Using FEM to simulate effective elastic moduli of 2D
random polycrystals and compare with the analytical results, the
FEM results converge to the thesis's evaluation with RVE
64x64 crystals; This FEM used is not new, but the calculation
approach for the specific elastic moduli of the thesis is new, can
be used to simulate other crystals, and determine the better
estimates for macro elastic moduli
27 trang |
Chia sẻ: honganh20 | Lượt xem: 355 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Estimates and simulations for the elastic moduli of random polycrystals, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
he best ones for the
macroscopic properties of polycrystals as well as composites.
1.2.2. Typical estimates
a. Voigt- Ruess- Hill estimate (first order)
eff eff,k : macroscopic bulk and shear elastic moduli;
, , ,V V R Rk k : Voigt, Reuss estimates; ij ij, ( , , , 1, )kl klC S i j k l d
are the stiffness and compliant elastic tensors of α- orientation
crystal, respectively:
2 2
1 1 1
;
2
V iijj V ijij iijjk C C C
d d d d
(1.1)
1
1
2
4 1
;
2
R iijj R ijij iijjk S S S
dd d
(1.2)
eff eff;V R V Rk k k (1.3)
b. Hashin- Strikman estimate (second order)
HS used new variatinonal principle and polar field to buils
new estimates better than the Hill ones. In cubic case, HS
estimates for bulk uper U
HSk and lower bound
L
HSk :
11 11 33
1
2 2
9
U L
HS HS V Rk k k k C C C (1.5)
HS estimates for shear uper UHS and lower bounds
L
HS :
0( ,k , )
U eff U
HS HSP C , 0( ,k , )
L eff L
HS HSP C ,
11 12 * 44 *
0 0 *
11 12 44 *
2 ( )
( ,k , ) 5
3( ) 4 10
C C C
P
C C C
C ,
4
0 0
* 0
0 0
9 8
6 12
k
k
, 11 120 44max ,
2
U
HS
C C
C
,
11 12
0 44min ,
2
L
HS
C C
C
. (1.8)
c. Pham Duc Chinh estimate (third order)
Using HS-type polarization trial fields, but coming derectly
from classical minimum energy and complementary energy
principles, PDC added three-point correlation parameters
,A B and succeded in constructing tighter bounds. PDC
estimates have short forms for spherical cell polycrystals:
* 0 0
ij ij * * * 0 * 0
0 0
9 84
(k , );k ;
3 6 12
kl kl
k
C T
k
(1.10)
1
0 0 0 * 1 * 0: : : ) :eff
ε C ε ε C C ε , 0 C C
(1.24)
1
1
0 1 0 0 * 1 * 0: ( ) : : ) :eff
σ C σ σ C C σ ,
1
0 1
C C
(1.26)
d. Self- consistent value(SC)
SC value is the solution
0
C of the equation:
1
1
0 * *
C C C
(1.27)
Advantages: SC values are calculated simply and quickly;
Disadvantages: they are valid only for perfect material model
and has many deviations, so thesis only uses it for reference.
1.3. General research method
1.3.1. Analytical method
The problem is solved by finding extremums of energy
functions on RVE domain. Specifically: we choose one or more
possible test fields for deformations and stresses, put in
mechanical equations with constraints, and transform them to
5
get evaluations. This method is the traditional variational one
that V-R, HS, PDC used.
1.3.2. Numerical method
FEM is commonly used, the basic steps are: random crystal
orientation gereration, meshing RVE, setting stiffness matrix,
equations describing the material balance, applying conditions,
solving systems of equations to get the node displacements,
deformation, stress, ... caculating effective elastic coefficients.
1.4. Conclusion of chapter 1
Studying elastic moduli of polycrystalline materials has high
scientific and practical significance. The analytical results have
been developed well, but the FEM results are few. Therefore, in
this thesis PhD will use both analytical and numerical methods
in solving this problem, compare them with each other and give
specific conclusions.
CHAPTER 2: ESTIMATES FOR ELASTIC MODULI OF
D- DIMENSIONAL RANDOM POLYCRYSTALS
This chapter uses analytic methods to construct general
upper and lower bounds for the bulk and shear elastic moduli of
d-dimensional polycrystals. Conclusions for these estimates are
presented at the end of this chapter.
2.1. Scientific basis
2.1.1. Elastic coefficients of single crystal
Elastic properties of single crystals are anisotropic and often
used by the 2 index-Voigt notation mnCC , mnSS ,
, 1,6m n or 4 index ijklCC , ijklSS , , , , 1,i j k l d .
2.1.2. Elastic coeficicents of polycrystals
Elastic moduli are determined by the folowing fomulae:
6
a. Hooke's law
Average stress field and strain field are related:
:effσ C ε (2.22)
b. Minimum energy princilple (ε is compatible)
0
0 0: : inf : :eff
V
W d
ε
ε ε
ε C ε ε C ε x
(2.29)
c. Minimum complementary energy princilple(σ is balanced)
0
1
0 0 1: : inf : :eff
V
W d
σ
σ σ
σ C σ σ C σ x
(2.34)
2.2. Bulk elastic modulus of d-dimensional polycrystals
2.2.1. Begining equations
We consider RVE has volume V=1, v is corresponding
volume ratio of V V . Three-point correlation parameters:
ij ij
V
A d
x , , ,
1
ij ij ij
V
d
v
x ,
ijkl ijkl
V
B d
x , , ,
1
ijkl ijkl ijkl
V
d
v
x . (2.50)
, are harmonic and biharmonic functions. Geometric
parameters f1, f3, g1, g3 are restricted by:
1 3
1
d
f f
d
,
1 3
1 3
2
( )( )
( )
d d
g g
d d
(2.52)
1
1
0
d
f
d
,
2
1 1 1
6 1 6
4 2 4 4
( )( )
d
f g f
d d d d
(2.54)
2.2.2. Upper bound of bulk elastic modulus
HS polarization trial field has form:
0 0
, ,
0 0 0 0
3 1
( )
(3 4 )
ij kl ijkl m j m
k
p p i
k
(2.55)
7
This field has only 2 free coefficients 0 0,k . Refering to HS
field, PDC ’s thesis, PhD selects diffirent general polar fields
for upper and lower bounds, specifically with the upper bound:
0 , , ,
1
1 1
2
n
ij ij ik kj jk ki kl ijkla a ba
d
ε (2.56)
0ε is volumetric strain field; ija a are free scalar constants
restricted by
1
0
n
v
a ; 0 2 b is free parameter.
After putting trial strain field in to minimum energy expression,
transforming it, we have:
2
0 0
1 1
2 : : :
n n
V KW k v v
ε ε C a a A a (2.60)
ij ij ij2
1 2
1
2 2
K V
K kk
bkb
C C
d dd
C , ApqCA
'A A
pq pq pqC C D ,
'ij ijkl 1 ikjl jkil 2 iipp klpp ij 3
1 1
2 2
A
kl klC C B C C B C C B
ipjp kplp ij 4 ipkp jpkp il jplp ik iplp 5
1 1
2 4
kl jl jkC C B C C C C B
ikpp jlpp ik jkpp il ilpp 6
1
4
jl jkC C C C B ,
ij ij 1 ik il 2
1
2
kl kl jl jkD D D ,
1 3 1 3 1 3 2 3 2
2
V V VD k f F g G f F g G
d
2
3 3 3 3 3 4 3 4
2
V V V
d d
dk f F g G k f F g G
d
,
8
2
7 7 2
1 31
2 2
V
d dd b
F G k
d d d d
,
2 3 1 3 1 3 2 3 2
2
2 V V V
d
D f F g G k f F g G
d
2
3 5 3 5 3 6 3 6 8
2 1
V V V
d d d
k f F g G dk f F g G F
d d
,
8
1 3
2
d d
G
d d
,
2
1 1 1 1 12
1 2
1
2
b
B f F g G
dd
,
2 1 2 1 2B f F g G ,
2
3 1 3 1 32 22
42
2 2
bb
B f F g G
d d d d
4 1 4 1 4B f F g G , 5 1 5 1 5B f F g G , 6 1 6 1 6B f F g G (2.61)
Optimizing (2.60) over the free variables ija
restricted by
(2.59), using Lagrange multiplier method, we recive:
eff Ud 1 1, , ,k k f g b C ,
Ud -1: :V Kk k
C A
1
-1 -1 1: : : :K K K
A A C C A C
(2.63)
Now optimizing (2.63) over the remaining parameter b, shape
parameters f1, g1 restricted by (2.52), (2.54), we obtain the upper
estimate:
1 1
eff Ud
1 1
,
ax min , , ,
bf g
k m K f g b C
(2.64)
Here we choose minimum over b because: trial strain field
admissible at all the values of b, so we choose the b in order to
ensure the smallest bulk modulus.
Choose maximum over f1, g1: these are two parameters
representing the geometry of polycrystals, so select the biggest
values to ensure the upper bound.
9
2.2.3. Lower bound of bulk elastic modulus
Similarly, we select general trial stress field:
0 , , ,
1
1
n
ij ij ik kj jk ki ij kl kla a b a
,ij kl ijkla ba
(2.65)
where a are free scalar constants restricted by
1
0
n
v
a ;
I is the geometric indicator function of α-phase.
Putting this trial feld in to minimum complemantary energy
expression , optimizing over variables ija
, b, f1, g1 restricted,
we obtain the lower bound:
1 1
eff Ld
1 1
,
min ax , ,
f g b
k m K f g C , Ld 1 -1: :R KK k
C A
1
1
-1 -1 1: : : :K K K
A A C C A C
(2.73)
2.3. Shear elastic modulus of d-dimensional polycrystals
2.3.1. Upper bound of shear elastic modulus
General trial strain field has form:
0ij , , ,
1
1
2
n
ij ik kj jk ki kl ijkla a ba
(2.75)
Similarly, we have upper bound:
1 1
eff Ud
1 1
,
ax min , , ,
bf g
m f g b C ,
Ud
2
1 1
32
V ijij iijjM M
d d
, -1: :TM
M C A
1
-1 -1 1: : : :TM M M
A A C C A C
(2.79)
2.3.2. Lower bound of shear elastic modulus
We choose general trial stress field as:
10
0 , , ,
1
1
n
ij ij ik kj jk ki ij kl kla a b a
,ij kl ijkla ba
(2.80)
Transforming it silmilarly, we obtain:
1 1
eff Ld
1 1
,
min ax , ,
f g b
m f g C ,
1
Ld 1 2 1
5 3
R ijij iijjM M
, -1: :Tijkl MM
M C A
1
-1 -1 1: : : :TM M M
A A C C A C
(2.84)
2.4. Conclusion of chapter 2
Starting from energy principles, with trial fields being more
general than HS, thesis have built new estimates for elastic
moduli of d-dimensional polycrystalline materials:
This estimates are complexly dependent on the geometric
parameters f1, g1 and component elastic coefficients ijC
.
Without these geometric informations, the estimates are V-R
bounds. The second term in our evaluation expressions makes
the results of the thesis better.
CHAPTER 3: ESTIMATES FOR EFFECTIVE ELASTIC
MODULI OF SPECIFIC POLYCRYSTAL CLASSES
This chapter will apply the general evaluation formulae in
chapter 2 for some 2D, 3D polycrystals. We use Matlab to
calculate the bounds for some actual polycrystals and compare
with the previous results. For comparison, thesis uses scatter
measure parameters of bulk kS and shear S moduli:
U L
k U L
k k
S
k k
,
U L
U L
S
(3.1)
11
, , ,U L U Lk k are upper and lower bounds of bulk and shear
moduli respectively. These measure parameters characterize the
relative difference between upper and lower bounds, if they are
smaller then the estimates are better.
3.1. 2D polycrystals
3.1.1. 2D Orthorhombic
a. Upper bound of area elastic modulus
Calcultating the terms in (2.64) for 2D orthorhombic, we obtain
2
11 22 K
U AC AC A CAC
V K K R pq KK K C C S C
(3.11)
b. Lower bound of area elastic modulus
Similarly, from (2.73) we receive:
1
2
1 1
11 22
1
K
4
Lfgb AC AC A CAC
R K K V pq KK K C C C C
(3.15)
c. Result of estimates and comparison
For numerical illustrations, we take some 2D orthorhombic
crystals, their elastic constants are tabultated in Table 3.1 (all in
GPa). Results in Table 3.2, ,U LK K are thesis’ estimates;
Ub , 1
Uf , 1
Ug and Lb , 1
Lf , 1
Lg are values of b and f1, g1, at which
the respective extrema in the thesis’ bounds; ,U Lcir cirK K are
estimates for circle cell crystals;
LA
kS ,
irc
kS ,
VR
kS are scatter
measure parameters of thesis, circle cell and V-R respectively.
Table 3.1: Elastic constants of some 2D orthorhombic crystals
Crytal C11 C22 C12 C33
S(1) 2.05 4.83 1.59 0.43
S(2) 2.40 2.05 1.33 0.76
U(1) 19.86 26.71 10.76 12.44
U(2) 21.47 19.86 4.65 7.43
12
Table 3.2: Estimates for area elastic modulus of orthorhombic 2D
Comments of Table 3.2: The new estimates of the thesis are always in the range of V-R, proving that our results
are better; The values
LA
kS are almost equal
irc
kS and much smaller the
VR
kS , proving that the thesis evaluation is
close to the circle cell and much better than V-R.
RK
LK LcirK
U
cirK
UK VK
Lb
1
Lf
1
Lg
Ub
1
Uf
1
Ug
LA
kS
(%)
irc
kS
(%)
VR
kS
(%)
S(1) 1.9928 2.1365 2.1365 2.1612 2.1612 2.5150
-1.40
0.06
0.51
-0.67
0
0.20
0.57 0.57 11.5
S(2) 1.7604 1.7678 1.7678 1.7680 1.7774 1.7775
-0.52
0
0.41
-0.88
0.01
0.04
0.27 0.01 0.48
U(1) 16.554 16.739 16.7399 16.7489 16.7489 17.022
-1.02
0.16
0.51
-0.97
0.31
0.41
0.03 0.03 1.39
U(2) 12.637 12.643 12.6434 12.64341 12.64341 12.657
-0.05
0
0.31
-1.25
0.16
0.14
54.10
54.10 0.08
13
3.1.2. Square
a. Estimate for area elastic modulus
11 12
1
2
effK C C
(3.17)
b. Estimate for shear elastic modulus
1 1
eff
11 12 33
,
1
ax min 2
4
CAC CAC CAC
V M M M
bf g
m C C C
1
2
11 12 33 11 12 33
1 1
2
4 2
A A A AC AC AC
M M MS S S C C C
(3.22)
1 1
eff 1
11 12 33
,
min max 2CAC CAC CACR M M M
f g b
C C C
1
1 2
11 12 33 11 12 332 2
A A A AC AC AC
M M MC C C C C C
(3.25)
c. Result and comparison
Calculating for datas in Table 3.3, comparing with V-R, HS
bounds ( , , , )U L U LHS HS HS HSK K , SC value ( , )SC SCK , we obtain
the specific results in Tables 3.3 and 3.4.
Table 3.3: Estimates for area elastic modulus of square
Square C11 C12 C33
eff
V R HSK K K K
Ag 123 92 45.3 107.5
Ca 16 8 12 12
Cu 169 122 75.3 145.5
Ni 247 153 122 200
Pb 123 92 45.3 45.1
Li 13.6 11.4 9.8 12.5
14
Table 3.4: Estimates for shear elastic modulus of square
Comment of Table 3.3, 3.4: Our area elastic modulus of square equals to V-R, HS bounds, our shear elastic
modulus is better than previos ones, proving that the thesis results are completely reasonable.
3.1.3. Tetragonal 2D
a. Estimate for area elastic modulus
Our third order estimates for tetragonal 2D made from circular cell crystals
ir ir
,U Lc cK K :
ir ir
L eff Uc cK K K , ir *,
L
c K R RK P , ir *,
U
c K V VK P ,
11 22 12
0
11 2
0
2 33
2 4
* * *
*
*
( , )K
C C C
P
C C C
.
(3.27)
where:
0
0
0
0
2
*
K
K
,
2
*
V V
V V
V
K
K
,
2
*
R R
R
R R
K
K
, 11 11 0
* *C C ,
12 12 0
* *C C , 22 22 0
* *C C , 33 33
* *C C .
Square R
L
HS
L SC
U
U
HS V
LAS
HSS
VRS
Ag 23.1 25.17 25.63 25.76 25.94 26.36 30.40 0.61 2.31 13.64
Ca 6.0 6.462 6.545 6.563 6.60 6.667 8.0 0.41 1.56 14.29
Cu 35.82 39.41 40.26 40.51 40.89 41.64 49.40 0.77 2.75 15.94
Ni 67.86 72.43 73.24 73.41 73.71 74.42 84.50 0.32 1.35 10.92
Pb 5.92 6.772 7.04 7.152 7.302 7.556 9.250 1.82 5.47 21.95
Li 1.98 2.49 2.73 2.90 3.19 3.41 5.45 7.77 15.59 46.7
15
b. Estimate for shear elastic modulus
Our estimates for circular cell crystals ir ir ,
U L
c c :
L eff UC C , *,
L
C R RP , *,
U
C V VP ,
1
11 22
0
11 22 12 3
12
3
2 4 1
2
* * *
*
* **
),(
C C C
P
C C C C
.
(3.28)
c. Result and comparison
Calculating for tetragonal 2D in Table 3.5, comparing with V-R
bounds, we obtain the similar results in Tables 3.6 and 3.7.
Table 3.5: Elastic constants of some 2D tetragonal crystals
Table 3.6: Estimates for area elastic modulus of tetragonal 2D
Tetragonal 2D C11 C12 C22 C33
BaTiO3 275 151 165 54.3
ZrSiO4 73.5 -5.4 46 13.8
Sn 75.3 44.1 95.5 21.9
TiO2 273 149 484 125
In 44.5 40.5 44.4 6.5
Hg2Cl2 18.8 15.6 80.1 85.3
SnO2 262 156 450 103
Urea 21.7 24 53.2 6.26
Crystal VK
UK
LK RK
VR
kS
LA
kS
BaTiO3 185.5 173.78 173.083 163.58 6.279 0.201
ZrSiO4 27.175 26.0262 26.0009 25.724 2.743 0.049
Sn 64.75 63.9885 63.9843 63.515 0.963 0.003
TiO2 263.75 248.078 247.672 239.501 4.818 0.082
In 42.475 42.4749 42.4749 42.4747 44.10
53.10
Hg2Cl2 32.525 24.4991 22.3135 18.6487 27.12 4.669
Urea 30.725 25.2314 24.7086 21.5033 17.66 1.047
16
Table 3.7: Estimates for shear elastic modulus of tetragonal 2D
3.2. 3D crystals
Similarly calculate for 3D tetragonal, we get the below results.
3.2.1. Bulk elastic modulus
2
11 332 2
U AC AC A CAC
V K K R pq KK k C C S C
(3.34)
1
2
1 1
11 33
1
2 2
9
L AC AC A CAC
R K K V pq KK k C C C C
(3.39)
3.2.2. Shear elastic modulus
1 1
eff 2
,
ax min 4M M MA AC CACV R pq V Mpq V Mpq
bf g
m S C C
(3.44)
1 1
eff 1 1 2
,
min max 4M MA CAR V pq V Mpq
f g b
C C
1
4M CACV MpqC
(3.48)
3.2.3. Result and comparison
Calculating for data in Table 3.8, comparing with V-R, HS,
PDC bounds ( , , , )u l u lS S S Sk k , SC value, we obtain the specific
results in Tables 3.9 and 3.10.
Table 3.8: Elastic constants of some 3D tetragonal crystals
Tinh thể C11 C33 C12 C13 C44 C66
BaTiO3 275 165 179 151 54.3 113
ZrSiO4 73.5 46 9 -5.4 13.8 16
Sn 75.3 95.5 61.6 44.1 21.9 23.7
TiO2 273 484 176 149 125 194
In 44.5 44.4 39.5 40.5 6.5 12.2
Hg2Cl2 18.8 80.1 173 15.6 85.3 12.6
Crystal V
U
C
L
C R
VRS
LAS
BaTiO3 44.4 40.924 40.7742 38.997 6.479 0.183
ZrSiO4 23.187 20.176 20.081 19.066 9.752 0.236
Sn 21.275 21.1092 21.1087 21.046 0.541 0.001
TiO2 119.87 115.821 115.744 113.65 2.663 0.033
In 4.2375 3.5787 3.49441 3.0294 16.62 1.192
Hg2Cl2 51.112 29.292 24.4153 17.42 49.15 9.08
17
Table 3.9: Estimates for bulk elastic modulus of tetragonal 3D
Table 3.10: Estimates for shear elastic modulus of tetragonal 3D
Comment of Table 3.9 and 3.10: Similar to the comments of 2D case, in addition, when f1=g1=0: the new
estimates of the thesis equal to PDC bounds, which proves that this result is completely convincing.
Tinh
thể R
k
L
HSk
Lk
L l
S Sk k
SCk
U u
S Sk k
Uk UHSk Vk
LA
kS
HS
kS
VR
kS
BaTiO3 162.82 174.3 177.6 178.2 178.8 179.3 179.3 181.9 186.33 0.476 2.134 6.733
ZrSiO4 19.056 19.6 19.74 19.75 19.78 19.82 19.82 20.1 21.04 0.202 1.259 4.948
Sn 606.200 606.315 606.325 60.633 60.635 60.637 606.338 606.341 606.342 0.001 0.002 0.012
TiO2 210.61 213.4 214.7 214.7 215.0 215.1 215.2 216.0 219.78 0.116 0.605 2.131
In 41.600 41.601 41.605 41.608 41.612 41.615 41.617 41.619 41.620 0.014 0.022 0.024
Hg2Cl2 17.8 18.3 18.82 18.82 19.61 19.99 20.24 21.3 22.3 3.635 7.575 11.22
Tinh thể R
L
HS
L
L l
S S
SC
U u
S S
U UHS V
LAS
HSS
VRS
BaTiO3 47.77 51.4 53.28 53.48 53.80 54.08 54.12 55.5 59.92 0.782 3.835 11.282
ZrSiO4 18.37 19.5 19.71 19.71 19.77 19.84 19.85 20.3 21.71 0.354 2.01 8.3333
Sn 15.67 17.6 18.35 18.43 18.56 18.61 18.61 18.8 19.92 0.703 3.297 11.942
TiO2 101.2 111.4 114.7 115.0 115.7 116.1 116.1 118.1 125.9 0.607 2.919 10.876
In 3.716 4.4 4.770 4.770 4.90 4.980 4.990 5.3 5.900 2.254 9.278 22.712
Hg2Cl2 2.930 4.9 6.184 6.407 7.655 8.057 8.057 9.0 10.54 13.15 29.5 56.496
18
3.3. Conclusion of chapter 3
Applying the estimates built in chapter 2, PhD has achieved:
Construct specific evaluation formulae for some 2D and 3D
crystals; Calculate for some actual polycrystalline materials and
compare with V-R, HS, PCDC, SC.
These results are reasonable and better than previous ones.
CHAPTER 4: APPLICATION OF FINITE ELEMENT
METHOD AND COMPARISON WITH ESTIMATES FOR
SOME SPECIFIC POLYCRYSTALLINE MODELS
This chapter uses FEM to simulate the effective elastic
coefficients of 2D polycrystalline, calculates for some specific
crystals and compares with VR, HS, SC, new estimates of the
thesis.
4.1. Begining fomulas:
Macro elastic moduli effijklC are determined by general formula:
ij ijeffij 1 kl klkl y y
Y
C e y e dy
Y
C
(4.1)
Y
is unit cell size;
ij
e is unit test train; yC is local
elasticity that varies arccording to the location in the unit
cell;
ij is characteristic displacement corresponding to ije .
In the basic coordinate system, Hooke's law:
eff :σ C ε (4.3)
4.2. FEM calculate process
4.2.1. Mesh RVE
Denote: nxn is RVE size, mxm is mesh size (n: number of
hexagonals per RVE size, m: number of elements per hexagonal
size, 8m ); Grid element is quadrangle, each element has 4
19
nodes, each node has 2 degrees of freedom. Thus, RVE 4 4
has 8 8 4 4 1.024 elements, RVE 64 64 has
8 8 64 64 262.144 elements, this is not a small
number, so we need much time and mainframe resources.
RVE 4x4 RVE 8x8 RVE 16x16 RVE 32x32 RVE 64x64
Figure 4.1: Mesh RVE
4.2.2. Determine matrices, vectors
RVE is divided into eN quadrilateral elements with R
nodes, each element has r nodes, each node has s degrees of
freedom. To calculate the elastic coefficients, we select the
displacement as variable, the stress and the deformation will be
determined after knowing the nodal displacements. q is the
overall node displacement,
e
q is the element nodal
displacement,
e
L is the element's positioning matrix, K
is
the overall stiffness matrix, P
is the load vector. The total
potential has form:
1
1
2
eN
T T T
e e e ee e
e
q L K L q q L P
(4.10)
Applying Lagrange's principle about equilibrium conditions of
the whole system at the nodes, we have:
K q P (4.13)
4.2.3. Determine the elastic moduli values
With average stress and strain, from (4.3) we calculate the
bulk and shear elastic moduli, respectively:
20
11 22
eff
11 222
V
V
dx
k
dx
,
12
12eff
12 12
2 2
V
V
dx
dx
(4.14)
Attaching each crystal to a rotation angle φ,
( 0 2 ). In the calculation program, select the "random"
command for φ to ensure randomization in the direction of the
crystal. Periodic boundary conditions of the problem:
0 U x d ε d U x (4.16)
d is the boundary distance between two adjacent elements, U is
the displacement of the element.
4.3. Applying to specific symetric crystals
Calculating for orthorhombic 2D, square, tetragonal 2D with
hexagonal shape as discussed in chapter 3.
4.4. Numerical simulation and comparison
Choosing randomly 20 rotation angles, calculation time for each
case (corresponding to each figure)) is about 18 hours.
4.4.1. Results for square
Figure 4.3: FE result of area
elastic modulus for square Cu,
0.77%S , convergence RVE
size 64x64
Figure 4.4: : FE result of shear
elastic modulus for squar Pb,
1.82%S , convergence RVE
size 32x32
21
4.4.2. Results for orthorhombic 2D
Figure 4.6: FE result of area
elastic modulus S(1)
Figure 4.10: FE result of shear
elastic modulus S(3)
4.4.3. Results for tetragonal 2D
Figure 4.12: FE result of shear
elastic modulus Hg2Cl2
Figure 4.15: FE result of shear
elastic modulus In
General comments of FE results:
FE results scatter around V-R, HS, SC, thesis, proving that
the results of FEM are completely reasonable.
When the number of test samples is larger, FE values tend to
focus around the analytic values, that is, when the number of
crystal directions is increased, the macroscopic properties of
polycrystals are shown more clearly.
22
RVE size is increased, FE results fall in the better bounds.
However, time and computer configuration are major obstacles.
Crystals with large scatter parameters have convergence
speed faster than crystals with the small ones.
When considering the relationship between the convergence
RVE size and the scatter parameter, we should compare the
crystals in the same elastic property.
4.5. Conclusion of chapter 4
Using FEM to simulate effective elastic moduli of 2D
random polycrystals and compare with the analytical results, the
FEM results converge to the thesis's evaluation with RVE
64x64 crystals; This FEM used is not new, but the calculation
approach for the specific elastic moduli of the thesis is new, can
be used to
Các file đính kèm theo tài liệu này:
- estimates_and_simulations_for_the_elastic_moduli_of_random_p.pdf