Đồ án Thiết kế mô phỏng công nghệ sấy khí đồng hành

 Dòng khí ẩm đi vào máy nén khí, tại đây khí nguyên liệu được nén đến áp suất 10Mpa. Sau khi nén thì nhiệt độ của hỗn hợp khí tăng và hỗn hợp khí được đưa vào thiết bị làm lạnh (6) tại đây hỗn hợp khí được làm lạnh đến nhiệt độ 25 (0C) và sau đó hỗn hợp khí được đưa vào tháp tách(7) tại đây môt phần nươc ngưng tụ được tách ra và hỗn hợp khí ra khỏi thiết bị này đươc đưa vào tháp hấp thụ (2). Dòng khí ẩm đi từ dưới lên còn dung dịch DEG đi từ trên xuống. Khí khô đi ra ngoài ở đỉnh tháp, dung dịch DEG bão hoà (sau hấp thụ) ra ngoài ở đáy tháp và đi qua thiết bị trao đổi nhiệt (4) sau đó đi vào tháp tách (7) tại đây tách bớt các hydrocacbon khí hoà tan vào dung dịch DEG, khí hydrocacbon thoát ra ở đỉnh còn dung dịch DEG bão hoà đi ra ở đáy tháp và sau đó được bơm (10) đưa qua thiết bị trao đổi nhiệt (4) và đi vào tháp nhả hấp thụ ở đĩa tiếp liệu. Tháp tái sinh dùng dòng khí hydrocacbon khô thổi từ dưới lên để sự nhả hấp thụ xảy ra triệt để hơn và dùng nước tưới hồi lưu ở đĩa trên cùng của tháp nhả hấp thụ để giảm mất mát DEG bay hơi theo dòng khí. Dung dịch DEG sau khi tái sinh được đưa qua thiết bị trao đổi nhiệt (4) hai lần, sau đó đi qua sinh hàn không khí vào bồn chứa DEG (8) (ở bồn chứa 8 lượng DEG sẽ được bổ sung khi cần thiết) và sau đó được bơm (10) đưa lên đĩa phân phối của tháp hấp thụ.

 

doc62 trang | Chia sẻ: lynhelie | Lượt xem: 1951 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đồ án Thiết kế mô phỏng công nghệ sấy khí đồng hành, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
độ, (OC) hơi + nước đá hơi + nước hydrat + nước đá đường áp suất hơi của propan hydrat + nước propan lỏng + nước - Khi To > OoC (32oF): ở bên trái đường cong cân bằng tạo hydrat, hydrat chỉ ở pha rắn. Nhiệt độ tại giao điểm của đường áp suất hơi và đường tạo hydrat là nhiệt độ cực đại tạo hydrat của cấu tử nguyên chất. Đường cong tạo thành hydrat của hỗn hợp khí cũng có dạng tương tự như trên có nhiều phương pháp khác nhau để xác định điều kiện bắt đầu tạo thành hydrat của hỗn hợp khí như: Sử dụng hằng số cân bằng rắn - hơi. Phương pháp trekell - campbell. Sự tạo thành có thể bịt kín đường ống dẫn, gây khó khăn cho việc vận chuyển khí và ảnh hưởng đến quá trình làm việc của bơm và các thiết bị khác. Để ngăn ngừa sự tạo thành hydrat người ta có thể sử dụng phương pháp ức chế hoặc các phương pháp sấy khí. Trong phương pháp ức chế người ta đưa chất ức chế vào dòng khí ẩm, chất ức chế sẽ tan trong nước tự do, kết quả làm giảm áp suất hơi và giảm nhiệt độ tạo thành hydrat. Các chất ức chế thường được sử dụng là Metanol và Glycol. IV. Các phương pháp sấy khí: Trong công nghiệp chế biến khí, có rất nhiều phương pháp sử dụng để sấy khô khí như: phương pháp ngưng tụ hơi nước ở nhiệt độ thấp, phương pháp hấp thụ và phương pháp hấp phụ... 1. Phương pháp ngưng tụ: Đây là một phương đơn giản nhất sử dụng để loại nước (hơi nước) ra khỏi hỗn hợp khí. Quá trình thực hiện của phương pháp là làm lạnh khí ẩm đến nhiệt độ cân bằng tối thiểu, hay chọn lọc hơn là làm lạnh hỗn hợp khí đến nhiệt độ dưới nhiệt độ điểm sương. Hơi nước sẽ ngưng tụ và tách ra khỏi khí dưới dạng những hạt sương. Nhưng trong thực tế có nhiều trường hợp nếu chỉ làm lạnh thôi thì không đủ và khó điều chỉnh quá trình. Phương pháp này có ưu điểm là: sơ đồ công nghệ đơn giản. Nhưng nhược điểm của phương pháp là đắt tiền, để thực hiện quá trình cần có thiết bị làm lạnh phức tạp, khi làm lạnh hỗn hợp khí ẩm đến nhiệt độ âm, thì tại nhiệt độ đó có một số cấu tử của hỗn hợp khí cũng bị ngưng tụ theo nước làm cho lượng sản phẩm thu hồi ít, dẫn đến mất mát khí trong quá trình sấy là rất lớn. Phương pháp này thường dùng để tách benzin khỏi hỗn hợp khí đồng hành với hiệu quả khá cao và triệt để. 2. Phương pháp hấp phụ: Các phương pháp hấp phụ cho phép đạt điểm sương theo ẩm trong khoảng 100 á 120oC và sấy sâu khí đến điểm sương rất thấp (- 60 á - 90oC ). Hấp phụ là quá trình tập trung các chất trên bề mặt hoặc trong không gian của các vi lỗ xốp của vật rắn. Quá trình sấy khô khí bằng các chất hấp phụ dựa vào khả năng của các vật thể rắn với cấu trúc xác định hấp phụ lượng ẩm từ khí ở nhiệt độ tương đối thấp và sau đó tách ẩm khi tăng nhiệt độ. Trong trường hợp đầu tiên xảy ra sự hấp phụ còn sau đó là giải hấp phụ. Sự kết hợp hai quá trình này trong thiết bị cho phép thực hiện tách ẩm một cách liên tục từ khí. Sự sấy khô khí là một quá trình vật lý và hiệu quả của nó phụ thuộc vào nhiệt độ và áp suất. Các chất hấp phụ - sấy khô có thể chia thành: - Bôxit là những khoáng thiên nhiên chứa chủ yếu là oxit nhôm Al2O3, oxit nhôm hoạt hoá là bôxit đã làm sạch. - Những hợp chất cấu tạo từ oxit Silic, ... các dây phân tử là các zeolit. Các đại lượng đặc trưng của các chất hấp phụ dùng để sấy khí tự nhiên và khí đồng hành được đưa trong bảng: Bảng II.4: Đại lượng đặc trưng Silicagel Oxit nhôm hoạt tính Bôxit hoạt tính Zeolit 4A và 5A Tỷ trọng (g/cm3) Tỷ trọng thực 2,1 á 2,2 3,25 3,4 Tỷ trọng xốp 0,61 á 0,72 0,8 á 0,86 0,8 á 0,83 0,69 á 0,72 Tỷ trọng biểu kiến 1,2 1,6 1,6 á 2,0 1,1 Nhiệt dung Kcal/Kg oC 0,22 0,24 0,24 0,2 Hàm lượng nước, % trọng lượng 4,5 á 7 7,0 4 á 6 Thay đổi Nhiệt độ tái sinh, oC 121 á 232 177 á 315 > 177 150 á 350 Khả năng hấp phụ hơi nước Kg nước/100 Kg chất hấp phụ 7 á 9 4 á 7 4 á 6 9 á 12 Các chất hấp phụ đều có bề mặt riêng lớn 200 á 800 m2/g. Điểm sương của khí sản phẩm sau công đoạn sấy phụ thuộc vào chất hấp phụ đã chọn và công nghệ đã thiết kế. Khi tính toán thiết kế sơ đồ công nghệ sử dụng giá trị điểm sương có thể đạt được với các chất hấp phụ thường dùng sau: Bảng II.5: Chất hấp phụ Điểm sương của khí sau khi sấy Silicagel - 60 oC (- 76 oF) Oxit nhôm hoạt tính - 73 oC (- 100 oF) Zeolit (rây phân tử) - 90 oC (- 130 oF) Sơ đồ công nghệ sấy khí bằng phương pháp hấp phụ đơn giản nhất được mô tả trên hình sau: Trong sơ đồ trên người ta sử dụng 2 tháp hấp phụ có cấu tạo hoàn toàn giống nhau. Một tháp hấp phụ còn tháp kia nhả hấp phụ (để tái sinh chất hấp phụ). Quá trình hấp phụ thực hiện ở nhiệt độ 25 á 40 oC ở áp suất 0,2 á 0,4 MPa. Quá trình khử hấp phụ để tái sinh chất hấp phụ thực hiện ở áp suất khí quyển và nhiệt độ cao tuỳ thuộc vào từng chất hấp phụ. Khi này dòng khí nóng được dẫn qua tháp khử hấp phụ. Dòng khí nóng có chứa hơi nước dẫn theo đường IV sang bộ phận tách nước ngưng tụ sau khi được đưa qua sinh hàn. Theo yêu cầu đề tài của đồ án chỉ cần sấy khí đến tođsương = - 15oC nên không cần dùng đến phương pháp hấp phụ vì giá thành chi phí cho quá trình và chất hấp phụ cao. 3. Phương pháp hấp thụ: Quá trình sấy khí bằng phương pháp hấp thụ ở nhiệt độ thường vì đây là quá trình tách hơi nước khỏi hỗn hợp khí ẩm nên không dùng ở nhiệt độ thấp vì ở nhiệt độ thấp (âm) thì các dung môi hấp thụ sẽ bị đông đặc và một số cấu tử khí cũng bị ngưng tụ làm cho quá trình tiến hành rất khó khăn. Phương pháp hấp thụ dùng dung môi hấp thụ (lỏng) loại nước ra khỏi hỗn hợp khí hấp thụ hoà tan nước vào dung môi, các dung môi hấp thụ thường dùng là dung dịch H2SO4, HCl, các dung dịch glycol. Nhưng với dung dịch H2SO4, HCl thì không dùng trong công nghiệp vì chúng sẽ gây ăn mòn thiết bị nên trong công nghiệp sấy khí thường dùng các dung dịch glycol. Phương pháp hấp thụ để sấy khí có sơ đồ thiết bị đơn giản, dễ tính toán thiết kế, dễ vận hành, quá trình liên tục nên có thể tự động hoá, giá thành thiết bị thấp, ít tiêu hao tác nhân sấy khí, các chất hấp thụ dễ chế tạo. Các loại rượu hai chức này tan hoàn toàn trong nước với bất kỳ tỷ lệ nào, các dung dịch này không ăn mòn, cho phép dùng kim loại rẻ tiền để chế tạo thiết bị. Một tính chất quan trọng của các glycol là khả năng làm giảm nhiệt độ đông đặc của dung dịch nước.(phụ lục - hình 4) Tính chất này cho phép có thể dùng dung dịch nước của các glycol làm chất hấp thụ nước ở nhiệt độ âm. Vì thế mà quá trình sấy khí bằng phương pháp hấp thụ là phù hợp đối với đề tài của đồ án. Đề tài tính toán thiết kế quá trình sấy khô khí đồng hành bằng phương pháp hấp thụ sử dụng trietylen glycol. 4. Cơ sở lý thuyết của công nghệ sấy khí đồng hành bằng phương pháp hấp thụ: Hấp thụ và nhả hấp thụ là 2 quá trình chuyển khối cơ bản được sử dụng trong quá trình tách khí đồng hành, cũng như trong quá trình sấy khí. Bản chất vật lý của quá trình là sự hình thành cân bằng giữa 2 pha khí - lỏng do sự khuếch tán của hơi nước từ pha nọ sang pha kia. Động lực của quá trình khuếch tán là sự chênh lệch áp suất riêng phần của hơi nước trong khí và trong chất hấp thụ. Nếu ngược lại sẽ xảy ra quá trình nhả hấp thụ. ở mỗi giá trị nhiệt độ tương ứng với áp suất xác định, khí thiên nhiên bão hoà hơi nước có khả năng tạo các hydrat như: CH4 .5,9 H2O, C2H6 .8,2 H2O, C3H8.17H2O, iso - C4H10 .17 H2O, H2S .6,1 H2O, CO2. 6 H2O, N2. 6 H2O. Các hydrocacbon nặng hơn C4 khó có khả năng tạo hydrat. Quá trình hydrat hoá chỉ xảy ra khi áp suất riêng phần của hơi nước trong hỗn hợp khí lớn hơn áp suất hơi bão hoà của hydrat. Như vậy bằng cách làm giảm hàm lượng ẩm trong khí sao cho áp suất riêng phần của hơi nước trở nên nhỏ hơn áp suất hơi bão hoà của hydrat thì ta ngăn chặn được sự tạo thành hydrat trong khí thiên nhiên. Đó là bản chất của quá trình sấy khí. Trong thành phần của khí đồng hành ngoài các cấu tử chính là các hydrocacbon no còn có một lượng đáng kể các tạp chất có tính axit như CO2, H2S và các hợp chất chứa lưu huỳnh như COS, CS2, RSH,... gây độc hại cho người sử dụng, ô nhiễm môi trường, ngộ độc xúc tác và gây ăn mòn thiết bị vận chuyển... Để loại bỏ đồng thời các tạp chất này cùng với nước người ta đã sử dụng phương pháp hấp thụ với dung môi hấp thụ là hỗn hợp etanol amin với etylen glycol. Việc làm sạch tổ hợp như vậy đồng thời làm khan hoá nguyên liệu và giảm lượng hơi nước cần thiết để tái sinh dung môi. Các phản ứng: 2 HOCH2CH2NH2 +CO2 + H2O (HOCH2CH2NH3)2CO3 2 HOCH2CH2NH2 + H2S (HOCH2CH2NH3)2CO3 Hình 5: Sơ đồ làm sạch khí bằng dung dịch MEA và etylen glycol. (phụ lục – hình 5 ) Quá trình làm sạch được thực hiện trong tháp hấp thụ và các thiết bị phụ trợ. Tháp hấp thụ và khử hấp thụ cũng có cấu tạo như tháp sấy khí bằng glycol. Khí được dẫn vào từ phần dưới của tháp, dòng khí chuyển động từ dưới lên còn dung dịch làm sạch gồm MEA và EG được tưới ngược chiều từ trên xuống. Khí đã được làm sạch được dẫn ra ở đỉnh tháp còn dung dịch đã hấp thụ H2S, CO2 được tháo ra ở đáy tháp. Dung dịch này được dẫn qua bộ phận trao đổi nhiệt đốt nóng bằng hơi nước và đưa vào giữa tháp khử hấp thụ, H2S và CO2 thoát ra ở đỉnh tháp còn dung dịch hấp thụ đã tái sinh được lấy ra ở phía dưới. Một phần dung dịch đó được đun nóng bằng hơi nước và quay lại tháp khử hấp thụ để truyền nhiệt, phần còn lại được làm nguội và tưới từ đỉnh tháp hấp thụ. 5. Phương pháp sấy khí bằng hấp thụ: Phương pháp sấy khí bằng hấp thụ có sơ đồ thiết bị đơn giản, dễ tính toán, dễ vận hành, quá trình liên tục nên có thể tự động hoá được, giá thành thiết bị thấp, ít mất mát năng lượng, tác nhân hút nước dễ chế tạo, dễ tái sinh và dung môi sau khi tái sinh có thể đạt được nồng độ cao. Vì vậy phương pháp này được sử dụng rộng rãi hơn các phương pháp khác. Khi sấy một lượng khí tương đối lớn thì phương pháp hấp thụ TEG hoặc DEG là kinh tế nhất cả về vốn đầu tư và tiêu tốn năng lượng. Trong phương pháp hấp thụ sấy khô khí thì các dung môi hấp thụ phải đáp ứng được những yêu cầu sau: Có khả năng hấp thụ hơi nước trong khoảng rộng nồng độ, áp suất, nhiệt độ. Có áp suất hơi bão hoà thấp để mất mát trong quá trình là ít nhất (do bay hơi). Nhiệt độ sôi khác nhiệt độ sôi của nước để có thể dễ dàng tách nước (dễ dàng khử hấp thụ để tái sinh chất hấp thụ). Độ nhớt đảm bảo tiếp xúc tốt với hỗn hợp khí trong thiết bị hấp thụ, thiết bị trao đổi nhiệt... Độ chọn lọc cao đối với các cấu tử có mặt trong khí nghĩa là có khả năng hấp thụ hơi nước trong khí cao, đồng thời khả năng hoà tan thấp các hydrocacbon trong khí. Tính ăn mòn kém. Khả năng tạo bọt kém khi tiếp xúc với dòng khí. Có độ bền nhiệt và độ oxy hoá cao. Không độc hại cho người làm việc, không gây ô nhiễm môi trường. Giá thành rẻ, dễ kiếm, dễ chế tạo. Những yêu cầu trên ở mức độ này hay khác có thể đạt được, là các chất lỏng: Glycol (G), EG, DEG, TEG, PG, các loại rượu khác của dãy alkan như metanol, etanol, hỗn hợp glycol với rượu hoặc ete, các dẫn xuất của DEG, TEG, etylcacbinat, TREG... Tất cả chúng đều có khả năng hấp thụ nước lớn, nhưng không được ứng dụng để làm khô khí thiên nhiên hay khí đồng hành. Vì khó tái sinh sau khi sử dụng và có độ chọn lọc thấp. Các dung môi dùng để sấy khô khí được sử dụng rộng rãi hơn cả là các dung dịch đậm đặc của EG, DEG, TEG và cả PG. Chúng là các dung dịch rượu 2 chức của dãy no. Hoà tan với nước ở bất kỳ tỷ lệ nào. Các dung dịch này không ăn mòn nên cho phép dùng kim loại rẻ tiền để chế tạo thiết bị. Bảng II.6: Một số tính chất hoá lý quan trọng của chúng được đưa ra ở bảng sau: Các đại lượng vật lý EG DEG TEG PG Khối lượng mol phân tử 62,07 106,12 150,18 76,09 Tỷ trọng tương đối P2020 1,116 1,118 1,125 1,034 Nhiệt độ sôi ở 760 mm Hg, oC 197,3 244,8 278,3 188,2 Nhiệt độ nóng chảy (oC) - 13 - 8 - 7,2 - 60 Nhiệt độ bắt đầu phân huỷ (oC) " 164 191 " Độ nhớt ở 20 oC 20,9 35,7 47,8 56,0 Nhiệt dung ở 20oC (293oK)KJ/Kg.oK 2,35 2,09 2,20 2,47 Nhiệt bay hơi ở 760 mm Hg 83,4 99,5 Nhiệt độ tái sinh, oC 165 164 191 - 60 Tính chất quan trọng của glycol khí ở trong dung dịch là khả năng hạ thấp nhiệt độ đông đặc của nước. Tính chất này có thể cho phép dùng nước của dung dịch đó để hấp thụ nước ở nhiệt độ âm. Dung dịch EG có nhiệt độ đông đặc thấp nhất, khả năng ngăn ngừa hydrat hoá cao nhất, độ nhớt thấp hơn các glycol khác ở cùng nhiệt độ sấy và có độ hoà tan các hydrocacbon khí trong thiết bị trao đổi lớn hơn so với DEG, TEG. Vì vậy, khả năng mất mát trong quá trình sấy lớn, nên EG không được sử dụng nhiều. DEG có ưu điểm so với TEG vàPG là độ hoà tan khí hydrocacbon thấp hơn, khả năng tạo bọt kém hơn, có độ nhớt thấp. ở áp suất cao thì khả năng hấp thụ nước dùng DEG là tốt hơn hết, vì nó đáp ứng được hệ số chọn lọc trong hệ nước - RH. Trong điều kiện áp suất khí quyển 1 atm (760 mm Hg) thì nhiệt độ bay hơi của DEG nhỏ nên mất mát trong quá trình sấy lớn hơn TEG. DEG có một loạt ưu điểm hơn so với TEG. DEG có độ bay hơi thấp hơn TEG trong điều kiên áp suất cao nên mất mát khi sấy (do bay hơi theo khí) ít hơn. DEG có nhiệt độ bắt đầu phân huỷ thấp hơn TEG một chút nhưng trong quá trình tái sinh (nhả hấp thụ) vẫn có thể tiến hành bằng cách đun ở nhiệt độ cao, đạt được nồng độ cao sau khi tái sinh mà không cần dùng chân không. Vì vậy mà sử dụng quá trình hấp thụ với dung môi là DEG để sấy khí đồng hành trong điều kiện áp suất cao là tối ưu nhất và đồng thời cũng phù hợp với đề tài của đồ án trình bày. Trong quá trình sấy sự mất mát (G) do hoà tan trong thiết bị khoảng 0,25 đến 0,75 lít đối với 1000 lít chất lỏng ngưng tụ và phụ thuộc vào thành phần khí hydrocacbon thơm. Khối lượng phân tử của chất sấy lỏng càng lớn thì độ hoà tan trong các hydrocacbon thơm càng tăng. Độ nhớt của dung dịch nước glycol giảm với quá trình tăng nhiệt độ và giảm nồng độ trong quá trình sấy khí và ngược lại. Nếu khí đưa vào sấy được làm lạnh đến âm hoặc bằng 0 thì không được dùng DEG hoặc TEG làm chất hấp thụ vì ở nhiệt độ này chúng rất quánh, làm khả năng trao đổi giữa hơi nước và (G) kém. Để giảm độ nhớt thì phải dùng các dung môi hữu cơ, có vai trò như là chất sấy khô và không có khả năng tạo bọt như: rượu benzylic, fenyl etylic, rượu thơm, rượu thẳng, rượu dị vòng đa chức,... các chất này đều có độ nhớt nhỏ hơn (G), tan tốt trong (G) và có khả năng hút nước. Lượng dung môi dùng trong dung dịch phải phù hợp với đòi hỏi của từng thiết bị, nhiệt độ thành phần khí ban đầu và bản chất của dung môi. Sau khi sấy khí bằng dung dịch (G) ta đạt được sự hạ` điểm sương nào đó. Mối quan hệ giữa nhiệt độ điểm sương của hỗn hợp khí với hàm lượng tác nhân sấy TEG và nhiệt độ tiếp xúc được biểu diễn ở đồ thị hình 6. (phụ lục – hình 6 ). Mối quan hệ giữa độ hạ điểm sương của khí ẩm và nhiệt độ tiếp xúc được biểu diễn trên đồ thị hình 7.(phụ lục – hình 7 ). Quá trình giảm nhiệt độ điểm sương phụ thuộc nồng độ của nước trong dung dịch chất làm khô, nhiệt độ tiếp xúc trong cột hấp thụ, tính chất và thành phần dung dịch chất làm khô, hàm lượng nước và các hydrocacbon nặng trong khí, áp suất của quá trình. Hơi nước được lấy ra từ khí chừng nào áp suất riêng phần của nước trong khí và trên bề mặt dung dịch của chất sấy chưa bằng nhau. Lượng hơi nước có thể lấy ra từ khí được xác định bằng khả năng hút nước của chất hấp thụ. Nhiệt độ và áp suất tiếp xúc giữa khí và chất hấp thụ, khối lượng tuần hoàn trong hệ và độ nhớt của chất hấp thụ. Khả năng sấy của tác nhân sấy cũng được xác định bằng khả năng tách nước khi tái sinh để giảm lượng nước trong đó đến tối thiểu. Quá trình hấp thụ xảy ra trong tháp hấp thụ khi sử dụng dung môi hấp thụ là TEG và khí ẩm tiếp xúc với nhau. Các pha tiếp xúc có thể thực hiện trên các bậc (đĩa) hoặc liên tục. Cơ chế làm việc của tháp đĩa là mỗi đĩa có tác dụng như một bậc tiếp xúc đối với dòng lỏng và khí được và khuấy trộn và tiếp xúc với nhau. Các pha tiếp xúc trao đổi chất và năng lượng nhờ khuynh hướng tương tác pha đối với trạng thái cân bằng. Mức độ tiến đến gần trạng thái cân bằng giữa các pha tiếp xúc nhau được quy ước như là khả năng hiệu quả làm việc của các đĩa hay hệ số tác dụng có lợi. Tóm lại, khi sấy bằng phương pháp hấp thụ thường dùng tháp đĩa có ống chảy tràn vì ở dạng này sự mất mát ít, khả năng tiếp xúc giữa các pha tốt tạo khả năng hấp thụ hơi nước tốt. Đối với hấp thụ ngược dòng thì điều kiện cân bằng được xem xét ở chế độ tiếp xúc trên bề mặt đĩa trong tháp Phần II Tính toán thiết kế -------------oOo------------- A. Sơ Đồ Và Nguyên Lý Làm Việc Sơ đồ công nghệ sấy khí bằng phương pháp hấp thụ với dung môi hấp thụ DEG 1. Máy nén khí 6. Thiết bị làm lạnh II. Khí sau khi sấy 2. Tháp hấp thụ 7. Tháp tách III. Dung dịch DEG 3. Tháp khử hấp thụ 8. Bồn chứa DEG IV. DEG bão hoà nước 4. Bộ phận trao đổi nhiệt 9. Thiết bị chứa nước V. DEG bổ sung 5. Thiết bị dun nóng I. Khí đưa vào sấy VI. Nước tưới hồi lưu Nguyên lý hoạt động của dây chuyền công nghệ. Dòng khí ẩm đi vào máy nén khí, tại đây khí nguyên liệu được nén đến áp suất 10Mpa. Sau khi nén thì nhiệt độ của hỗn hợp khí tăng và hỗn hợp khí được đưa vào thiết bị làm lạnh (6) tại đây hỗn hợp khí được làm lạnh đến nhiệt độ 25 (0C) và sau đó hỗn hợp khí được đưa vào tháp tách(7) tại đây môt phần nươc ngưng tụ được tách ra và hỗn hợp khí ra khỏi thiết bị này đươc đưa vào tháp hấp thụ (2). Dòng khí ẩm đi từ dưới lên còn dung dịch DEG đi từ trên xuống. Khí khô đi ra ngoài ở đỉnh tháp, dung dịch DEG bão hoà (sau hấp thụ) ra ngoài ở đáy tháp và đi qua thiết bị trao đổi nhiệt (4) sau đó đi vào tháp tách (7) tại đây tách bớt các hydrocacbon khí hoà tan vào dung dịch DEG, khí hydrocacbon thoát ra ở đỉnh còn dung dịch DEG bão hoà đi ra ở đáy tháp và sau đó được bơm (10) đưa qua thiết bị trao đổi nhiệt (4) và đi vào tháp nhả hấp thụ ở đĩa tiếp liệu. Tháp tái sinh dùng dòng khí hydrocacbon khô thổi từ dưới lên để sự nhả hấp thụ xảy ra triệt để hơn và dùng nước tưới hồi lưu ở đĩa trên cùng của tháp nhả hấp thụ để giảm mất mát DEG bay hơi theo dòng khí. Dung dịch DEG sau khi tái sinh được đưa qua thiết bị trao đổi nhiệt (4) hai lần, sau đó đi qua sinh hàn không khí vào bồn chứa DEG (8) (ở bồn chứa 8 lượng DEG sẽ được bổ sung khi cần thiết) và sau đó được bơm (10) đưa lên đĩa phân phối của tháp hấp thụ. B. tính toán quá trình sấy khí I.Xác định các tính chất của hệ khí đồng hành đưa vào sấy Nhiệt độ của khí đưa vào sấy : T = 250C áp suất của khí đưa vào sấy : P = 10 MPa Năng suất theo nguyên liệu đầu : C = 6000 000 m3/ngày GKv GKr GGv GGr Hình II.1:Tháp hấp thụ Xác định hàm ẩm của khí đồng hành: Sử dụng công thức thực nghiệm (9) để tính gần đúng hàm ẩm của khí thiên nhiên trong khoảng nhiệt độ từ 20 á 400C và áp suất khoảng 1á40MPa: W=593,335.exp(0,0549T).P-0.814 .0,000001 (Kg/m3) T: nhiệt độ của khí đưa vào, 0C P: áp suất của khí đưa vào, MPa Với: T=25 oC, P=10MPa, ta có hàm ẩm của khí là: WKV=35,91.10-5 kg/m3 Tính khối lượng phân tử trung bình của hỗn hợp khí MK ( g/mol ). Với : Mi = khối lượng phân tử (g/mol) của cấu tử thứ i . yi = hàm lượng phần mol của cấu tử thứ i trong hỗn hợp khí Mk tính theo bảng II.1 : Cấu tử Khối lượng phân tử (MI) Thành phần mol của các cấu tử (yI) Mi yI CH4 16,043 0,743 11,92 C2H6 30,070 0,105 3,1574 C3H8 44,097 0,085 3,7482 N - C4H10 58,124 0,065 3,7781 N2 28,016 0,002 0,056 Tổng 1,000 22,6597 MK =22,6597 (g/mol) ã Xác định các thông số tới hạn của hệ khí đồng hành: ; Trong thực tế tính toán và nghiên cứu các hệ hydrocacbon người ta thường sử dụng các thông số giả tới hạn của hệ. Các thông số này có thể được xác định theo quy tắc Key: với yi:hàm lượng phần cấu tử thứ i trong hỗn hợp khí . Thi , Phi:nhiệt độ tới hạn (0K ) và áp suất tới ( MPa ) của cấu tử thứ i Nhiệt độ giả tới hạn và áp suất giả tới hạn của các cấu tử và của hỗn hợp khí được trình bày ở bảng II.2: Bảng II.2: Nhiệt độ và áp suất giả tới hạn của hỗn hợp khí Cấu tử Nồng độ phần mol (yi) Thi (K) Phi (MPa) Yi.Thi (K) yi.Phi (MPa) CH4 0,743 191 4,6 141,913 3,4178 C2H6 0,105 305 4,88 32,025 0,5124 C3H8 0,085 370 4,25 31,45 0,3613 N - C4H10 0,065 425 3,8 27,625 0,247 N2 0,002 126 3,4 0,252 0,0068 Tổng 1,000 233,265 4,5453 Tính hệ số nén z của hỗn hợp khí (xác định sai lêch của hỗn hợp khí so với khí lý tưởng) Hệ số nén z của hỗn hợp khí phụ thuộc vào áp suất rút gọn (pRG) và nhiệt độ rút gọn (tRG). Nhiệt độ rút gọn và áp suất rút gon được xác định theo công thức: ; Với: T là nhiệt độ của khí, 0K P là áp suất của khí, MPa T = 298 (0K) P = 10 ( MPa ) thh là nhiệt độ tới hạn hỗn hợp khí, K Phh là áp suất tới hạn trong hỗn hợp khí, MPa Từ bảng (II.2), ta có: TRG= 1,28 (oK) 2,2 (MPa) Từ nhiệt độ rút gọn và áp suất rút gọn, theo giản đồ kazt (2 Tr62) ta xác định được hệ số nén z = 0,65 Hệ số nén của hỗn hợp khí z = 0,65 Tính Khối lượng riêng của hỗn hợp khí (rK) Khối lượng riêng của hỗn hợp khí được xác định theo công thức sau: (15) MK: Khối lượng phân tử trung bình của hỗn hợp khí, g/mol MK = 22,6597 (g/mol) P, T, Z: là áp suât, nhiệt độ và hệ số chịu nén ở điều kiện chuẩn R=0,00831(MPa)(m3)/(kmol)(K) P = 0,1 MPa T = 298 oK Z = 1 22,6597 x 0,1 r'K = = 0,915 (Kg/m3) 1x 0,00831x 298 Với T = 298oK , P = 10 MPa , Z = 0,65 Thay vào công thức (15) có rK = 140,944 (Kg/m3) Xác định nhiệt dung riêng của khí Nhiệt dung riêng của khí được xác định theo công thức sau: (16) Với ai là nồng độ khối lượng của cấu tử thứ i trong khí. ai xác định theo công thức sau : (17) Cpi : nhiệt dung riêng đẳng áp của cấu tử thứ i trong khí (kJ/kg.0C), được tính theo công thức sau: Cpi = a+bT+cT2+dT3 (18) T:Nhiệt độ của khí ,oC a,b,c,d: hệ số tính nhiệt dung đẳng áp của các cấu tử , kJ/kg.oK Bảng II.3: Hệ số tính nhiệt dung đẳng áp của cấu tử Cấu tử A b102 C105 d109 Khoảng nhiệt độ oC CH4 C2H6 C3H8 n-C4H10 4,598 1,292 -1,009 2,226 1,245 4,254 7,315 7,913 0,286 1,657 3,789 2,647 -2703 2,081 7,678 19,30 0á1200 0á1200 0á1200 0á1200 ở nhiệt độ T=25 oC, Cp được tính theo bảng II.4: BảngII.4: Nhiệt dung riêng đẳng áp của các cấu tử ở 250C Cấu tử Nồng độ phần khối lượng (ai) Nhiệt dung riêng cấu tử CPi (KJ/Kg.oC) ai. Cpi CH4 C2H6 C3H8 N C4H10 N2 0,526 0,1393 0,1654 0,1667 0,0025 4,8688 2,3721 0,8435 4,2211 1,0414 2,561 0,3304 0,1395 0,7037 0,0026 Tổng 1,0000 3,737 Vậy Cp = 3,737 KJ/Kg.oC Thể tích mol của các cấu tử và hệ số khuếch tán của chúng trong dung môi DEG Thể tích mol của các cấu tử trong hỗn hợp khí thiên nhiên được xác định theo phương trình sau: (19) Trong đó: t- nhiệt độ (0C); A,B,C,E là các hằng số Mi- Khối lượng phân tử mol của cấu tử i, g/mol ở diều kiện tiêu chuẩn, thể tích mol của các cấu tử được xác định theo công thức sau : Vi=n.vC+m.vH+k.vO (20) Vi: thể tích mol của cấu tử i, cm3/mol VC,vH, VO: thể tích nguyên tử của cacbon, hydro, oxy ( cm3/ng.tử) n.m.k: số nguyên tử cacbon, hydro, oxy trong phân tử VC=14.8, VH=3.7, vO=7.4 (21) BảngII.5: Thể tích mol của các cấu tử trong hỗn hợp khí Cờu tử MI Thể tích mol, cm3/mol CH4 C2H6 C3H8 nC4H10 N2 DEG 16,043 30,070 44,097 58,124 28,01 106,1 29,60 51,80 74,80 96,20 32,2 118,4 Hệ số khuếch tán của các hydrocacbon trong dung môi DEG có thể được xác định theo công thức sau: Dt=D20[1+b(t-20)] (21) D20:hệ số khuếch tán của hydrocacbon trong DEG ở 200C b :hệ số tính đến ảnh hưởng của nhiệt độ đến hệ số khuếch tán. (22) A,B hệ số phụ thuộc vào tính chất của chất tan và dung môi Với hydrocacbon khí: A=1, Với glycol: B=2 VA,VB : thể tích mol của chất hoà tan và DEG MA,MB: khối lượng mol của chất tan và DEG m: độ nhớt củaDEG ở 200C, cP m = 33 cP Kết quả tính hệ số khuếch tán được trình bày ở bảng II.6: Hm : sự phụ thuộc của nhiệt hoà tan hydrocacbon khí trong dung dịch DEG vào áp suất. Bảng II.6: Hệ số khuyếch tán và Nhiệt hoà tan của hydrocacbon trong DEG Cấu tử Thành phần mol (yi) Nhiệt hoà tan của khí trong DEG ri (Kj/Kg) Hệ số khuyếch tán Dt 1010 (m2/s) CH4 0,745 419 8,22 C2H6 0,105 364 5,44 C3H8 0,085 289 4,231 n C4H10 0,065 239 3,56 N2 0,002 10 0 Tổng 1,000 II.tính toán tháp hấp thụ I.Tính toán cân bằng vật liệu của tháp Phương trình cân bằng vật liệu cho tháp hấp thụ: GKv + GGv = GKr + GGr Trong đó : GKv -Lưu lượng khối lượng khí ban đầu (kg/h) GKr -Lưu lượng khối lượng khí đi ra sau hấp thụ (kg/h). GGv , GGr : lưu lượng khối lượng dung dịch glycol ban đầu đi vào thiết bị và sau hấp thụ đi ra khỏi thiết bị (kg/h). Tính lưu lượng khối lượng hỗn hợp khí G (kg/h) : C .MK G = 22,4 Với MK - Khối lượng phân tử trung bình của hỗn hợp khí MK = 22,6597(g/mol). C - Công suất làm việc ở điều kiện tiêu chuẩn. C = 6 000 000 m3/ngày đêm = 250 000 (m3/h) 250 000 x 22,6597 ị G = = 252898,437 (Kg/h) 22,4 Lưu lượng thể tích của hydrocacbon nguyên liệu V(m3/h) ta có: P0,V0,T0- Là các thông số trạng thái của hỗn hợp khí ở điều kiện chuẩn P,V,T - Là các thông số trạng thái của hỗn hợp khí ở điều kiện bất kỳ Zo, Z - Hệ số nén của hốn hợp khí ở điều kiện chuẩn và điều kiện bất kỳ ở điều kiện chuẩn: Zo=1, Po=0,1.Mpa, T0=273 0K và:

Các file đính kèm theo tài liệu này:

  • docHA53.doc
  • dwgSay khi.dwg
  • dwgso do Nguyenthu.dwg
Tài liệu liên quan