MỤC LỤC
Chương 1: GIỚI THIỆU VỀ TẤN CÔNG DDOS 2
1.1. Khái niệm 2
1.2. Cấu trúc mạng DDos 2
1.2.1 Tuyển mộ mạng Agent 2
1.2.2 Điều khiển mạng Agent 3
1.2.3 Cập nhật mailware 5
1.3 Phân loại tấn công Ddos 5
1.3.1 Tấn công vào băng thông mạng 5
1.3.2 Tấn công vào giao thức 5
1.3.3 Tấn công bằng những gói tin khác thường 5
1.3.4 Tấn công qua phần mềm trung gian 6
1.4 Các công cụ DDos 6
1.4.1 Trinoo 6
1.4.2 Tribe Flood Network (TFN) 6
1.4.3 Stacheldraht 6
1.4.4 Shaft 6
1.4.5 Trinity 7
1.4.6 Knight 7
1.4.7 Kaiten 7
Chương 2 : CÁC CỞ SỞ PHÂN TÍCH PHÁT HIỆN DDOS 8
2.1 Hệ thống phát hiện DDos hiện nay 8
2.2 Các yêu cầu đối với môt hệ thống phát hiện DDos 8
2.2.1 Phát hiện nhiều cơ chế 8
2.2.2 Phản ứng 9
2.3 Phân tích phát hiện các cuộc tấn công DDos 9
2.3.1 Tổng quan về phát hiện các cuộc tấn công DDos 9
2.3.2 Một số thuật toán phát hiện DDos 10
Chương 3: XÂY DỰNG HỆ THỐNG PHÁT HIỆN NGĂN CHẶN DDOS TỰ ĐỘNG 13
3.1 Cơ chế kiểm tra địa chỉ nguồn 13
3.1.1 IP Address Database (IAD) 13
3.1.2 Duy trì và hoạt động của IAD 14
3.2 Kỹ thuật phát hiện tấn công DDos theo thuật toán CUSUM 15
Chương 4: PHÁT TRIỂN HOÀN THIỆN GIAO THỨC LAN TỎA NGƯỢC 18
4.1 Khái niệm 18
4.2.1 Khởi động 19
4.2.2 Bắt đầu 19
4.2.3 Kiểm tra giả mạo 19
4.2.4 Rút gọn 19
4.2.5 Ngăn chặn 20
4.2.6 Lan tỏa ngược 21
4.3 Hạn chế của giao thức lan tỏa ngược 22
4.4 Phát triển giao thức lan tỏa ngược 22
4.4.1 Chống lừa dối 22
4.4.2 Giải pháp 22
4.4.3 Giải thuật 22
4.4.4 Triển khai 23
Chương 5: TRIỂN KHAI HỆ THỐNG PHÁT HIỆN NGĂN CHẶN TỰ ĐỘNG KẾT HỢP GIAO THỨC LAN TỎA NGƯỢC 25
5.1 Đánh giá hiệu quả của hệ thống 25
5.2 Cơ chế hoạt động 26
5.3 Triển khai hệ thống 26
5.4 Kết luận 32
41 trang |
Chia sẻ: netpro | Lượt xem: 1590 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Khóa luận Nâng cấp hệ thống PAC thêm chức năng tự động xác định đối tượng tấn công, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
công này là TCP SYN flood. Kẻ tấn công lợi dụng quá trình bắt tay 3 bước trong giao thức TCP. Kẻ tấn công liên tục khởi tạo kết nối TCP. Nạn nhân sẽ tiến hành gửi lại trả lời với SYN và ACK để chờ ACK từ phía máy khách. Tuy nhiên, kẻ tấn công sẽ không gửi ACK đến nạn nhân hay nói cách khác là sẽ không làm gì cả như quá trình bắt tay 3 bước. Cứ như vậy, nạn nhân sẽ tốn nhiều tài nguyên và bộ nhớ để chờ các phiên TCP. Do vậy nạn nhân sẽ không thể phục vụ được do tốn bộ nhớ đề chờ các kết nối ảo do kẻ tấn công khởi tạo.
1.3.3 Tấn công bằng những gói tin khác thường
Trong phương pháp này, kẻ tấn công dựa vào các điểm yếu của giao thức mạng. Ví dụ khi tấn công Ping of Death. Kẻ tấn công sẽ gửi một số gói tin ICMP có kích thước lớn hơn kích thước giới hạn. Gói tin sẽ bị chia nhỏ, khi nạn nhân ghép lại nhận thấy rằng là gói tin quá lớn để xử lý. Kết quả là, hệ thống không thể xử lý được tình trạng bất thường này và sẽ bị treo. Một trường hợp khác như tấn công Lan Attack. Kẻ tấn công sẽ gửi các gói tin TCP SYN có địa chỉ nguồn, địa chỉ đích và số cổng giống nhau. Nạn nhân sẽ liên tục khởi tạo và kết nối với chính nó. Do vậy hệ thống sẽ bị treo hoặc bị chậm lại.
1.3.4 Tấn công qua phần mềm trung gian
Trong phương pháp tấn công này, kẻ tấn công sẽ sử dụng một phần mềm hợp lệ trên máy nạn nhân. Khai thác một số thuật toán và tiến hành đưa tham số trong trường hợp xấu nhất. Do vậy, máy nạn nhân sẽ phải xử lý quá trình này và có thể bị treo. Đây là phương pháp tấn công khá đơn giản nhưng lại có hiệu quả rất cao. Nhưng nguy hiểm hơn cả là kẻ tấn công đã đột nhập được vào máy nạn nhân để có thể ăn cắp các thông tin cá nhân của nạn nhân
.1.4 Các công cụ DDos
1.4.1 Trinoo
Trinoo cho phép kẻ tấn công kiểm soát một số máy để yêu cầu gửi đồng loạt các gói tin UDP làm tê liệt mục tiêu. Master Trinoo có thể điều khiển các deamon trinoo như:
- Đồng loạt gửi các gói tin UDP
- Dừng việc gửi gói tin
- Thay đổi cấu hình của các deamon trinoo
1.4.2 Tribe Flood Network (TFN)
TFN là công cụ tấn công vào băng thông. TFN hỗ trợ tấn công các kỹ thuật ICMP flood, UDP flood, TCP SYN flood. Hiên tại, TFN hỗ trợ việc giả mạo địa chỉ IP. Hoạt động hầu hết trên các hệ điều hành DDos.
1.4.3 Stacheldraht
Là một dạng khác của TFN nhưng có khả năng tự động update trên các Agent
1.4.4 Shaft
Shaft chính là biến thể của Trinoo. Hỗ trợ nhiều loại tấn công như ICMP, UDP, TCP flood. Shaft còn hỗ trợ tấn công nhiều kỹ thuật cùng lúc. Vì vậy việc ngăn chặn shaft cũng sẽ trở nên rất khó khăn. Và đặc biệt shaft còn cho biết các thông số như là mức độ thiệt hại của nạn nhân để điều khiển các Agent
1.4.5 Trinity
Có thể nói Trinity là công cụ nguy hiểm nhất. Nó có khả năng tấn công với hầu hết các kỹ thuật như UDP, SYN và một số dạng flood khác. Tuy nhiên nó còn có thể kết nối internet thông qua mạng Relay Chat (IRC) hoặc AOL's ICQ. Trinity thường sử dụng các cổng 6667 và cũng có thể là 1 chương trình backdoor lắng nghe ở cổng 33270 qua kết nối TCP
1.4.6 Knight
Knight là một cộng cụ hoạt động trên hệ điều hành windows. Knight cung cấp các kỹ thuật tấn công như UDP flood, SYN flood. Và nó có thể tự động update thông qua các giao thức http hoặc ftp. Knight được cài đặt sử dụng Trojan thông qua chương trình backdoor được gọi là Back Oifice. Knight được sử dụng trong mô hình IRC-Based
1.4.7 Kaiten
Kaiten chính là biến thể của Knight. Kaiten hỗ trợ các kỹ thuật tấn công như UDP flood, TCP flood, SYN. Có khả năng giả mạo địa chỉ IP. Kaiten cũng là công cụ được sử dụng trong mô hình IRC-Based
Chương 2 : CÁC CỞ SỞ PHÂN TÍCH PHÁT HIỆN DDOS
2.1 Hệ thống phát hiện DDos hiện nay
Như chúng ta đã thấy, khả năng phát hiện một cuộc tấn công ngay lập tức sẽ ảnh hưởng rất lớn đến quá trình ngăn chặn và làm giảm đến mức thấp nhất tác hại mà một cuộc tấn công DDos gây ra.
Hiện nay các hệ thống phát hiện đang được phát triển và khá công phu. Hầu hết đã phát hiện được các loại tấn công Dos và DDos nhưng khó có thể đạt được độ chính xác cao.
Những hệ thống phát hiện DDos này thường sử dụng rất nhiều phương thức để dò tìm và phát hiện. Thông thường các công cụ này so sánh lưu lượng hiện tại với lưu lượng có thể chấp nhận được. Công nghệ này vẫn còn có một vài thiếu sót. Trước tiên, ngưỡng này thường đặt tĩnh và yêu cầu người sử dụng phải cấu hình để phù hợp với mọi môi trường, tuy nhiên sẽ khó có thể thay đổi thích ứng với môi trường mới. Thứ hai, chỉ có một số ít các ngưỡng được thiết lập vì sự thống kê chi tiết các giao thức không có giá trị cho người sử dụng. Thứ 3, ngưỡng chỉ áp dụng ở mức độ tổng hợp cao. Sự thiếu sót này có thể dẫn tới sự đánh giá sai về tính rõ ràng và tính phủ định của hệ thống phát hiện. Thậm chí một phát hiện sự xâm hại có thể chặn nhầm một địa chỉ hợp lệ.
Do vậy, để hiệu quả một hệ thống phát hiện xâm nhập phải thêm nhiều tính năng để phát hiện và phân biệt một sự tấn công với các hoạt động bình thường.
2.2 Các yêu cầu đối với môt hệ thống phát hiện DDos
2.2.1 Phát hiện nhiều cơ chế
Hiện nay các hình thức tấn công Ddos rất đa dạng và luôn được phát triển không ngừng. Càng ngày càng có nhiều kiểu tấn công mới. Do vậy, một hệ thống phát hiện Ddos thật sự hiệu quả khi phát hiện được hầu hết các kiểu tấn công. Luôn đánh giá được hệ thống mạng khi có những dấu hiệu bất thường, phải cập nhật thường xuyên những kiểu tấn công mới để có biện pháp phát hiện nhanh nhất .
2.2.2 Phản ứng
Khi một cuộc tấn công DDos xảy ra. Bước đầu tiên và cũng là quan trọng nhất là phát hiện chính xác các gói tin tấn công. Hệ thống phòng thủ phải đáp ứng trong thời gian thực, đặc biệt là tốc độ phản ứng phải cao. Tránh trường hợp chặn nhầm gói tin hợp lệ.
2.3 Phân tích phát hiện các cuộc tấn công DDos
2.3.1 Tổng quan về phát hiện các cuộc tấn công DDos
- Phát hiện ở gần nguồn tấn công
Giả sử tổng số lưu lượng để tắt một mạng là V, và lưu lượng một cuộc tấn công DDos là U.Chúng ta có thể dễ dàng phát hiện tấn công tại nạn nhân khi V lớn hơn đáng kể lưu lượng bình thường. Tuy nhiên, số lượng tấn công gần nguồn sẽ không phân biệt được từ một lưu lượng bình thường, tỷ số V/U sẽ rất nhỏ nếu U đủ lớn. Thông thường như các phương án đã đặt ra đó là đánh dấu gói tin và truy tìm ngược lại. Các phương án này thường không có hiệu quả cao khi mà cuộc tấn công diễn ra với quy mô rất lớn. Do vậy việc phát hiện tấn công gần nguồn sẽ tránh được tắc nghẽn và đạt hiệu quả cao nhất.
- Phát hiện tấn công tại mạng của nạn nhân
Như đã nói ở phần trước, việc phát hiện tấn công tại nạn nhân không khó vì lúc đó lưu lượng mạng tại nạn nhân sẽ trở nên rất cao và tất nhiên sẽ dẫn đến tình trạng không thể cung cấp được các dịch vụ. Tuy nhiên, thông thường việc phát hiện và phản ứng lại tại nạn nhân thường muộn và vào lúc cuộc tấn công đang ở mức cao. Nạn nhân lựa chọn tắt server và sau đó liên hệ với các ISP. Các ISP sau khi đã nhận được lời đề nghị của nạn nhân sẽ tiến hành đẩy ngược lại lưu lượng tấn công tại các router. Công việc này thường tốn rất nhiều thời gian. Ví dụ khi nạn nhân phát hiện ra cuộc tấn công, một thông điệp sẽ được gửi đến các upstream router của nạn nhân. Thông điệp bao gồm đích của lưu lượng tấn công, và 1 yêu cầu để lọc lưu lượng tấn công này. Tuy nhiên, việc gửi thông điệp này trong thời gian ngắn nhất có thể là vô cùng quan trọng để ngăn chặn tấn công DDos. Bởi vậy, cần có một cơ chế phát hiện thật nhanh để gửi thông điệp trong giai đoạn tấn công.
2.3.2 Một số thuật toán phát hiện DDos
Thực tế đã chứng minh, khi các cuộc tấn công DDos xảy ra. Lập tức phân tích sẽ thấy được lưu lượng mạng rất khác thường. Do đó hầu hết các thuật toán phân tích phát hiện tấn công DDos hiện nay đều dựa trên tính khác thường của lưu lượng mạng. Một số các công nghệ thống kê được áp dụng để tiến hành phân tích, thống kê những lưu lượng tải làm việc để phát hiện. Từ những kỹ thuật phân tích này, sẽ có những thuật toán phát hiện để đưa ra các tham số hoặc công nghệ thống kê, các mức độ nguy hiểm của cuộc tấn công.
- Thông số kiểm tra: Thông số kiểm tra được dùng để phân loại các thuật toán như số lượng lớn lưu lượng, số địa chỉ IP mới hoặc tỷ lệ các gói tin đến và đi trong mạng.
- Công nghệ thống kê: Sử dụng các thuật toán thống kê để phân tích mạng. Ví dụ như ngưỡng giới han phù hợp, phát hiện điểm thay đổi và phân tích wavelet.
- Mức độ phân tích: Khi phân tích các chi tiết các thông số, các mức độ nguy hiểm sẽ được gán.
Sau đây, tôi sẽ giới thiệu tổng quan về các thuật toán phát hiện DDos hiện nay . Nếu muốn tìm hiểu kỹ hơn về các thuật toán nêu ở dưới thì có thể tham khảo trong [4] phần tài liệu tham khảo.
2.3.2.1 Số lượng lớn lưu lượng
- Thuật toán Adaptive Threshold (ngưỡng giới hạn khả năng đáp ứng)
Thuật toán này nói chung khá đơn giản và dễ hiểu. Thuật toán phát hiện sự không bình thường dựa trên sự vị phạm của một ngưỡng khả năng đáp ứng của lưu lượng mạng trong thời gian gần. Thuật toán đặc biệt có khả năng phát hiện cao nhất khi kẻ tấn công tiến hành một cuôc tấn công TCP SYN. Thuật toán tin tưởng vào việc kiểm tra phép đo lưu lượng có vượt qua một ngưỡng giới hạn cụ thể hay không. Nếu vượt qua, chứng tỏ đã có một cuộc tấn công xảy ra.
- Thuật toán CUSUM (tổng tích lũy)
Thuật toán tổng tích lũy dựa trên giá trị trung bình của một quá trình xử lý thống kê. Sự phát hiện điểm thay đổi cần phải theo dõi trong các khoảng thời gian. Một công thức được xây dựng để theo dõi sự thay đổi này, khi vượt qua một ngưỡng giới hạn chứng tỏ đã xảy ra một cuộc tấn công.
2.3.2.2 Source IP Address Monitoring (theo dõi địa chỉ IP nguồn)
Thuật toán Source IP Address Monitoring (SIM) dựa trên việc theo dõi và đánh giá các địa chỉ IP mới. Thuật toán được chia làm 2 phần. Đó là off-line training và detection and learning. Trong phần off-line training, thuật toán sẽ tiến hành theo dõi, đánh giá phân tích các địa chỉ IP trong khoảng thời gian và đưa các địa chỉ IP vào trong IP address database (IAD). Những địa chỉ trong IAD được gọi là các địa chỉ thường xuyên truy cập. IAD xóa những IP hết hạn để giảm thiểu bộ nhớ cho hệ thống và cập nhật những đia chỉ IP mới. IAD được xây dựng và cập nhật off-line để chắc chắn rằng trong IAD không bao gồm bất cứ địa chỉ tấn công nào. Còn trong phần detection and learning, SIM tiến hành thống kê những lưu lượng đến trong các khoảng thời gian. So khớp các địa chỉ IP đến trong IAD để tìm ra những IP mới. Phân tích những IP mới này, có một hàm để đánh giá các IP mới (sử dụng thuật toán CUSUM). Khi sự thay đổi vượt qua ngưỡng giới hạn chứng tỏ đã có một cuộc tấn công xảy ra.
2.3.2.3 Ratio of Input/Output Traffic (tỷ lệ lưu lượng đến và đi)
Thuật toán dựa trên giả định rằng trong quá trình hoạt động bình thường trên internet, các gói tin theo hướng ra ngoài internet sẽ tỷ lệ thuận với các gói tin theo hướng ngược lại. Nếu tỷ lệ này quá lớn chứng tỏ đã có sự tấn công từ bên ngoài.
Chương 3: XÂY DỰNG HỆ THỐNG PHÁT HIỆN NGĂN CHẶN DDOS TỰ ĐỘNG
Trong chương này tôi sẽ nêu chi tiết về cách xây dựng hệ thống phát hiện DDos. Thuật toán sử dụng trong hệ thống là thuật toán (SIM) được nói ở trên.
3.1 Cơ chế kiểm tra địa chỉ nguồn
Cơ chế kiểm tra địa chỉ nguồn là việc lưu các địa chỉ IP thường xuyên truy cập vào server trong một cơ sở dữ liệu. Khi có một cuộc tấn công xảy ra ta sẽ tiến hành so sánh các địa chỉ IP trong thời gian tấn công với các IP trong cơ sở dữ liệu (IP Address Database) để phát hiện ra các IP mới.
Về cơ bản, cơ chế yêu cầu chúng ta xây dựng quy tắc để phân biệt các IP hợp lệ với các IP tấn công. Công việc này sẽ được tiến hành bằng cách kiểm tra các gói tin đến với các IP trong IAD.
3.1.1 IP Address Database (IAD)
Đầu tiên định nghĩa lưu lượng của một đia chỉ IP là IP flow.
Si={si1, si2,….., sin} là tập hợp các địa chỉ IP hợp lệ truy cập trong ngày i. |Si|=ni.
Fk={f1, f2,…, fm} là tập hợp các địa chỉ IP truy cập từ ngày 1 đến ngày k. |Fk|=m.
A={a1,a2,a3,…,ax} là tập hợp các địa chỉ IP truy cập trong một cuộc tấn công DDos
Như vậy sẽ có một nhóm các địa chỉ IP thường xuyên truy cập một các đều đặn. Khi một cuộc tấn công DDos sử dụng địa chỉ IP bất kì (random IP address), lưu lượng theo dõi trong k ngày như sau:
|S1S2 S3 …Sk| < <<|A|
Hiên nhiên, Fk(S1 S2 S3 ….Sk).
Tiến hành thống kê và xây dựng một ngưỡng giới hạn để quyết định mức độ thường xuyên trong tập F.
Pnormal= |FSj| /|Sj|: tỷ lệ phần trăm của một IP flow bình thường trong ngày j (j>k)
PDDos = |FA|/|A|: tỷ lệ phần trăm của một IP flow tấn công.
Định nghĩa IP address database (IAD) là tập hợp các địa chỉ IP đã xuất hiện thường xuyên trong một khoảng thời gian (có thể là 1 tháng).
Trong IAD, xây dựng 2 quy tắc để quyết định mức độ truy cập thường xuyên của một địa chỉ IP.
+ Thứ nhất: Số ngày nó đã truy cập
p1(d): tập hợp duy nhất các địa chỉ IP đã truy cập trong ít nhất d ngày.
f1(d): tỷ lệ phần trăm lưu lượng tốt khi sử dụng p1(d) trong IAD.
+ Thứ hai: số gói tin trên địa chỉ IP
p2(u): tập hợp duy nhất các địa chỉ IP có ít nhất u gói tin.
f2(u): tỷ lệ phần trăm lưu lượng tốt khi sử dụng p2(u) trong IAD
Như vậy nếu |p1(d)| và |p2(u)| nhỏ sẽ giảm được bộ nhớ yêu cầu để duy trì IAD, |f1(d)| và |f2(u)| lớn sẽ có nhiều địa chỉ IP trong cở sở dữ liệu.
Trong thuật toán trên, có hai tham số được đưa ra. Đó là số ngày (d) và số gói tin trên địa chỉ IP (u). Hai tham số trên có thể được tùy chỉnh trong các điều kiện mạng khác nhau. Việc kết hợp hai quy tắc trên sẽ làm cho IAD hiệu quả hơn rất nhiều
Fc=p1(d) p2(u)
Như vậy các địa chỉ IP thuộc tập Fc sẽ được lưu vào IAD
3.1.2 Duy trì và hoạt động của IAD
Khi lưu lượng mạng ở mức bình thường, tính toán các địa chỉ IP trong các gói tin đến và cập nhật vào IAD. Tiến hành xóa các địa chỉ IP hết hạn trong IAD với mục đích không làm IAD quá lớn. Việc xóa các địa chỉ IP có thể đặt trong thời gian là 2 tuần. Các địa chỉ IP trong IAD đều gồm 2 trường. Đó là IP address và timestamp. Khi thêm một địa chỉ IP vào trong IAD bắt đầu tính thời gian trong trường timestamp. Và sau một khoảng thời gian (2 tuần) địa chỉ này sẽ bị xóa khỏi IAD.
Tham khảo thêm kỹ thuật xây dựng IAD trong [2]
3.2 Kỹ thuật phát hiện tấn công DDos theo thuật toán CUSUM
Trong giai đoạn này, tiến hành phân tích thống kê các lưu lượng đến giữa hai khoảng thời gian là n. Với kỹ thuật phát hiện tấn công này, một bảng băm sẽ được sử dụng để ghi lại các địa chỉ IP xuất hiện giữa hai khoảng thời gian. Trong bảng băm nay sẽ gồm 2 trường: IP address và timestamp. So sánh các trường này với các trường trong IAD để có thể tính toán có bao nhiêu địa chỉ IP mới đã xuất hiện trong các khe thời gian. Phân tích các địa chỉ IP mới này cho biết khi nào cuộc tấn công DDos xảy ra.
Trước tiên lựa chọn các địa chỉ IP trong mỗi khoảng thời gian n (n=1,2,3,4…). Sau đó gán 1=2=….=n.
Gọi Tn là tập các địa chỉ IP vừa thiết lập và Dn là các địa chỉ IP trong IAD tại thời điểm n. |Tn-TnDn| sẽ là tập các địa chỉ IP mới trong khoảng thời gian n.
Ta có Xn=|Tn-TDn|/Tn: tỷ lệ phần trăm địa chỉ IP mới trên tổng số các địa chỉ IP trong khoảng thời gian n.
Đặt Z={Zn,n=1,2,3…} sao cho Zn=Xn-. Với a=-
a là giá trị trung bình của {Zn} trong quá trình lưu lượng mạng bình thường
là giá trị trung bình của {Xn} trong quá trình lưu lượng bình thường
Do đó, khi lưu lượng mạng bình thường tất cả các giá trị của Zn đều âm
Khi có một cuộc tấn công xảy ra, giá trị của Zn sẽ đột nhiên tăng và có giá trị dương. Lúc này h+a>0, h chính là giá trị trung bình tăng nhỏ nhất trong suốt cuộc tấn công.
Thuật toán CUSUM sẽ tiến hành tổng hợp Zn và được thiết lập bởi công thức sau:
yn=(yn-1 + Zn)+ và y0=0
Với x+ = x nếu x > 0 và x+ = 0 nếu x <= 0
Trong đó n >= k. Trường hợp không bị tấn công giá trị của yn-1+Zn âm.
Hàm quyết định có cuộc tấn công hay không được định nghĩa như sau:
dN(yn) = 0 nếu yn N
Ở đây N là ngưỡng giới hạn cho sự phát hiện tấn công. dN(yn) là hàm quyết định phát hiện trong thời gian n.
Ta có công thức:
N =(N - m)+/N (1)
N -> = (2)
Ở đây N là thời gian phát hiện, N là điểm thay đổi. Trong đó m là thời điểm bắt đầu cuộc tấn công. Để thuật toán CUSUM tối ưu nhất, chọn h=2|a|. Theo nghiên cứu thuật toán CUSUM có thể chọn |a|=0.05
Trong công thức (1) chọn vị trí nhỏ nhất khi cuộc tấn công bắt đầu. Do vậy N=m+1.
Vì vậy từ (1) và (2) hoàn toàn có thể tính được giá trị của ngưỡng N.
Dưới đây là lược đồ minh họa đã được thí nghiệm trong bài báo “Detecting Distrubuted Denial of Service Attacks Using Source Address Monitoring”[1]
Hình 3: Tỷ lệ phần trăm new IP với n=10s
Hình 4: Thuật toán CUSUM khí luu lượng mạng bình thường
Hình 5: Tấn công với 200 địa chỉ IP mới
Chương 4: PHÁT TRIỂN HOÀN THIỆN GIAO THỨC LAN TỎA NGƯỢC
Giao thức lan tỏa ngược được nghiên cứu bởi nhóm của anh Hoàng Văn Quân (K49CB) với sự hướng dẫn của thầy Đoàn Minh Phương. Tham khảo tại [5]. Tuy nhiên do thời gian có hạn, nên việc nghiên cứu giao thức lan tỏa ngược vẫn chưa được hoàn thiện hoàn toàn. Do vậy trong khóa luận này, tôi sẽ hoàn thiện những chức năng còn thiếu của lan tỏa ngược.
4.1 Khái niệm
Giao thức lan tỏa ngược là hệ thống phòng thủ chống lại các cuộc tấn công DDos theo phương án phản ứng lại và kết hợp nhiều vị trí.
Giao thức ‘Lan tỏa ngược’ dựa trên 3 nguyên tắc để ngăn chặn các cuộc tấn công:
+ Sử dụng các bộ lọc trên các router để chặn các gói tin DDos.
+ Dùng cơ chế ‘lan tỏa ngược’ để đẩy nhiệm vụ lọc cho các router gần kẻ tấn công.
+ Sử dụng một số giải thuật để nâng cao hiệu suất và chống lừa dối
4.2 Cơ chế hoạt động của giao thức lan tỏa ngược
Khi nạn nhân có dấu hiệu của sự tấn công từ chối dịch vụ thì trên gateway của nạn nhân sẽ bât bộ lọc và lắng nghe các gói tin tấn công đến từ interface nào. Việc bật bộ lọc sẽ hủy bỏ tất cả các gói tin tấn công còn việc lắng nghe để gửi yêu cầu qua cạc mạng đó sang router hàng xóm để bật bộ lọc và lắng nghe các router liền kề sau. Công việc cứ tiếp tục như vậy cho đến gần nguồn tấn công nhất.
Theo cơ hoạt động như trên thì giao thức lan tỏa ngược luôn truyền ngược lại và do quá trình lắng nghe từ các cạc mạng nên cho dù nguồn tấn công giả mạo địa chỉ IP thì luôn đến đươc gần nguồn tấn công nhất.
Hình 6: Cơ chế hoạt động của lan tỏa ngược
4.2.1 Khởi động
Khi nạn nhân phát hiện tấn công từ chối dịch vụ tiến hành gửi yêu cầu khởi động lan tỏa ngược đến gateway (Victim_GW) với tham số là địa chỉ của mình và địa chỉ của Agent (a.b.c.d).
4.2.2 Bắt đầu
Sau khi nhân được yêu cầu từ nạn nhân. Victim_GW tiến hành bật bộ lọc để ngăn chặn các gói tin có địa chỉ nguồn là a.b.c.d trong khoảng thời gian tstart.
4.2.3 Kiểm tra giả mạo
Trong giai đoạn này Victim_GW sẽ tiến hành ping đến địa chỉ a.b.c.d để kiểm tra Agent có giả mạo hay không. Nếu không có thời gian phản hồi chứng tỏ Agent đã giả mạo địa chỉ IP và chuyển sang “lan tỏa ngược”.
4.2.4 Rút gọn
Đầu tiên, Victim_GW tiến hành tìm kiếm và xác định 2 router gần Agent nhất có thiết lập cơ chế “lan tỏa ngược”. Cơ chế tìm kiếm tại victim như sau: Victim_GW tiến hành gửi các gói tin ICMP tới a.b.c.d. Các router trên đường đi tới A_GW sẽ lần lượt gửi về gói tin ICMP time exceeded. Sau khi nhận được các gói tin trả lời từ các router trên đường đi, Victim_GW tiến hành kết nối tin cậy với A_GW. Sau đó gửi gửi thông điệp xác nhận xem router đó có hỗ trợ lan tỏa ngược không. Hai router trả lời sớm nhất giả sử ở đây là X và Y.
Router X và Y sau khi nhận được yêu cầu xác nhận từ Victim_GW sẽ tiến hành xác nhận lại Victim_GW. Ở đây có hai trường hợp xảy ra:
Trường hợp thứ nhất nếu Victim có địa chỉ trùng với Victim_GW thì bỏ qua bước này vì đã xác nhận được chính xác Victim là người yêu cầu.
Trường hợp thứ hai nếu Victim và Victim_GW có địa chỉ khác nhau thì router X và router Y sẽ kiểm tra Victim_GW có đứng kề trước Victim trên đường đi hay không. Giải thuật cho cách kiểm tra này là: Router X và Router Y tiến hành ping đến Victim với tham số TTL là h+1 và h, với h là số hops từ Vimtim_GW đến router tương ứng
Nếu router không nhận được trả lời hợp lệ từ Victim và Victim_GW thì sẽ gửi thông báo từ chối và ngắt kết nối tới Victim _GW. Giải thuật kết thúc. Nếu tất cả đều hợp lệ thì routerX, routerY và Victim_GW đã tin tưởng lẫn nhau, kết nối tin cậy để thực hiện tiếp ngăn chặn.
4.2.5 Ngăn chặn
Sau khi đã kết nối tin cậy với router X và router Y, Victim _GW yêu cầu router Y đặt bộ lọc trong khoảng thời gian tY và gửi lưu lượng DDos R1 từ a.b.c.d nhận được.
Victim _GW thiết lập kết nối tin cậy với Router X. Yêu cầu đặt file shadowX để giám sát luồng Ddos từ a.b.c.d trong khoảng thời gian ∆t, sau đó ngắt kết nối với RouterX.
Nếu trong khoảng thời gian ∆t vẫn thấy có lưu lượng Ddos từ cạc mạng kết nối với router Y, chứng tỏ router không đặt bộ lọc. Tiến hành đặt bộ lọc với thời gian tlong.
RouterY sau khi đặt FilterY với thời gian tY, vừa ngăn chặn lưu lượng DDos, đồng thời sẽ theo dõi lưu lượng gói tin R2 request từ a.b.c.d đến nạn nhân qua mình.
Nếu R1 lớn hơn R2 rất nhiều tức là Agent đã mạo danh địa chỉ a.b.c.d. RouterY hủy bộ lọc, sau đó gửi R2 cho Victim _GW. Victim _GW nhận được, so sánh với R1 rồi ngắt kết nối với RouterY, thực hiện lan tỏa ngược.
Nếu R1 xấp xỉ bằng R2 có nghĩa a.b.c.d đúng là địa chỉ của Agent đang tấn công, RouterY thông báo lại với Victim _GW, Victim _GW xác nhận lại rồi ngắt kết nối. RouterY thực hiện lan tỏa ngược nhưng đóng vai trò của Victim _GW.
Hình 7: Ngăn chặn Ddos
4.2.6 Lan tỏa ngược
Trong quá trình này Victim _GW đặt bộ lọc với thời gian tstart, sau đó gửi yêu cầu thiết lập bộ lọc qua các router hàng xóm với cạc mạng mà nó nhận được gói tin Ddos.
Router hàng xóm sau khi nhận được yêu cầu, lập bộ lọc với thời gian ttmp và tiến hành gửi yêu cầu thiết lập bộ lọc tới router kề sau.Trong trường hợp nếu router đang đặt bộ lọc và vẫn nhận được yêu cầu đặt bộ lọc tương tự thì sẽ khởi động lại thời gian của bộ lọc đã đặt
Trong khoảng thời gian đặt bộ lọc ttmp, router sau khi đã gửi yêu cầu lập bộ lọc tới các router hàng xóm mà vẫn thấy còn lưu lượng DDos từ phía các router này, tiến hành gửi 3 lần yêu cầu lập bộ lọc cho router hàng xóm kết nối với cạc mạng đó. Nếu sau 3 lần gửi mà lưu lượng DDos vẫn không giảm thì có nghĩa là router hàng xóm không đặt bộ lọc, và router này sẽ tự động lập bộ lọc với thời gian tlong. Kết thúc giải thuật.
Sau khi hết thời gian đặt bộ lọc, các router tạo file shadow để giám sát các router hàng xóm sau nó.Trong khoảng thời gian này mà vẫn thấy có lưu lượng Ddos thì sẽ bật lại bộ lọc với thời gian tlong.Giải thuật kết thúc.
Khi quá trình lan tỏa ngược đến router gần Agent nhất (A_GW), xảy ra khi IP của router hàng xóm trùng với IP Agent, router lập bộ lọc có thời gian tlong >> ttmp. Giải thuật kết thúc.
4.3 Hạn chế của giao thức lan tỏa ngược
Thứ nhất việc cài đặt giao thức lan tỏa ngược quá phức tạp. Phải cài đặt giao thức trên từng router. Do đó trong thực tế việc này khó có thể làm được.
Thứ hai nếu kẻ tấn công có cơ chế giả mạo IP, thì ứng với mỗi 1 IP, A_GW sẽ phải tạo 1 bộ lọc khác nhau
4.4 Phát triển giao thức lan tỏa ngược
Như trong phần nghiên cứu của nhóm anh Hoàng Văn Quân đã triển khai và thực thi được giao thức lan tỏa ngược. Nhưng phần rút gọn và chống lừa dối vẫn chưa được triển khai. Trong phần phát triển giao thức lan tỏa ngược này tôi sẽ phát triển thêm phần chống lừa dối còn phần rút gọn được anh Nguyễn Thế Hùng cùng nhóm nghiên cứu về lan tỏa ngược này triển khai
4.4.1 Chống lừa dối
Kẻ tấn công có thể chiếm quyền một router trên đường đi và không đặt filter như yêu cầu của router kề trước nó.
Kẻ tấn công có thể điều khiển Agent_GW giả vờ đặt bộ lọc trong một thời gian tcheat và tcheat<tlong (tlong là thời gian đặt bộ lọc ban đầu). Khi Victim_GW ngắt kết nối thì sẽ tiến hành tấn công tiếp
4.4.2 Giải pháp
Trong khi gửi yêu cầu lan tỏa ngược đến Agent_GW thì lúc này ở Agent tiến hành bật chương trình kiểm tra Agent_GW có đặt đúng với thời gian quy định hay không. Nếu trong thời gian đặt bộ lọc đã được thiết lập từ trước vẫn thấy có lưu lượng mạng từ kẻ tấn công thì tiến hành bật bộ lọc ngay tại Agent. Do vậy việc giả mạo sẽ được giải quyết hoàn toàn
4.4.3 Giải thuật
Sau khi nhận được xâu client gửi tới LTN_Server, tiến hành lấy địa chỉ IP server và gửi xâu client cho router hàng xóm. Nếu thấy router hàng xóm không hỗ trợ lan tỏa ngược và có giả mạo IP thì đặt bộ lọc ngay. Còn không tiến hành gửi xâu client tới server. Kiểm tra liên tục file /var/log/message, trong khi đó sẽ giảm dần thời gian mà thời gian cần đặt bộ lọc lúc đầu. Quá trình kiểm tra file log được grep với IP nguồn và IP đích. Tiến hành kiểm tra số sequence number.
Nếu thấy số sequence number này khác với số sequence number cuối cùng khi bộ lọc đã được đặt tại router gần Agent thì chứng tỏ đã có gói tin từ Agent truyền qua. Router hàng xóm đã bị kẻ tấn công chiếm quyền và đặt bộ lọc với thời gian ngắn hơn hoặc có thể giả vờ đặt bộ lọc. Đặt bộ lọc ngay với thời gian đặt là thời gian còn lại
4.4.4 Triển khai
Do việc cài đặt và triển khai giao thức lan tỏa ngược đã thành công. Nên trong khóa luận này tôi vẫn sử dụng mô hình được triển khai và thêm chức năng chống lừa dối.Mô hình triển khai như sau:
Hình 8: Mô hình triển khai chống lừa dối
Giả sử máy C9 và C10 (Agent) cùn
Các file đính kèm theo tài liệu này:
- Nâng cấp hệ thống pac thêm chức năng tự động xác định đối tượng tấn công.doc