có tổng bán kính n-2 đường tròn nội tiếp : Trong đó n đỉnh Ai chia đường tròn thành các cung ,… liên tiếp và aij là số đo của cung . Rõ ràng tổng trên không đổi với mọi cách chia. - Ta chứng minh điều đó cũng đúng với đa giác n+1 cạnh Thật vậy: Không mất tính tổng quát, từ đỉnh A1 của (n+1) giác A1A2…An+1 ta có cách chia như bài ra , khi đó theo giả thiết quy nạp ta có với n-giác A1A2…An ta có: Mặt khác xét tam giác A1AnAn+1 theo a, ta có do An+1 nằm trên cung AnA1 suy ra: sđ góc AnAn+1A1= = Vậy: Rõ ràng với đa giác đã cho thì aị là không đổi, với số n cố định, bán kính R không đổi, khi đó tổng các bán kính đường tròn nội tiếp là không đổi với mọi cách chia. Thí dụ 4: Cho n hình vuông bất kỳ. Chứng minh rằng có thể cắt chúng (bằng nhát cắt thẳng) làm một số mảnh đa giác để từ đó có thể ghép lại thành một hình vuông mới. Giải: * Với n = 1 mệnh đề hiển nhiên. Ta chứng minh với n = 2 mệnh đề cũng đúng. Lần lượt gọi độ dài các cạnh của hai hình vuông cho trước ABCD và abcd là x và y (). Trên các cạnh của hình vuông ABCD (H.6a) ta lấy các đoạn AM=BN=CP=DQ= Cắt hình vuông dọc theo các đường thẳng MP và NQ dễ thấy MP và NQ vuông góc với nhau và chia hình vuông thành 4 mảnh bằng nhau tại tâm O của nó. Bây giờ ta ghép các mảnh này với hình vuông thứ hai như trong (H.6b) ta được một hình vuông vì tại M’, N’, P’, Q’ các góc bù nhau là các góc vuông và A’B’=B’C’=C’D’=D’A’. * Giả sử mệnh mệnh đề được chứng minh với n hình vuông và ta có n+1 hình vuông . Lấy hai hình bất kỳ chẳng hạn K và K, nhờ cách lập luận ứng với n=1 ta có thể cắt một trong hai hình vuông này và ghép các mảnh với hình vuông thứ hai để có hình vuông mới K’. Khi đó nhờ giả thiết quy nạp ta có thể cắt hình vuông để tạo nên một hình vuông mới từ những mảnh cắt này. đpcm Bài tập ứng dụng: Bài 1: Cho tam giác ABC, trên BC lấy thứ tự các điểm M1, M2 , …, Mn-1, Gọi: r, r1, r2,…, rn ; d, d1, d2, …, dn ; R, R1, R2 ,…, Rn, lần lượt là bán kính đường tròn nội tiếp , bàng tiếp góc A, ngoại tiếp các tam giác ABC, ABM1, AM1M2, AM2M3,…., AMn-1C. Chứng minh rằng : a) b) Hướng dẫn: a) chứng minh : b) chứng minh: ) Bài 2: Chứng minh định lý: Trong R giao của một họ hữu hạn các tập lồi khác rỗng khi và chỉ khi giao của ba tập lồi của chúng khác rỗng. Hướng dẫn: * Điều kiện cần hiển nhiên đúng. * Điều kiện đủ: Ta chứng minh bằng phương pháp quy nạp theo tập lồi. Trong trường hợp n=4, gọi có tính chất giao hoán của bất kỳ ba tập bất kỳ trong chúng khác rỗng. Ta chọn TH: Bao lồi của là tứ giác lồi. Gọi O là giao điểm của hai đường chéo của tứ giác này, ta chứng minh được O thuộc và Hay . TH: Bao lồi của nó là một tam giác, còn điểm thứ 4 nằm bên trong hoặc trên cạnh của tam giác đó. Ta chứng minh . Sử dụng phép quy nạp ta chứng minh được Bài 3: Cho n đường tròn cùng đi qua O. Gọi A,A,...,A lần lượt là giao điểm thứ hai của C và C, C và C,..., Cvà C (H.7). Hướng dẫn: Gọi B (khác O và A) là một điểm bất kỳ trên (C). Vẽ cát tuyến cắt () tại B, cát tuyến cắt () tại B và cứ tiếp tục như thế (nếu chẳng hạn BA thì vẽ một tiếp tuyến với C thay cho cat tuyến qua A) Chứng minh rằng trên (C) điểm B mà ta nhận được sau cùng sẽ trùng với B. Trước tiên chứng minh bổ đề sau: Gọi O và O là tâm của () và (), chúng giao nhau tại O và là cát tuyến qua A, là giao điểm thứ hai của các đường tròn này (H.8). Lúc đó O nhìn và dưới cùng một góc. Tiếp theo, ta chứng minh bài toán với ba đường tròng. Rồi giả sử bài toán đúng với n-1 đường tròn, xét n đường tròn . Vẽ một cát tuyến qua B và qua giao điểm của () và (), áp dụng giả thiết quy nạp cho n-1 đường tròn Bài 4: Chứng minh rằng mọi đa giác lồi không phải là một hình bình hành có thể bị phủ bởi ba đa giác nhỏ hơn đồng dạng với nó. Hướng dẫn: Nếu đa giác lồi M không là hình bình hành, thì nó có thể nội tiếp tam giác TABC lập nên bởi các cạnh , , của đa giác (kí hiệu chỉ hai đường thẳng trùng nhau). Gọi O là điểm bất kỳ trong M, U, V và W là ba điểm lần lượt nằm trên các đoạn cắt M thành ba mảnh được phủ bởi các hình đồng dạng của M với các tâm đồng dạng là các đỉnh của tam giác ABC, tỉ số đồng dạng bé hơn nhưng khá gần 1. Bài 5: Chứng tỏ rằng không tồn tại một đa diện có bảy cạnh. Hướng dẫn: Sử dụng định lí Euler. III. Dựng hình bằng phép quy nạp Từ các bài toán khá hay như trên ta thấy dựa vào phương pháp quy nạp toán học thực sự cho ta hiệu quả cao. Và không dừng lại ở việc tính toán và chứng minh định lý hình học, mà phương pháp này còn được dùng trong các bài toán dựng hình. Chúng ta có thể dùng Phép quy nạp toán học để dựng hình nếu điều kiện ban đầu của bài toán chứa một số nguyên dương n nào đó (chẳng hạn trong các bài toán dựng n-giác ). Sau đây ta xét một số thí dụ về loại toán này. Thí dụ 1: Chỉ bằng thước và compa có khẩu độ a. hãy dựng một đoạn thẳng có độ dài bằng Giải: Phân tích: giả sử dựng được đoạn thẳng Trên tia OAn xác định điểm Bn sao cho OBn = a. qua An vẽ đường thẳng d , qua O và Bn vẽ 2 đường thẳng song song cắt d tại 2 điểm An-1 và Bn+1 khi đó ta có Vậy . Nhưng vì chỉ được dùng thước và compa khẩu độ a nên việc dựng OAn-1 BnBn+1 bằng cách dựng hình thoi OBn-1BnBn+1 cạnh a Như vậy nếu dựng được thì ta có thể dựng được và các đỉnh Bn-1 , Bn , Bn+1 chính là các đỉnh của lục giác đều cạnh a nội tiếp đường tròn (O, a) với B6k+i=Bi (i=1, 2,…6) 2: Cách dựng : Dựng lục giác đều B1B2…B6 nội tiếp đường tròn (O;a) a, với n=1 bài toán hiển nhiên A1 B1 b, Giả sử ta dựng được điểm An trên OBn+1 sao cho khi đó nối An-1Bn+1 cắt OBn tại An rõ ràng OAn là đoạn thẳng cần dựng, tức 3. Chứng minh: theo bước phân tích ta suy ra Thí dụ 2: Trên mặt phẳn cho 2n+1 điểm. Hãy dựng một (2n+1)-giác để các điểm đã cho là trung điểm các cạnh của đa giác. Giải: * Với n=1, giải bài toán quy về việc dựng một tam giác khi biết các trung điểm của 3 cạnh của nó. Ta dễ dàng làm được điều này (từ một trong ba điểm đã cho ta vẽ đường thẳng song song với đường thẳng nối hai điểm còn lại). * Giả sử dựng được (2n-1)-giác từ trung điểm các cạnh của nó. Gọi là 2n + 1 điểm đã cho làm trung điểm các cạnh của (2n+1)-giác cần dựng . Xét tứ giác (H.12). lần lượt là trung điểm của các cạnh . Gọi A là trung điểm của cạnh . Lúc đó là hình bình hành (ta chứng minh được dễ dàng). Vì cho trước nên ta dựng ngay được điểm thứ tư A của hình bình hành; , A là trung điểm của các cạnh của (2n-1)-giác mà ta dựng được nhờ giả thiết quy nạp. Do đó ta hoàn thành lời giải bằng cách dựng hai đoạn thẳng và (X và X) đã được xác định) nhận A làm trung điểm. Với một đa giác không tự cắt ta dễ dàng xác định được đâu là điểm ở ttrong đâu là điểm ở ngoài. Nhưng trong trường hợp tổng quát điều này không còn ý nghĩa nữa chẳng hạn ở (H.11) ta không thể nói đích xác điểm A là ở trong hay ở ngoài đa giác. Vì thế cần đưa ra định nghĩa sau đây: Với mỗi đa giác lồi bất kỳ cho trước ta định một chiều đi qua các đỉnh của nó (chẳng hạn theo thứ tự ). Giả sử trên một trong các cạnh của đa giác theo thứ tự ngược với chiều đi qua các đỉnh của đa giác thì ta nói tam giác được định hướng phía ngoài đa giác, nếu cả hai cùng chiều thì tam giác được định hướng phía trong đa giác. Thí dụ 3: Trên mặt phẳng cho đường tròn và n điểm. Hãy nội tiếp đường tròn một n-giác có cạnh đi qua các điểm đã cho. Giải: Đây là một bài toán khó. Để giải ta phải dùng phương pháp quy nạp theo một hướng khá đặc biệt vì không thể nào quy nạp trên số n cạnh của đa giác. Do đó ta đi nghiên cứu bài toán tổng quát hơn: Dựng một n-giác, có k cạnh lien tiếp đi qua k điểm cho trước và n-k cạnh còn lại song song với các đường thẳng cho trước (bài toán này trở thành bài toán của chúng ta khi k=n) và sau đó ta quy nạp trên k. * Với k=1, ta có bài toán sau: Nội tiếp đường tròn một n-giác có cạnh đi qua điểm P cho trước và n-giác có cạnh còn lại thì song song với những đường thẳng cho trước Lúc đó cung bằng nhau. Trên đường tròn các cung và , và , … có chiều ngược nhau. Do đó khi n chẳn thì các cung và ngược chiều và là hình thang cân có đáy , (H.13a). Nên cạnh của đa giác cần dựng song song với cạnh của n-giác . Vậy trong trường hợp này, qua P ta phải vẽ một đường thẳng song song với . Các đỉnh còn lại của n-giác dễ dàng suy ra được. Nếu n lẻ thì các cung , cùng chiều và là hình thang cân đáy và (H.13b). Vì = (đường chéo hình thang cân) nên qua P ta vẽ đường thẳng cắt đường tròn cho trước theo dây bằng dây đã cho, đó là đường thẳng tiếp xúc với đường tròn đồng tâm với đường tròn cho trước và tiếp xúc với . * Giả sử bài toán dựng một n-giác nội tiếp đã giải được với k cạnh liên tiếp đi qua k điểm cho trước và n-k cạnh còn lại song song với những đường thẳng đã cho. Bây giờ đường tròn ta cần nội tiếp một n-giác sao cho k+1 cạnh liên tiếp đi qua k+1 điểm cho trước và n – k – 1 cạnh còn lại song song với các đường thẳng đã cho. Giả sử bài toán giải xong và ta dựng được n-giác (H.14). Xét hai cạnh của đa giác. Qua vẽ đường thẳng song song với . Gọi là giao điểm của với đường tròn và là giao điểm của với . Hai tam giác đồng dạng (vì và ). Nên từ đó có . Vì tích không phụ thuộc vào cách lấy , chỉ phị thuộc vào điểm P cho trước và đường tròn. Nên xác định được, vậy tính được chiều dài đoạn và do đó dựng được P’. Như vậy ta biết được k điểm mà k cạnh lien tiếp của n-giác (có n-k cạnh còn lại song song với các đường thẳng cho trước) đi qua. Nhờ giả thiết quy nạp ta có thể dựng được n-giác và từ đó dựng được đa giác . Bài tập ứng dụng: Bài 1: Trong một đường tròn cho trước hãy nội tiếp một n-giác có k cạnh (không nhất thiết phải lien tiếp) đi qua k điểm cho trước và n-k cạnh còn lại song song với những đường thẳng đã cho. Hướng dẫn: Gọi là cạnh của đa giác cần dựng đi qua điểm P và cạnh song song với đường thẳng l (H.15) . Gọi P’ là điểm đối xứng với P qua đường kính của đường tròn vuông góc với l, và là giao điểm của với đường tròn. Trong n-giác , cạnh song song với đường thẳng l và cạnh đi qua điểm P’ cho trước. Ta thực hiện phép dựng này theo một số lần cần thiết và đưa bài toán về việc dựng một n-giác có k cạnh lien tiếp đi qua những điểm cho trước có n-k cạnh còn lại song song với các đường thẳng cho trước. Bài 2: Trên mặt phẳng cho n điểm. Hãy dựng một n-giác có cạnh là đáy của một tam giác cân, các tam giác này nhận n điểm trên làm đỉnh và góc đỉnh có số đo cho trước là . Hướng dẫn: Vì một số trong các góc có thể vượt quá 180o nên ta quy định: nếu tam giác cân định hướng phía ngoài đa giác thì 180o (khi đó góc đỉnh là 360o - ). * Giả sử bài toán giải xong ứng với n=3. * Giả sử biết cách dựng một n-giác từ các đỉnh của tam giác cân có góc đỉnh cho trước là đáy là cạnh của n-giác và cũng giả sử rằng ta cần dựng một (n+1)-giác từ đỉnh chgo trước của tam giác cân có góc đỉnh là , có đáy là cạnh của đa giác cần dựng. Gọi là (n+1)-giác càn dựng. Sử dụng giả thiết quy nạp ta dựng được đa giác , sau đó ta dựng được (n+1)-giác . Nếu =360o.k thì bài toán vô định hoặc vô nghiệm. (Xem thêm tài liệu [1] thí dụ 22 trang 88) Bài 3: Cho hai đường thẳng song song và . Bằng một thước dây hãy chia đoạn AB trên làm phần bằng nhau. Hướng dẫn: * Với n=2. Nối điểm S bất kỳ của mặt phẳng với A và B (H.17a). Lần lượt gọi C và D là giao điểm vủa AS và BS với . Gọi giao điểm của AD và BC là và giao điểm của với là P. Ta chứng minh rằng P là điểm cần dựng. * Giả sử rằng chỉ cần một cây thước ta đã dựng được điểm P trên AB sao cho . Lấy một điểm S bất kỳ không ở trên hay và gọi T và Q lần lượt là các giao điểm của SP với AD và (H.17b) Nối giao điểm của AD và CP với S và gọi các giao điểm của ST với và lần lượt là . Ta chứng minh P là điểm cần dựng. IV. Tìm quỹ tích bằng quy nạp. Đối với dạng toán tìm quỹ tích, chúng ta chỉ dùng phép quy nạp để hỗ trợ cho công việc giải bài toán. Sau đây ta nghiên cứu một số thí dụ và bài toán quỹ tích giả được nhờ sự hỗ trợ của phép quy nạp. Thí dụ 4: Trong không gian cho mặt cầu (C) tâm O bán kính R và hệ điểm A1A2…An. Gọi G là trọng tâm hệ điểm nếu . Tìm tập hợp trọng tâm của hệ điểm A1A2…An,M với M là điểm di động trên mặt cầu (C) Giải: * Với n=1 khi đó trọng tâm của A1M là trung điểm của A1M và ta có vậy G là ảnh của M qua phép vị tự tâm A1 tỉ số ½ Vậy tập hợp G là mặt cầu (C1 ) ảnh của mặt cầu (C) Qua phép vị tự * Giả sử ta tìm được tập hợp trọng tâm Gn của hệ điểm A1A2…An,M là mặt cầu (Cn) tâm On bán kính Rn. Ta tìm tập hợp trọng tâm Gn+1 của hệ A1 , A2…An , An+1 , M. Ta có Do Gn là trọng tâm hệ điểm A1A2…An, M nên Vậy Gn+1 là ảnh của Gn qua phép vị tự Theo giả thiết quy nạp ta có quỹ tích Gn là mặt cầu (Cn), vậy quỹ tích Gn+1 là mặt cầu ( Cn+1) là ảnh của (Cn) qua phép vị tự do đó quỹ tích Gn+1 là mặt cầu ảnh của mặt cầu (C) tâm O bán kính R qua n+1 phép vị tự Thí dụ 2: Cho n đoạn thẳng mỗi đoạn nằm trên mỗi cạnh của n-giác lồi . Tìm quỹ tích các điểm M nằm trong đa giác sao cho tổng diện tích của tam giác là hằng số (và bằng tổng , với M là một điểm xác định ở trong đa giác). Giải: * Với n=3 (H.18a). Trên các cạnh và của tam giác ta đặt AP=BC và AQ=BC thì: Và do đó: Tương tự: Ta thấy rằng quỹ tích cần tìm được xác định bởi điều kiện sau đây: Bây giờ ta gọi N là giao điểm của và (nếu chúng song song thì rõ ràng quỹ tích là một đoạm thẳng trên đường thẳng song song với chúng). Trên hai cạnh của góc ta lấy NR=PQ, NS=BC. Khi đó: Và tương tự: Do đó quỹ tích cần tìm là tập hợp các điểm M nằm trong tam giác sao cho , nó chính là đoạn XY của đường thẳng đi qua M (và song song với RS). * Giả sử ta biết được quỹ tíc cần tìm của n-giác là một đoạn thẳng đi qua M. Bây giờ ta xét (n+1)-giác , Gọi là các đoạn thẳng đã cho nằm trên các cạnh của đa giác và M là một điểm nằm trong (n+1)-giác (H.19b). Trên hai cạnh của góc , từ đỉnh ta lấy các đoạn và , khi đó: Do đó với những điểm M của quỹ tích cần tìm ta có: Nhờ giả thiết quy nạp, quỹ tích cần tìm sẽ là một đoạn thẳng đi qua M. Cách giải bài toán này gợi ý cho ta cách dựng quỹ tích đó. Bài tập ứng dụng: Bài 1: (Định lý Newton). Chứng minh rằng trung điểm hai đường chéo cảu tứ giác ngoại tiếp đường tròn nằm trên đường thẳng đi qua tâm đường tròn. Hướng dẫn: Dùng các ký hiệu như hình 20 Ta có: Với S là diện tích của tứ giác. Do đó nhờ kết quả của thí dụ 2 ở trên ta suy ra E, F, O cùng nằm trên một đường thẳng. Bài 2: (Định lý Gauss). Chứng minh rằng dường thẳng nối trung điểm hai đường chéo của một tứ giác lồi (không phải hình bình hành hay hình thang) chia đôi đoạn thẳng nối giao điểm của các cạnh đối diện (H.21). Hướng dẫn: Dùng hý hiệu như hình 21 (P là trung điểm của đoạn EF). Với S là diện tích của tứ giác. Bằng chứng minh ta suy ra rằng M, N, P cùng nằm trên một đường thẳng (Hình 21) Bài 3: Cho n-giác . Tìm quỹ tích các điểm M sao cho các hình chiếu của nó lên các cạnh của đa giác cho trước tạo thành một đa giác có diện tích S cho trước. Hướng dẫn: Dễ dàng chỉ ra rằng diện tích cảu tam giác mà đỉnh cảu nó là hình chiếu của điểm M lên các cạnh của tam giác là: Với R là bán kính của đường tròn ngoại tiếp tam giác , d là khoảng cách giữa M và tâm đường tròn . Do đó suy ra rằng với n=3 quỹ tích cần tìm là đường tròn đồng tâm với (hoặc một cặp đường tròn như thế). Khi đó

Các file đính kèm theo tài liệu này:

  • docPhép quy nạp trong hình học.doc
Tài liệu liên quan