Giáo án môn Toán 10 - Trường PT cấp 2 - 3 Lương Thế Vinh

I. MỤC TIÊU :

1.Về kiến thức:Giúp học sinh

- Nắm vững các khái niệm về: phương trình một ẩn, đđiều kiện của phương trình, phương trình nhiều ẩn và phương trình chứa tham số.

- Biết xác định điều kiện của phương trình.

2.Về kĩ năng: Giúp học sinh

-Giải được một số phương trình đơn giản;

-Biết kiểm tra xem một số cho trước có là nghiệm của phương trình đã cho hay không;

- Biết xác định điều kiện của phương trình.

II. PHƯƠNG PHÁP: Thuyết trình, vấn đáp, đặt vấn đề.

III.TIẾN TRÌNH TIẾT DẠY:

1.Ổn định tổ chức:Kiểm tra sỉ số lớp học.

2.Kiểm tra bài cũ:

-H1: Thế nào là phương trình bậc nhất ? Lấy ví dụ.

-H2: Thế nào là phương trình bậc hai ? Lấy ví dụ.

 

doc119 trang | Chia sẻ: vudan20 | Lượt xem: 285 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Giáo án môn Toán 10 - Trường PT cấp 2 - 3 Lương Thế Vinh, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
iệm ngoại lai mà khơng cần phải thử lại nghiệm. HS:Theo dõi và ghi nhận cách giải của GV. 2. Phương trình chứa ẩn dưới dấu căn: Ví dụ 2: Giải phương trình: x – 3 = ĐK : + Với x = 1, ta cĩ : Vế trái : 1 – 3 = – 2 Vế phải: x = 1 khơng là nghiệm của phương trình. + Với x = 8 , ta cĩ : Vế trái : 8 – 3 = 5 Vế phải: x = 8 là nghiệm của phương trình. ậy nghiệm của phương trình là x = 8 4.Củng cố kiến thức: -Cho HS nêu lại cách giải hai dạng phương trình trên. 5.Dặn dị: -Học thuộc bài và làm các bài tập SGK trang 62, 63. Đọc bài dọc thêm / SGK trang 61. Tuần:.13 Tiết:25 ND: §1 : PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI ( tiếp theo ) I.MỤC TIÊU : 1.Về kiến thức:Giúp học sinh -Củng cố về giải phương trình chứa ẩn trong dấu giá trị tuyệt đối và phương trình chứa ẩn dưới dấu căn. 2.Về kĩ năng: Giúp học sinh -Giải được các phương trình chứa ẩn trong dấu giá trị tuyệt đối và phương trình chứa ẩn dưới dấu căn. 3.Về tư duy và thái độ: - Rèn luyện tính cẩn thận trong tính tốn và trong các phép biến đổi tương đương. -Học sinh cần phải biết hợp tác,sáng tạo trong khi học.Biết quy lạ thành quen. II.PHƯƠNG PHÁP: Thuyết trình, vấn đáp, đặt vấn đề, PP luyện tập III.TIẾN TRÌNH TIẾT DẠY: 1.Ổn định tổ chức:Kiểm tra sỉ số lớp học. 2.Kiểm tra bài cũ: -H1: Nêu cơng thức nghiệm của phương trình bậc hai một ẩn. -H2: Nêu cơng thức nghiệm thu gọn của phương trình bậc hai một ẩn. 3.Bài mới: HOẠT ĐỘNG CỦA GV VÀ HS NỘI DUNG GV:Cho HS nhận dạng các phương trình. HS:Nhận dạng phương trình. GV:Nhắc nhở HS chọn phương pháp giải cho phù hợp với từng phương trình. GV:Yêu cầu HS giải các phương trình. GV:Gọi 4 HS lên bảng trình bày. HS:- Giải phương trình: a) b) c) d) GV:Theo dõi, giúp đỡ khi HS gặp khĩ khăn. GV:Nhắc nhở HS biết loại nghiệm ngoại lai. HS:So sánh điều kiện. GV:Cho HS nhận xét. HS:Đưa ra nhận xét. GV:Nhận xét, uốn nắn chung. Bài tập 6: Giải các phương trình: a) ()2 = (2x + 3)2 5x2 – 24x – 5 = 0 x1 = 5 ; x2 = ( thoả mãn) b) (2x – 1)2 = (5x + 2)2 7x2 + 8x + 1 = 0 x1=– 1;x2 = ( thoả mãn) c) ; ĐK: + Nếu , ta cĩ phương trình: x2 – 1 = –6x2 + 11x – 3 7x2 – 11x + 2 = 0 d) . + Nếu , ta cĩ phương trình: x2 + 3x – 4 = 0. x = 1 (thoả mãn), x = – 4 (khơng thoả mãn) + Nếu x < , ta cĩ phương trình: x2 + 7x + 6 = 0. x = – 1 ( khơng thoả mãn); x = – 6 ( thoả mãn) Vậy nghiệm của phương trình là: x = 1 ; x = – 6. GV:Cho HS nhận dạng các phương trình. HS:Nhận dạng phương trình. GV:Yêu cầu HS giải các phương trình. GV:Gọi 4 HS lên bảng trình bày. HS:Giải phương trình: a) b) c) d) GV:Theo dõi, giúp đỡ khi HS gặp khĩ khăn. GV:Nhắc nhở HS biết loại nghiệm ngoại lai. HS:So sánh điều kiện. GV:Cho HS nhận xét. HS:Đưa ra nhận xét. GV:Nhận xét, uốn nắn chung. Bài tập 7: Giải các phương trình: a)ĐK: 5x + 6 = (x – 6)2 x2 – 17x + 30 = 0. x = 15 (nhận) ; x = 2 (loại) Vậy : x = 15 b); ĐK: 3 – x = x + 3 + 2 – x = x2 – x – 2 = 0 x = – 1 (nhận) ; x = 2 (loại) Vậy : x = – 1 c); ĐK: 2x2 + 5 = x2 + 4x + 4 x2 – 4x + 1 = 0 ( thoả mãn ) d) ; ĐK: 4x2 + 2x + 10= 9x2 + 6x + 1 5x2 + 4x – 9 = 0 x1 = 1 ( thoả mãn );và x2 = (khơng thoả mãn ) Vậy : x = 1 GV:Cho HS đọc yêu cầu của bài tập. HS:Đọc bài tập. GV:Tìm m ta cĩ thể dùng kiến thức nào ? GV:Hướng dẫn HS lập các phương trình. HS:Lập 3 phương trình với các ẩn x1; x2 và m. GV:Hướng dẫn HS rút và thế vào phương trình để đưa về phương trình một ẩn m. HS:Biến đổi các phương trình. Giải phương trình tìm m. GV:Gọi HS tìm m và x1; x2 HS:Tìm x1; x2 trong các trường hợp. GV:Nhận xét chung. Bài tập 8: Phương trình: 3x2 – 2(m + 1)x + 3m – 5 = 0 Giải: Gọi x1, x2 là nghiệm của phương trình. Theo định lý Vi – ét , ta cĩ: và Kết hợp với giả thiết x1 = 3x2 , nên ta cĩ phương trình: m2 – 10m + 21 = 0 m = 3 ; m = 7. + Với m = 3, ta cĩ : x1 = 2 ; x2 = + Với m = 7, ta cĩ : x1 = 4 ; x2 = 4.Củng cố: -Cho HS nhắc lại kiến thức trọng tâm. 5.Kiểm tra 15’: Đề số 1: Cho phương trình a) Giải phương trình khi m = 3; (4đ) b) Giải và biện luận phương trình đã cho theo tham số m?( 6đ ) Đề số 2: Cho phương trình a) Giải phương trình khi m = -2; (4đ) b) Giải và biện luận phương trình đã cho theo tham số m?( 6đ ) 6.Dặn dị: -Học thuộc bài và xem lại các bài tập đã chữa. -Đọc trước bài mới. Tuần:13 Tiết:26 ND: §3 : PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN I.MỤC TIÊU : 1.Về kiến thức:Giúp học sinh - Ơn tập về khái niệm phương trình bậc nhất hai ẩn và hệ phương trình bậc nhất hai ẩn. - Biết xác định cặp giá trị (x ; y) là nghiệm của phương trình bậc nhất hai ẩn và hệ phương trình bậc nhất hai ẩn. 2.Về kĩ năng: Giúp học sinh -Nhận biết được phương trình bậc nhất hai ẩn cĩ vơ số nghiệm và biết biểu diễn hình học tập nghiệm của phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. -Biết giải hệ phương trình theo các cách đã học ở bậc THCS. 3.Về tư duy và thái độ: -Học sinh cần phải biết hợp tác,sáng tạo trong khi học.Biết quy lạ thành quen. II.PHƯƠNG PHÁP: Thuyết trình, vấn đáp, đặt vấn đề. III.TIẾN TRÌNH TIẾT DẠY: 1.Ổn định tổ chức:Kiểm tra sỉ số lớp học. 2.Kiểm tra bài cũ: -H1:Giải phương trình: -H2:Giải phương trình: -H3: Nêu các cách giải hệ phương trình. 3.Bài mới: HOẠT ĐỘNG CỦA GV VÀ HS NỘI DUNG GV:Giới thiệu khái niệm phương trình bậc nhất hai ẩn. HS:Phát biểu và ghi khái niệm. GV:Đưa ra các ví dụ và yêu cầu HS xác định các giá trị a, b, c. HS:Ghi ví dụ. HS:Xác định các hệ số a, b, c ở các phương trình. GV:Thế nào là nghiệm của phương trình ? HS:Nêu khái niệm nghiệm của phương trình. GV:Yêu cầu HS thực hiện 1. HS:Trả lời 1. GV:Gọi HS lên bảng trình bày. GV:Nhận xét. I- ƠN TẬP VỀ PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN: 1. Phương trình bậc nhất hai ẩn: a) Khái niệm : ( SGK) Dạng : ax + by = c b) Ví dụ : •3x – y = 2 (a = 3; b = – 1; c = 2) • –2x = 6 (a = –2 ; b = 0 ; c = 6) • 5y = –2 (a = 0 ; b = 5 ; c = –2) GV:Trong trường hợp a, b đồng thời bằng 0, thì số nghiệm của phương trình sẽ như thế nào? Nĩ sẽ phụ thuộc vào hệ số nào ? HS:Đưa ra dự đốn về nghiệm của phương trình. GV:Khi b 0, yêu cầu HS rút tìm y? HS:Phụ thuộc vào hệ số c. • GV:Giới thiệu tập nghiệm của phương trình bậc nhất hai ẩn. GV:Yêu cầu HS thực hiện 2. HS:Xác định tập nghiệm. GV:Gọi HS vẽ hình. HS:Vẽ đường thẳng 3x – 2y = 6 trên Oxy. GV:Nhận xét. c) Chú ý : ( SGK) GV:Giới thiệu khái niệm hệ hai phương trình bậc nhất hai ẩn. HS:Đọc và ghi khái niệm. GV:Lấy ví dụ. GV:Cĩ mấy cách để giải hệ hai phương trình bậc nhất hai ẩn? HS:Nêu các cách giải hệ phương trình. GV:Yêu cầu HS áp dụng các cách để giải hệ phương trình ở 3. GV:Gọi HS giải hệ phương trình theo phương pháp thế. HS:Giải hệ phương trình theo phương pháp thế. GV:Gọi HS giải hệ phương trình theo phương pháp cộng đại số. Nhận xét. HS:Giải hệ phương trình theo phương pháp cộng đại số. GV:Gọi HS giải hệ phương trình và rút ra nhận xét về tập nghiệm. Nhận xét. HS:Giải hệ phương trình HS:Đưa ra nhận xét. 2. Hệ hai phương trình bậc nhất hai ẩn. a) Khái niệm: (SGK) Dạng : b) Ví dụ1: Cách 1: Phương pháp thế. Cách 2: Phương pháp cộng đại số. Ví dụ 2: giải hệ phương trình: Vậy hệ phương trình vơ nghiệm. 4. Củng cố: -Cho HS nhắc lại các khái niệm về phương trình và hệ phương trình. -Giải bài tập 1/ SGK trang 68. 5.Dặn dị: -Học thuộc bài. -Làm các bài tập 2, 3, 4 / SGK trang 68. Tuần:14 Tiết: 27 ND: §3 : PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN ( tiếp theo ) I.MỤC TIÊU : 1.Về kiến thức:Giúp học sinh -Nắm vững định nghĩa phương trình bậc nhất ba ẩn và hệ ba phương trình bậc nhất ba ẩn. 2.Về kĩ năng: Giúp học sinh -Biết giải hệ ba phương trình bậc nhất ba ẩn bằng phương pháp Gau – xơ . 3.Về tư duy và thái độ: -Rèn luyện tính cẩn thận trong tính tốn và trong biến đổi tương đương. -Học sinh cần phải biết hợp tác,sáng tạo trong khi học.Biết quy lạ thành quen. II.PHƯƠNG PHÁP: Thuyết trình, vấn đáp, đặt vấn đề. III.TIẾN TRÌNH TIẾT DẠY: 1.Ổn định tổ chức:Kiểm tra sỉ số lớp học. 2.Kiểm tra bài cũ: -H1: Cặp (2 ; 0) cĩ phải là nghiệm của phương trình 2x – 3y = 4 khơng ? -H2: Giải hệ phương trình: 3.Bài mới: HOẠT ĐỘNG CỦA GV VÀ HS NỘI DUNG GV:Giới thiệu phương trình bậc nhất ba ẩn. HS:Đọc và ghi khái niệm GV:Lấy các ví dụ và yêu cầu HS xác định các hệ số a, b, c, d trong từng phương trình. HS:Ghi ví dụ và xác định các hệ số a, b, c, d trong từng phương trình. GV:Nghiệm của phương trình bậc nhất ba ẩn cĩ dạng như thế nào? HS:Bộ ba số (x; y; z) II- HỆ BA PHƯƠNG TRÌNH BẬC NHẤT BA ẨN: 1. Phương trình bậc nhất ba ẩn: a) Khái niệm: (SGK) Dạng : ax + by + cz = d. b) Ví dụ: x + 2y – 3z = 5 ( a = 1; b = 2; c = – 3; d = 5) 5y + 2z = 0. ( a = 0; b = 5; c = 2; d = 0) 3z = 15 ( a = 0; b = 0; c = 3; d = 15) GV:Giới thiệu khái niệm hệ ba phương trình bậc nhất ba ẩn. HS:Đọc và ghi khái niệm. GV:Thế nào là nghiệm của hệ phương trình? HS:Bộ ba số (x0; y0; z0) nghiệm đúng cả ba phương trình của hệ. GV:Giới thiệu hệ phương trình dạng tam giác. HS:Ghi ví dụ. GV:Đưa ra ví dụ về hệ ba phương trình bậc nhất ba ẩn. HS:Ghi ví dụ. 2. Hệ ba phương trình bậc nhất ba ẩn. a) Khái niệm: (SGK) Dạng : b) Ví dụ: (1) (2) GV:Để giải hệ ba phương trình bậc nhất ba ẩn dạng tam giác, ta giải như thế nào? HS:Đưa ra cách giải. GV:Gọi HS trình bày. HS:Giải hệ phương trình. HS:Nhận xét và so sánh kết quả. GV:Theo dõi, giúp đỡ HS gặp khĩ khăn. GV:Nhận xét. GV:Để giải hệ ba phương trình bậc nhất ba ẩn khơng là dạng tam giác, ta giải như thế nào? HS:Suy nghĩ tìm giải pháp. GV:Hướng dẫn HS khử ẩn x ở phương trình thứ hai và khử ẩn x; y ở phương trình thứ ba. Đưa về hệ phương trình dạng tam giác. HS:Biến đổi hệ phương trình về dạng tam giác theo hướng dẫn của GV. GV:Gọi HS giải hệ phương trình dạng tam giác sau khi biến đổi. HS:Giải hệ phương trình. GV:Nhận xét. 3. Cách giải hệ phương trình: Vậy nghiệm của hệ phương trình là: (x; y; z) = Vậy nghiệm của hệ phương trình là: (x; y; z) = (1; 2; – 2 ) 4.Củng cố: -Cho HS nhắc lại cách giải hệ ba phương trình bậc nhất ba ẩn. 5.Dặn dị: -Học thuộc bài, đọc bài đọc thêm. -Làm các bài tập 5, 6, 7/ SGK trang 68, 69. Tuần:14 Tiết:28 ND: §3 : PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN ( tiếp theo ) I.MỤC TIÊU : 1.Về kiến thức:Giúp học sinh -Củng cố các kiến thức về hệ hai phương trình bậc nhất hai ẩn và hệ ba phương trình bậc nhất ba ẩn. -Củng cố phương pháp Gau – xơ và giải bài tốn bằng cách lập hệ phương trình. 2.Về kĩ năng: Giúp học sinh -Biết vận dụng linh hoạt các phương pháp để giải hệ phương trình. 3.Về tư duy và thái độ: -Rèn luyện tính cẩn thận trong tính tốn, biến đổi tương đương và lập luận logic trong giải tốn. -Học sinh cần phải biết hợp tác,sáng tạo trong khi học.Biết quy lạ thành quen. II.PHƯƠNG PHÁP: Thuyết trình, vấn đáp, đặt vấn đề. III.TIẾN TRÌNH TIẾT DẠY: 1.Ổn định tổ chức:Kiểm tra sỉ số lớp học. 2.Kiểm tra bài cũ: -H1: Nêu các phương pháp giải hệ phương trình ? -H2: Nêu các bước giải bài tốn bằng cách lập hệ phương trình? 3.Bài mới : HOẠT ĐỘNG CỦA GV VÀ HS NỘI DUNG GV:Yêu cầu HS giải các hệ phương trình. GV:Gọi HS trình bày câu a. HS:Giải hệ phương trình: GV:Gọi HS trình bày câu b. HS:Giải hệ phương trình: GV:Nhận xét. GV:Hướng dẫn HS biến đổi hệ phương trình về hệ số nguyên. HS:Khử mẫu theo hướng dẫn của GV. GV:Gọi HS trình bày câu c. HS:Giải hệ phương trình: GV:Gọi HS trình bày câu d. HS:Giải hệ phương trình: GV:Gọi HS nhận xét. HS:Nhận xét. GV:Đánh giá, nhận xét chung. Bài tập 2: Giải các hệ phương trình: a) b) c) d) GV:Gọi HS đọc kỹ bài tốn. HS:Đọc bài tốn. HS:Tĩm tắt bài tốn. GV:Yêu cầu HS tĩm tắt bài tốn. HS:Tĩm tắt bài tốn. GV:Hướng dẫn HS chọn ẩn và đặt điều kiện cho ẩn. HS:Chọn ẩn. HS:Đặt điều kiện cho ẩn. GV:Hướng dẫn HS thiết lập từng phương trình dựa vào các dữ kiện bài tốn đưa ra. HS:Lập phương trình đối với số quả Vân mua. Lập phương trình đối với số quả Lan mua. GV:Gọi HS trình bày lời giải bài tốn. HS:Trình bày lời giải HS:Đưa ra nhận xét. GV:Theo dõi, giúp đỡ HS gặp khĩ khăn. GV:Gọi Hs nhận xét. GV:Nhận xét chung. Bài tập 3: Lời giải Gọi giá tiền mỗi quả quýt và mỗi quả cam lần lượt là x và y ( x, y > 0) Vân mua 10 quả quýt, 7 quả cam với giá tiền là 17800 đồng nên, ta cĩ phương trình: 10x + 7y = 17800 Lan mua 12 quả quýt, 6 quả cam với giá tiền là 18000 đồng nên, ta cĩ phương trình: 12x + 6y = 18000 => 2x + y = 3000 Ta cĩ hệ phương trình: Vậy giá mỗi quả quýt là 800 đồng , giá mỗi quả cam là 1400 đồng GV:Yêu cầu HS giải hệ phương trình bằng phương pháp Gau – xơ . GV:Gọi HS giải hệ phương trình câu a. HS:Giải hệ phương trình: GV:Gọi HS giải hệ phương trình câu b. HS:Giải hệ phương trình: GV:Theo dõi, giúp đỡ HS gặp khĩ khăn. GV:Gọi HS nhận xét. HS:Đưa ra nhận xét. GV:Nhận xét, sửa sai Bài tập 5: Giải các hệ phương trình: a) Vậy : (x ; y ; z) = (1 ; 1 ; 2) b) Vậy : (x ; y ; z) = 4.Củng cố: -Cho HS nhắc lại các kiến thức trọng tâm vừa áp dụng . 5.Dặn dị: -Học thuộc bài và làm các bài tập. -Ơn tập chương III Tuần:15 Tiết:29 ND: THỰC HÀNH GIẢI TỐN TRÊN MÁY TÍNH BỎ TÚI I. MỤC TIÊU 1. Về kiến thức Củng cố cách giải phương trình, hệ phương trình bậc nhất nhiều ẩn. 2.Về kĩ năng: Sử dụng MTBT thành thạo để giải hệ phương trình bậc nhất 2 ẩn. Biết sử dụng MTBT để giải hệ phương trình bậc nhất 3 ẩn. 3.Về tư duy và thái độ: Rèn luyện tính cẩn thận, chính xác. II. Phương pháp, phương tiện Phương pháp: Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện: Sách giáo khoa, sách giáo viên, sách tham khảo. Tranh vẽ. III. Tiến trình bài dạy 1. Ổn định tổ chức 2. Kiểm tra bài cũ. Kết hợp trong bài. 3. Bài mới Hoạt động 1: Sử dụng MTBT giải hệ phương trình bậc nhất 2 ẩn Hoạt động của Giáo viên Nội dung GV: Chia nhĩm sử dụng MTBT để giải hệ phương trình bậc nhất hai ẩn. HS: Thực hiện và trình bày kết quả GV:Cho 4 HS giải bằng tay để đối chiếu. HS:a) b) c) d) Bài 1: Giải các phương trình: a) b) c) d) ĐA: a) b) c) d) Hoạt động 2: Sử dụng MTBT giải hệ phương trình bậc nhất 3 ẩn GV:Chia nhĩm sử dụng MTBT để giải hệ phương trình bậc nhất ba ẩn. HS: Thực hiện và trình bày kết quả GV:Cho 2 HS giải bằng các phương pháp khác để đối chiếu kết quả. HS: a) b) Bài 2: Giải các phương trình sau: a) b) ĐA: a) b) Hoạt động 3: Luyện kỹ năng sử dụng MTBT để giải hệ phương trình GV:Cho HS sử dụng MTBT để giải và báo kết quả. HS: Thực hiện và trình bày kết quả a) b) c) d) Bài 3: Giải các hệ phương trình: a) b) c) d) 4. Củng cố · Nhấn mạnh: – Khi sử dụng MTBT để giải hệ phương trình, thường chỉ cho nghiệm gần đúng. – Chú ý thứ tự các hệ số x –> y –> z 5. Hướng dẫn về nhà Lập đề cương ơn tập chương III. Làm bài tập ơn chương III. Tuần:16 Tiết : 30 ND: BÀI TẬP ƠN TẬP CHƯƠNG III I. MỤC TIÊU 1. Về kiến thức - Củng cố các khái niệm đkxđ, pt tương đương, pt hệ quả, hệ hai pt bậc nhất hai ẩn. - Nắm vững cách giải phương trình qui về phương trình bậc nhất, bậc hai. - Nắm được cách giải hệ pt bậc nhất hai ẩn. 2.Về kĩ năng: - Giải thành thạo phương trình qui về phương trình bậc nhất, bậc hai. - Biết vận dụng định lí Viet để giải tốn. - Giải thành thạo hệ phương trình bậc nhất hai ẩn. - Biết giải hệ pt bậc nhất ba ẩn bằng pp Gause. 3.Về tư duy và thái độ: - Rèn luyện tính cẩn thận, chính xác. - Luyện tư duy linh hoạt thơng qua việc biến đổi phương trình. II. Phương pháp, phương tiện Phương pháp Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện Sách giáo khoa, sách giáo viên, sách tham khảo. Tranh vẽ. III. Tiến trình bài dạy 1. Ổn định tổ chức 2. Kiểm tra bài cũ: Kết hợp trong bài 3. Bài mới Hoạt động 1: Củng cố cách tìm đkxđ, xét pt tương đương Hoạt động của Giáo viên Nội dung GV: Nêu ĐKXĐ của các pt. Từ đĩ thực hiện các phép biến đổi phương trình? HS: Làm bài tập theo nhĩm và trình bày kết quả. a) ĐKXĐ: x ≥ 5 Tập nghiệm S = {6} b) ĐKXĐ: x = 1 Tập nghiệm S = Ỉ c) ĐKXĐ: x > 2 Tập nghiệm S = {2} d) ĐKXĐ: x Ỵ Ỉ Tập nghiệm S = Ỉ Bài 1: Giải các phương trình sau: a) b) c) d) 3 + = 4x2 – x + Hoạt động 2: Luyện kỹ năng giải pt qui về pt bậc nhất, bậc hai GV: Nêu cách biến đổi? Cần chú ý các điều kiện gì? HS: Làm bài tập theo nhĩm và trình bày kết quả. a) Qui đồng mẫu. ĐK: 2x – 1 ≠ 0 –> S = b) Bình phương 2 vế. ĐK: x – 1 ≥ 0 –> S = c) Dùng định nghĩa GTTĐ. S = {2, 3} d) S = Bài 2: Giải các phương trình sau: a) b) = x– 1 c) = 3 – 2x d) Hoạt động 3: Luyện kỹ năng giải hệ pt bậc nhất hai ẩn, ba ẩn GV: Nêu cách giải? · Cho mỗi nhĩm giải 1 hệ pt HS: Làm bài tập theo nhĩm và trình bày kết quả. a) b) c) d) Bài 3 Giải các hệ phương trình: a) b) c) d) Hoạt động 4: Luyện kỹ năng giải tốn bằng cách lập hệ phương trình GV: Nêu các bước giải? HS: Suy nghĩ, thảo luận nhĩm. Trả lời Gọi t1 (giờ) là thời gian người thứ nhất sơn xong bức tường. t2 (giờ) là thời gian người thứ hai sơn xong bức tường. ĐK: t1, t2 > 0 Û Bài 4: Hai cơng nhân cùng sơn một bức tường. Sau khi người thứ nhất làm được 7 giờ và người thứ hai làm được 4 giờ thì họ sơn được bức tường. Sau đĩ họ cùng làm việc với nhau trương 4 giờ nữa thì chỉ cịn lại bức tường chưa sơn. Hỏi nếu mỗi người làm riêng thì sau bao nhiêu giờ mỗi người mới sơn xong bức tường? 4. Củng cố · Nhấn mạnh: – Cách giải các dạng tốn. – Cách xét các điều kiện khi thực hiện các phép biến đổi phương trình 5. Hướng dẫn về nhà Làm các bài tập cịn lại. Đọc trước bài "Bất đẳng thức" Tuần 18: NS: 2/12/2010 ND:17/12/2010 Tiết32: KIỂM TRA HỌC KÌ I Đề 1: Câu 1: (2điểm) Giải các phương trình sau: a) b) Câu 2: (1,5điểm) Cho các tập hợp số: Hãy tìm các tập hợp sau: và biểu diễn trên trục số? Câu 3: (2,5điểm) a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số sau: b) Tìm toạ độ giao điểm của đồ thị (P) với đường thẳng. Câu 4: (4điểm) Trong mặt phẳng toạ độ cho các điểm;; . Xác định tọa độ trung điểm I của đoạn thẳng AB và toạ độ trọng tâm G của tam giác ABC? Xác định tọa độ điểm D để tứ giác ABCD là hình bình hành? Tính chu vi của tam giác ABC? Tam giác ABC là tam giác gì? TRẢ BÀI KIỂM TRA HỌC KÌ I ĐÁP ÁN VÀ THANG ĐIỂM: (Đề 1) Câu 1 : a) TH1 : phương trình đã cho có dạng (0,25đ) (thỏa mãn) (0,25đ) TH2 : phương trình đã cho có dạng (0,25đ) (loại) Vậy phương trình đã cho có nghiệm là (0,25đ) b) Đk : (0,25đ) Bình phương hai vế của phương trình đã cho ta được: (thỏa mãn đk) (thỏa mãn đk) (0,5đ) Thay và vào phương trình đã cho ta thấy = 1 là nghiệm ngoại lai. Vậy phương trình đã cho có nghiệm là : = 8 (0,25đ) Câu 2 : |||||||||||||||||||||||||||||||||||||||[ (0,5đ) 3 ||||||||||||||[ )||||||||||||||||||||||||||||||||| (0,5đ) -1 3 |||||||||||||||[ (0,5đ) -1 Câu 3 : y - Toạ độ đỉnh I (0,25đ) - Trục đối xứng (0,25đ) - Bảng biến thiên : (0,5đ) -1 B O 1 C 3 x x 1 y -4 -3A A' -4 I - Giao điểm với trục tung là - Điểm đối xứng của A qua trục đối xứng là (0,25đ) - Giao điểm với trục hoành là và (0,25đ) - Vẽ đồ thị. (0,5đ) b) Hoành độ giao điểm là nghiệm của phương trình (0,25đ) Vậy tọa độ giao điểm đồ thị (P) với đường thẳng là và . (0,25đ) Câu 4 : a) (0,25đ) Do đó I (0,25đ) Tương tự (0,25đ) Do đó G (0,25đ) b) Gọi tọa độ điểm D là Ta có ;. (0,5đ) Để tứ giác ABCD là hình bình hành thì tức là (0,25đ) Vậy tọa độ điểm D là (0,25đ) c)Ta có (0,75đ) Vậy (0,25đ) d)Ta có tức là AB BC (0,5đ) và AB = BC (0,25đ) Vậy tam giác ABC vuông cân tại B (0,25đ) Tuần: 20 NS:29/12/2010 Tiết:33 ND:30/12/2010 CHƯƠNG IV: BẤT ĐẲNG THỨC – BẤT PHƯƠNG TRÌNH §1 : BẤT ĐẲNG THỨC I.MỤC TIÊU : 1.Về kiến thức:Giúp học sinh - Ơn tập về khái niệm bất đẳng thức, bất đẳng thức hệ quả, bất đẳng thức tương đương, các tính chất của bất đẳng thức. 2.Về kĩ năng: Giúp học sinh - Nhận biết được bất đẳng thức, bất đẳng thức hệ quả, bất đẳng thức tương đương. - Biết chứng minh được bất đẳng thức hệ quả, bất đẳng thức tương đương. - Lấy các ví dụ áp dụng các tính chất của bất đẳng thức. 3.Về tư duy và thái độ: -Học sinh cần đúc kết lại những nội dung trọng tâm của bài và phương pháp giải các dạng bài tập -Học sinh cần phải biết hợp tác,sáng tạo trong khi học.Biết quy lạ thành quen. II.PHƯƠNG PHÁP: Thuyết trình, vấn đáp, đặt vấn đề. III.TIẾN TRÌNH TIẾT DẠY: 1.Ổn định tổ chức:Kiểm tra sỉ số lớp học. 2.Kiểm tra bài cũ: - HS1: Thế nào là mệnh đề ? Lấy ví dụ về mệnh đề dùng kí hiệu tốn học. - HS2: Thế nào là đẳng thức ? Lấy ví dụ. 3.Bài mới : Hoạt động của GV (1) Nội dung (3) GV:Yêu cầu HS thực hiện 1 GV:Gọi HS đứng tại chỗ trả lời. HS:Trả lời 1 a) 3,25 < 4 ( đúng ); b) ( sai ) c) (đúng) GV:Đánh giá, sửa chữa. GV:Treo bảng phụ 2 HS:Quan sát bảng phụ GV:Yêu cầu HS thực hiện 2 GV:Gọi HS lên bảng điền ơ trống . HS:Trả lời 2: < a) 3 = > b) > c) d) a2 + 1 0 GV:Nhận xét, sửa chữa. GV:Chỉ ra các bất đẳng thức cĩ ở 1 và 2. GV:Thế nào là bất đẳng thức ? HS:Phát biểu khái niệm. I – ƠN TẬP BẤT ĐẲNG THỨC: 1. Khái niệm bất đẳng thức: - Các mệnh đề dạng “ a b ” được gọi là đẳng thức. GV:Giới thiệu khái niệm bất đẳng thức hệ quả. HS: Chú ý theo dõi. GV:Lấy các ví dụ. HS:Ghi các ví dụ. GV:Giới thiệu khái niệm bất đẳng -thức tương đương. HS: Chú ý theo dõi. GV:Yêu cầu HS thực hiện 3 HS:Trả lời 3 GV:Gọi HS trình bày chứng minh phần thuận. HS:Chứng minh phần thuận: a < b a – b < 0 GV:Gọi HS trình bày chứng minh phần đảo. HS:Chứng minh phần đảo: a – b < 0 a < b GV:Đánh giá, sửa chữa. 2. Bất đẳng thức hệ quả và bất đẳng thức tương đương: a) Bất đẳng thức hệ quả : ( SGK) a > b c > d Ví dụ : a > b và b > c a > c. a > b, c a + c > b + c. b) Bất đẳng thức tương đương : ( SGK) a > b c > d GV:Treo bảng phụ giới thiệu các tính chất của bất đẳng thức. HS:Ghi các tính chất của bất đẳng thức. GV:Lấy các ví dụ áp dụng các tính chất của bất đẳng thức. HS:Ghi các ví dụ áp dụng. GV:Gọi HS thực hiện 4. GV:Cho HS nhận xét. HS:Nhận xét. GV:Đánh giá chung. GV:Giới thiệu chú ý. HS:theo dõi. 3. Tính chất của bất đẳng thức: ( SGK ) Ví dụ: 3 < 5 3 + 2 < 5 + 2 3 < 5 3. 2 < 5. 2 3 < 5 3. (–2) < 5. (–2) –5 < –3 (–5)3 < (–3)3 3 < 5 32 < 52 4 < 9 –27 < –8 * Chú ý : ( SGK) 4- Củng cố: Cho HS nhắc lại các khái niệm và tính chất. Lấy ví dụ. 5- Dặn dị: - Học thuộc bài. - Làm bài tập 3 /SGK trang 79 Tuần: 20 NS:3/1/2011 Tiết:34 ND:5/1/2011 §1 : BẤT ĐẲNG THỨC I.MỤC TIÊU : 1.Về kiến thức:Giúp học sinh - Nắm được bất đẳng thức Cơ – si, các hệ quả của bất đẳng thức Cơ – si và bất đẳng thức chứa dấu giá trị tuyệt đối. - Thấy được ý nghĩa hình học của các hệ quả của bất đẳng thức Cơ – si. 2.Về kĩ năng: Giúp học sinh - Biết chứng minh bất đẳng thức Cơ – si, các hệ quả của bất đẳng thức Cơ – si và bất đẳng thức chứa dấu giá trị tuyệt đối. 3.Về tư duy và thái độ: -Học sinh cần phải biết hợp tác,sáng tạo trong khi học.Biết quy lạ thành quen. - Rèn luyện tính cẩn thận và sự lơgic trong chứng minh các bất đẳng thức. II.PHƯƠNG PHÁP: Thuyết trình, vấn đáp, đặt vấn đề. III.TIẾN TRÌNH TIẾT DẠY: 1.Ổn định tổ chức:Kiểm tra sỉ số lớp học. 2.Kiểm tra bài cũ: - HS1: Thế nào là bất đẳng thức? Lấy ví dụ. - HS2: Thế nào là bất đẳng thức hệ quả, bất đẳng thức tương đương ? 3.Bài mới : Hoạt động của GV (1) Nội dung (3) GV:Giới thiệu bất đẳng thức Cơ – si . GV:gợi ý HS chứng minh. HS: Suy nghĩ,thảo luận. H:cĩ giá trị như thế nào ? HS: GV:Hướng dẫn HS khai triển HS:Khai triển GV:Gọi HS trình bày chứng minh. HS:Trình bày chứng minh. GV:Khi nào dấu bằng xảy ra ? HS: Xảy ra khi và chỉ khi a = b II- BẤT ĐẲNG THỨC GIỮA TRUNG BÌNH CỘNG VÀ TRUNG BÌNH NHÂN ( BẤT ĐẲNG THỨC CƠ – SI ) 1. Bất đẳng thức Cơ – si : * Định lý : (SGK) * Chứng minh: ta cĩ: Vậy Đẳng thức xảy ra khi và chỉ khi GV:Giới thiệu hệ quả 1. HS:Đọc hệ quả 1. GV:Yêu cầu HS áp dụng bất đẳng thức Cơ – si để chứng minh hệ quả 1. HS:Tìm cách chứng minh. GV:Gọi HS lên bảng trình bày chứng minh. HS:Trình bày chứng minh. GV:Cho HS nhận xét. HS:Nhận xét. GV:Nhận xét, sửa chữa. GV:Giới thiệu hệ quả 2. HS:Đọc hệ quả 2. GV:Hướng dẫn HS chứng minh theo SGK. HS:Xem phần chứng minh trong SGK. GV:Giới thiệu ý nghĩa hình học của hệ quả 2. HS:Quan sát hình 26 và xác định chu vi, diện tích của hai hình. GV:Giới thiệu hệ quả 3. HS:Đọc hệ quả 3. GV:Giới thiệu ý nghĩa hình học của hệ quả 3. HS:Quan sát hình 27 và xác định chu vi, diện tích của hai hình. GV:Yêu cầu HS chứng minh hệ quả 3. HS:Chứng minh hệ quả 3. GV:Gọi HS trình bày chứnh minh. GV:Cho HS nhận xét. HS:Đưa ra nhận xét. GV:Nhận xét, sửa chữa. 2.

Các file đính kèm theo tài liệu này:

  • docGiao an ca nam_12393583.doc