Đề tài Xây dựng hệ thống xử lý nước thải nhiễm dầu với sự kết hợp giữa hai phương pháp xử lý, lắng gạn cơ học và phân huỷ sinh học

Bể lọc sinh học nhỏ giọt đã được dùng để xử lý nước thải hơn 100 năm. Bể lọc nhỏ giọt đầu tiên xuất hiện ở Anh năm 1893, hiện nay được sử dụng ở hầu khắp các nước với các trạm xử lý công suất nhỏ. Ở nước ta bể lọc sinh học nhỏ giọt đã được xây dựng tại nhà máy cơ khí Hà Nội, xí nghiệp chế biến thuốc thú y Hà Tây, bệnh viện đa khoa Gia Lâm v.v.

Nước thải được phân phối đều trên bề mặt nguyên liệu lọc (hoạt động như giá bám cho vi khuẩn) theo kiểu nhỏ giọt hoặc phun tia. Lượng không khí cần thiết cho quá trình được cấp vào nhờ quá trình thông gió tự nhiên qua bề mặt hở phía trên và hệ thống thu nước phía dưới của bể lọc. Ngày nay người ta thường sử dụng chu trình lọc 2 pha bao gồm 2 bể lọc nối tiếp nhau.

 

doc70 trang | Chia sẻ: netpro | Lượt xem: 3555 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đề tài Xây dựng hệ thống xử lý nước thải nhiễm dầu với sự kết hợp giữa hai phương pháp xử lý, lắng gạn cơ học và phân huỷ sinh học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
drogenaza chuyển hoá từ cis-benzendiol đến catechol trong quá trình phân huỷ benzen và toluen bởi vi khuẩn sinh metan có thể tạo ra sản phẩm cuối cùng là CO2 và H2O. 1.4.2.2.2. Hydrocarbon thơm đa nhân (PAH) Hiện nay, có nhiều nghiên cứu về khả năng của vi sinh vật sử dụng các PAH có trọng lượng phân tử thấp như naphthalen, phenanthren và anthracen, tuy nhiên chưa có nhiều nghiên cứu về tiềm năng phân huỷ các PAH có trọng lượng phân tử cao như chrysen và benzopyren. Quá trình chuyển hoá PAH bởi vi sinh vật có thể chuyển sang các dạng không độc hoặc chuyển hoá hoàn toàn thành CO2. Nhiều nghiên cứu cho thấy trong vi khuẩn, các gen tham gia vào quá trình chuyển hoá PAH chủ yếu nằm trên các plasmid. Theo Dunn và Gunsalus, có hai con đường chuyển hoá napthelen được mã hoá bởi các gen nằm trên plasmid NAH7. Quá trình chuyển hoá PAH đến salicylat nhờ cụm gen nah, trong khi đó chuyển hoá PAH đến catechol, pyrunat và acetaldehyt nhờ cụm gen sal. Hiện nay, có rất ít nghiên cứu về di truyền của quá trình chuyển hoá phenanthren ở chi Acinetobacter, Mycobacterium, và loài Alcaligenes faecalis nằm trên nhiều plasmid [51]. Tuy nhiên theo Sansevarino và cộng sự, quá trình chuyển hoá phenanthren và anthracen bởi enzym được mã hoá bởi NAH7. Phân huỷ PAH bởi vi sinh vật có thể biễu diễn theo các con đường sau: Chuyển hoá PAH đến phenol bởi vi khuẩn nhóm methylotrophic Quá trình chuyển hoá naphthalen đến 1- và 2- naphthol ở loài Methylococcus capsulatus diễn ra nhờ hoạt động của hệ ezym methan monooxygenaza với sự tham gia của NADP. Chuyển hoá PAH đến trans-dihydrodiol bởi vi nấm, vi khuẩn và vi khuẩn lam Hiện nay người ta đã biết đến các enzym cytochrom monooxygenaza được sinh ra bởi một số loài vi nấm, vi khuẩn và vi khuẩn lam. Các enzym này chuyển hoá PAH đến dạng arenoit , sau đó dạng hợp chất trung gian này được hydrat hoá bởi enzym epoxyt hydrolaza đến dạng trans-dihydrodiols hoặc được tái sắp xếp (không có sự tham gia của enzym) thành dạng phenol. Trong trường hợp các vi sinh vật chỉ có thể thực hiện theo cách chuyển hoá này thì chúng sẽ không sử dụng PAH như là nguồn cacbon mà chỉ có thể loại bỏ tính độc của PAH mà thôi Chuyển hoá PAH đến quinon bởi nấm trắng (white-rot fungi) Một số nấm trắng (white rot fungi) phân huỷ lignin và cellulo (có trong gỗ) sẽ chuyển hoá PAH đến quinon và các chất khác mà không qua cis hoặc trans-dihydrodiol, trong một số trường hợp quá trình chuyển hoá này có sự tham gia của lignin peroxydaza. Chuyển hoá PAH bởi vi khuẩn kị khí Hiện nay, có rất ít công bố về tiềm năng chuyển hoá PAH bởi vi khuẩn kỵ khí. Mặc dù naphthalen và acenaphthalen đã được loại bỏ (rất ít) bởi hỗn hợp vi khuẩn khử nitrat, tuy nhiên cơ chế trao đổi chất của quá trình này vẫn chưa được sáng tỏ . Gần đây, Coates và cộng sự đã công bố về khả năng oxy hoá PAH đến CO2 dưới điều kiện khử sunphat của các mẫu trầm tích vịnh San Diego, tuy nhiên quá trình này đòi hỏi nhiều thời gian và tốc độ rất chậm . 1.4.2.3. Phân huỷ các thành phần phân cực Trong các thành phần phân cực, phân huỷ dibenzothiophen được nghiên cứu rõ nhất. Có 2 kiểu chuyển hoá dibenzothiophen đó là qua diol hoặc qua dibenzothiophen-5-oxit. Nghiên cứu của Fedorak và cộng sự cho thấy, chuỗi ankyl đến 30 cacbon (tetrahydrothiophen) có thể bị phân huỷ. Bước đầu tiên của quá trình phân huỷ đó là sự oxy hoá của chuỗi ankyl tạo ra thiophen-carboxylat, sau đó hợp chất này được chuyển hoá tiếp. Phân huỷ của các hợp chất chứa oxy ít được nghiên cứu. Strubel và cộng sự đã phân lập được chủng DBO230 phân huỷ dibenzofuran qua salicylat và catechol và có thể đồng chuyển hoá các hợp chất heterocyclic như oxofluoren, xanthon, dibenzo-p-dioxin . PHẦN III PHÂN LOẠI CÁC PHƯƠNG PHÁP XỬ LÝ NƯỚC THẢI  Các phương pháp xử lý  Sơ đồ các qui trình xử lý nước thải CÁC PHƯƠNG PHÁP XỬ LÝ Theo bản chất của phương pháp xử lý nước thải, người ta có thể chia chúng thành phương pháp lý học, phương pháp hóa học, phương pháp sinh học. Một hệ thống xử lý hoàn chỉnh thường kết hợp đủ các thành phần kể trên. Tuy nhiên tùy theo tính chất của nước thải, mức độ tài chính và yêu cầu xử lý mà người ta có thể cắt bớt một số các công đoạn. SƠ ĐỒ CÁC QUI TRÌNH XỬ LÝ Sử dụng bể tự hoại và bãi lọc ngầm để xử lý sơ bộ nước thải sinh hoạt Các qui trình để xử lý nước cống rãnh hoặc nước thải các nhà máy công nghiệp    Nước thải Bùn hoặc chất rắn Ghi chú: trên đây chỉ là một số sơ đồ tiêu biểu, tùy theo điều kiện chúng ta có thể lắp thêm hoặc thay đổi các thành phần của qui trình. Các điểm cần chú ý khi thiết kế các qui trình xử lý Tính khả thi của qui trình xử lý: tính khả thi của qui trình xử lý dựa trên kinh nghiệm, các số liệu, các ấn bản về các nghiên cứu trên mô hình và thực tế. Nếu đây là những qui trình hoàn toàn mới hoặc có các yếu tố bất thường, các nghiên cứu trên mô hình là rất cần thiết. Nằm trong khoảng lưu lượng có thể áp dụng được. Ví dụ như các hồ ổn định nước thải không thích hợp cho việc xử lý nước thải có lưu lượng lớn. Có khả năng chịu được sự biến động của lưu lượng (nếu sự biến động này quá lớn, phải sử dụng bể điều lưu) Đặc tính của nước thải cần xử lý (để quyết định qui trình xử lý hóa học hay sinh học) Các chất có trong nước thải gây ức chế cho quá trình xử lý và không bị phân hủy bởi quá trình xử lý. Các giới hạn do điều kiện khí hậu: nhất là nhiệt độ vì nó ảnh hưởng đến tốc độ phản ứng của các quá trình hóa học và sinh học. Hiệu quả của hệ thống xử lý: thường được chỉ thị bằng tính chất của nước thải đầu ra. Các chất tạo ra sau quá trình xử lý như bùn, chất rắn, nước và khí đều phải được ước tính về số lượng. Thông thường thì người ta dùng các mô hình để xác định phần này. Xử lý bùn: việc chọn qui trình xử lý bùn nên cùng lúc với việc lựa chọn qui trình xử lý nước thải để tránh các khó khăn có thể xảy ra sau này đối với việc xử lý bùn. Các giới hạn về môi trường: hướng gió thịnh trong năm, gần khu dân cư, xếp loại nguồn nước... có thể là các yếu tố giới hạn cho việc lựa chọn hệ thống xử lý. Các hóa chất cần sử dụng: nguồn và số lượng, các yếu tố làm ảnh hưởng đến việc tăng lượng hóa chất sử dụng và giá xử lý. Năng lượng sử dụng: nguồn và ảnh hưởng của nó đến giá xử lý. Nhân lực: kể cả công nhân và cán bộ kỹ thuật. Cần phải tập huấn đến mức độ nào. Vận hành và bảo trì: cần phải cung cấp các điều kiện, phụ tùng đặc biệt nào cho quá trình vận hành và bảo trì. Độ tin cậy của hệ thống xử lý bao gồm cả trường hợp chạy quá tải hay dưới tải. Độ phức tạp của hệ thống xử lý. Tính tương thích với các hệ thống và thiết bị có sẵn. Diện tích đất cần sử dụng, kể cả khu vực đệm cho hệ thống xử lý. PHẦN IV XỬ LÝ NƯỚC THẢI BẰNG PHƯƠNG PHÁP LÝ HỌC   Bể điều lưu (Flow equation tank)   Song chắn rác (Bar racks)   Bể lắng cát (Grit-Chamber)   Bể tuyển nổi (Floatation - chamber)   Bể lọc nước thải bằng các hạt lọc (Filtration) BỂ ĐIỀU LƯU Các bước để tính toán, thiết kế một bể điều lưu cho một xí nghiệp Ở khu vực dân cư (nước thải sinh hoạt) và khu vực sản xuất (nước thải công nghiệp) nước thải được thải ra với lưu lượng biến đổi theo giờ, thời vụ sản xuất, mùa (mưa, nắng). Trong khi đó các hệ thống sinh học phải được cung cấp nước thải đều đặn về thể tích cũng như về các chất cần xử lý 24/24 giờ. Do đó sự hiện diện của một bể điều lưu là hết sức cần thiết. Bể điều lưu có chức năng điều hòa lưu lượng nước thải và các chất cần xử lý để bảo đảm hiệu quả cho các qui trình xử lý sinh học về sau, nó chứa nước thải và các chất cần xử lý ở các giờ cao điểm, phân phối lại trong các giờ không hoặc ít sử dụng để cung cấp ở một lưu lượng nhất định 24/24 giờ cho các hệ thống xử lý sinh học phía sau. Các lợi ích của bể điều lưu như sau:        Bể điều lưu làm tăng hiệu quả của hệ thống sinh học do nó hạn chế hiện tượng "shock" của hệ thống do hoạt động quá tải hoặc dưới tải về lưu lượng cũng như hàm lượng các chất hữu cơ, giảm được diện tích xây dựng các bể sinh học (do tính toán chính xác). Hơn nữa các chất ức chế quá trình xử lý sinh học sẽ được pha loãng hoặc trung hòa ở mức độ thích hợp cho các hoạt động của vi sinh vật.        Chất lượng của nước thải sau xử lý và việc cô đặc bùn ở đáy bể lắng thứ cấp được cải thiện do lưu lượng nạp các chất rắn ổn định.        Diện tích bề mặt cần cho hệ thống lọc nước thải giảm xuống và hiệu suất lọc được cải thiện, chu kỳ làm sạch bề mặt các thiết bị lọc cũng ổn định hơn. SONG CHẮN RÁC Chức năng, cấu tạo và vị trí Song chắn rác dùng để giữ lại các chất thải rắn có kích thước lớn trong nước thải để đảm bảo cho các thiết bị và công trình xử lý tiếp theo. Kích thước tối thiểu của rác được giữ lại tùy thuộc vào khoảng cách giữa các thanh kim loại của song chắn rác. Để tránh ứ đọng rác và gây tổn thất áp lực của dòng chảy người ta phải thường xuyên làm sạch song chắn rác bằng cách cào rác thủ công hoặc cơ giới. Tốc độ nước chảy (v) qua các khe hở nằm trong khoảng (0,65m/s £ v £ 1m/s). Tùy theo yêu cầu và kích thước của rác chiều rộng khe hở của các song thay đổi. Các giá trị thông dụng để thiết kế song chắn rác Chỉ tiêu Cào rác thủ công Cào rác cơ giới Kích thước của các thanh Bề dầy (in) 0,2 ¸ 0,6 0,2 ¸ 0,6 Bề bản (in) 1,0 ¸ 1,5 1,0 ¸ 1,5 Khoảng cách giữa các thanh (in) 1,0 ¸ 2,0 0,6 ¸ 3,0 Độ nghiêng song chắn rác theo trục thẳng đứng (độ) 30 ¸ 45 0 ¸ 30  Nguồn: Wastewater Engineering: treatment, reuse, disposal, 1991 Ghi chú: in x 25,4 = mm ft/s x 0,3048 = m/s Song chắn rác với cào rác thủ công chỉ dùng ở những trạm xử lý nhỏ có lượng rác < 0,1m3/ng.đ. Khi rác tích lũy ở song chắn, mỗi ngày vài lần người ta dùng cào kim loại để lấy rác ra và cho vào máng có lổ thoát nước ở đáy rồi đổ vào các thùng kín để đưa đi xử lý tiếp tục. Song chắn rác với cào rác cơ giới hoạt động liên tục, răng cào lọt vào khe hở giữa các thanh kim loại; cào được gắn vào xích bản lề ở hai bên song chắn rác có liên hệ với động cơ điện qua bộ phận truyền động. Cào rác cơ giới có thể chuyển động từ trên xuống dưới hoặc từ dưới lên theo dòng nước. Khi lượng rác được giữ lại lớn hơn 0,1 m3/ng.đ và khi dùng song chắn rác cơ giới thì phải đặt máy nghiền rác. Rác nghiền đưọc cho vào hầm ủ Biogas hoặc cho về kênh trước song chắn. Khi lượng rác trên 1 T/ng.đ cần phải thêm máy nghiền rác dự phòng. Việc vận chuyển rác từ song đến máy nghiền phải được cơ giới hóa. Song chắn rác được đặt ở những kênh trước khi nước vào trạm xử lý. Hai bên tường kênh phải chừa một khe hở đủ để dễ dàng lắp đặt và thay thế song chắn. Vì song chắn làm co hẹp tiết diện ướt của dòng chảy nên tại vị trí đặt song chắn tiết diện kênh phải được mở rộng.   Hiệu suất của song chắn phụ thuộc rất nhiều vào mức độ chính xác trong tính toán kích thước và tổn thất áp lực của nước qua nó. BỀ LẮNG CÁT Chức năng, vị trí Bể lắng cát nhằm loại bỏ cát, sỏi, đá dăm, các loại xỉ khỏi nước thải. Trong nước thải, bản thân cát không độc hại nhưng sẽ ảnh hưởng đến khả năng hoạt động của các công trình và thiết bị trong hệ thống như ma sát làm mòn các thiết bị cơ khí, lắng cặn trong các kênh hoặc ống dẫn, làm giảm thể tích hữu dụng của các bể xử lý và tăng tần số làm sạch các bể này. Vì vậy trong các trạm xử lý nhất thiết phải có bể lắng cát. Bể lắng cát thường được đặt phía sau song chắn rác và trước bể lắng sơ cấp. Đôi khi người ta đặt bể lắng cát trước song chắn rác, tuy nhiên việc đặt sau song chắn có lợi cho việc quản lý bể lắng cát hơn. Trong bể lắng cát các thành phần cần loại bỏ lắng xuống nhờ trọng lượng bản thân của chúng. Ở đây phải tính toán thế nào để cho các hạt cát và các hạt vô cơ cần giữ lại sẽ lắng xuống còn các chất lơ lửng hữu cơ khác trôi đi. Có ba loại bể lắng cát chính: bể lắng cát theo chiều chuyển động ngang của dòng chảy (dạng chữ nhật hoặc vuông), bể lắng cát có sục khí hoặc bể lắng cát có dòng chảy xoáy. Các giá trị tham khảo để thiết kế bể lắng cát theo chiều chuyển động ngang của dòng chảy (hình chữ nhật)   Thông số Giá trị Khoảng biến thiên Giá trị thông dụng Thời gian lưu tồn nước (giây) 45 ¸ 90 60 Vận tốc chuyển động ngang ft/s 0,8 ¸ 1,3 1,0 Tốc độ lắng của các hạt ft/min Giữ lại trên lưới Æ 0,21 mm 3,2 ¸ 4,2 3,8 Giữ lại trên lưới Æ 0,15 mm 2,0 ¸ 3,0 2,5 Độ giảm áp % độ sâu diện tích ướt trong kênh dẫn 30 ¸ 40 36 Nguồn: Wastewater Engineering: treatment, reuse, disposal, 1991 Bể lắng cát có sục khí Được thiết kế để loại các hạt cát có kích thước lớn hơn 0,2 mm. Các ống phân phối khí đặt cách đáy bể 0,45 ¸ 0,6 m.  Các giá trị tham khảo để thiết kế bể lắng cát có sục khí Thông số Giá trị Khoảng biến thiên Giá trị thông dụng Thời gian lưu tồn nước ở lưu lượng cưc đại (phút) 2 ¸ 5 3 kích thướt Sâu(ft) 7 ¸ 16 Dài (ft) 25 ¸ 65 Rộng (ft) 8 ¸ 23 tỉ lệ sâu : rộng 1:1 ¸ 5:1 1,5:1 tỉ lệ dài : rộng 3:1 ¸ 5:1 4:1 Lượng không khí cần (ft3/min.ft chiều dài) 2,0 ¸ 5,0 Lượng cát ft3/Mgal 0,5 ¸ 27 2 Nguồn: Wastewater Engineering: treatment, reuse, disposal, 1991 Ghi chú: ft/s ´ 0,3048 = m/s ft/min ´ 0,3048 = m/min ft3/min.ft chiều dài ´ 0,0929 = m3/min.m ft3/Mgal ´ 0,00748 = m3/103 m3 Sơ đồ bể lắng cát có sục khí và dòng chảy trong bể KHUẤY TRỘN Khuấy trộn là một hoạt động quan trọng trong nhiều giai đoạn khác nhau của quá trình xử lý nước thải nhằm: (1) trộn lẫn hoàn toàn chất này với chất khác; (2) khuấy trộn duy trì các chất rắn lơ lửng ở trạng thái lơ lửng; (3) khuấy trộn các giọt chất lỏng ở trạng thái lơ lửng; (4) trộn lẫn các chất lỏng; (4) tạo bông cặn; (5) trao đổi nhiệt. Thường quá trình khuấy trộn còn tạo ra được hiệu quả phụ đó là việc cung cấp thêm oxy hoà tan cho quá trình phân hủy sinh học hiếu khí. Trong xử lý nước thải, người ta thường sử dụng hai kiểu khuấy trộn:        Khuấy trộn nhanh, liên tục (continuous rapid mixing): thời gian khuấy từ 30 giây trở xuống nhằm trộn các hóa chất vào nước. Quá trình khuấy trộn này có thể diễn ra bởi (1) việc thay đổi áp suất đột ngột ở các rãnh; (2) các ống hay máng khuếch tán; (3) trong đường ống; (4) bởi các bơm; (5) thiết bị khuấy tĩnh; (6) các thiết bị khuấy cơ học (moteur gắn cánh khuấy).        Khuấy liên tục (continuous mixing): để giữ các hạt chất rắn, lỏng trong bể ở trạng thái lơ lửng. Quá trình khuấy trộn này có thể diễn ra bởi (1) các thiết bị khuấy cơ học; (2) khuấy khí động học; (3) khuấy tĩnh và (4) bơm. Hai loại thiết bị khuấy BỂ TUYỂN NỔI Bể tuyển nổi được sử dụng để loại bỏ các hạt rắn hoặc lỏng ra khỏi hỗn hợp nước thải và cô đặc bùn sinh học. Không khí được thổi vào bể tạo nên các bọt khí, các bọt khí này kết với các hạt và nổi lên trên mặt nước thải và bị loại bỏ bằng các thiết bị gạt bọt. Một số loại hóa chất như phèn nhôm, muối ferric, silicat hoạt tính có thể được thêm vào nước thải để kết dính các hạt lại làm cho nó dể kết với các bọt khí để nổi lên bề mặt hơn. Một chỉ số quan trọng để tính toán cho bể tuyển nổi là tỉ lệ A/S (air/solid ratio), theo thực nghiệm tỉ lệ tối ưu nằm trong khoảng 0,005 ¸ 0,060 [mL (air)/mg (solid)]. Sơ đồ bể tuyển nổi kết hợp với cô bùn Các chất rắn được đưa lên mặt bể tuyển nổi Một bể tuyển nổi điển hình BỂ LỌC NƯỚC THẢI BẰNG CÁC HẠT LỌC Bể lọc được dùng để loại bỏ các chất rắn lơ lửng (và cả BOD) của nước thải sau khi qua xử lý sinh học hoặc hóa học. Các hạt lọc thường dùng là cát, sỏi, than...  Sơ đồ một số bể lọc PHẦN V XỬ LÝ NƯỚC THẢI BẰNG PHƯƠNG PHÁP SINH HỌC   Sơ lược về các quá trình vi sinh trong việc xử lý nước thải   Các công trình xử lý nước thải hiếu khí   Sử dụng các ao hồ để xử lý nước thải  Các hệ thống xử lý yếm khí  Các yếu tố ảnh hưởng đến việc lựa chọn các phương pháp xử lý sinh học SƠ LƯỢC VỀ CÁC QUÁ TRÌNH VI SINH TRONG BỂ XỬ LÝ NƯỚC THẢI Sơ lược về các quá trình vi sinh trong việc xử lý nước thải Quá trình hiếu khí và hiếu khí không bắt buộc (tùy nghi) Để thiết kế và vận hành một bể xử lý sinh học có hiệu quả chúng ta phải nắm vững các kiến thức sinh học có liên quan đến quá trình xử lý. Trong các bể xử lý sinh học các vi khuẩn đóng vai trò quan trọng hàng đầu vì nó chịu trách nhiệm phân hủy các thành phần hữu cơ trong nước thải. Trong các bể bùn hoạt tính một phần chất thải hữu cơ sẽ được các vi khuẩn hiếu khí và hiếu khí không bắt buộc sử dụng để lấy năng lượng để tổng hợp các chất hữu cơ còn lại thành tế bào vi khuẩn mới. Vi khuẩn trong bể bùn hoạt tính thuộc các giống Pseudomonas, Zoogloea, Achromobacter, Flavobacterium, Nocardia, Bdellovibrio, Mycobacterium và hai loại vi khuẩn nitrát hóa là Nitrosomonas và Nitrobacter. Ngoài ra còn có cácloại hình sợi như Sphaerotilus, Beggiatoa, Thiothrix, Lecicothrix và Geotrichum. Ngoài các vi khuẩn các vi sinh vật khác cũng đóng vai trò quan trọng trong các bể bùn hoạt tính. Ví dụ như các nguyên sinh động vật và Rotifer ăn các vi khuẩn làm cho nước thải đầu ra sạch hơn về mặt vi sinh. Khi bể xử lý được xây dựng xong và đưa vào vận hành thì các vi khuẩn có sẵn trong nước thải bắt đầu phát triển theo chu kỳ phát triển của các vi khuẩn trong một mẻ cấy vi khuẩn. Trong thời gian đầu, để sớm đưa hệ thống xử lý vào hoạt động ổn định có thể dùng bùn của các bể xử lý đang hoạt động gần đó cho thêm vào bể mới như là một hình thức cấy thêm vi khuẩn cho bể xử lý Các yếu tố ảnh hưởng đến hoạt động của các công trình xử lý nước thải hiếu khí Loại Các yếu tố ảnh hưởng đến hoạt động của công trình Bùn hoạt tính Loại bể phản ứng Thời gian lưu của nước thải trong bể phản ứng Chế độ nạp nước thải và các chất hữu cơ Hiệu suất sục khí Thời gian lưu trữ VSV trong bể phản ứng Tỉ lệ thức ăn/vi sinh vật (F/M) Tỉ lệ bùn bơm hoàn lưu về bể phản ứng Các chất dinh dưỡng Các yếu tố môi trường (nhiệt độ, pH) Bể lọc sinh học nhỏ giọt Loại nguyên liệu làm giá bám và chiều cao của cột nguyên liệu này Chế độ nạp nước thải và các chất hữu cơ Hiệu suất thông khí Tỉ lệ hoàn lưu Cách sắp xếp các cột lọc Cách phân phối lưu lượng nước Đĩa quay sinh học Số bể, đĩa Chế độ nạp nước thải và các chất hữu cơ Bộ phận truyền động Mật độ của nguyên liệu cấu tạo đĩa Vận tốc quay Các trục quay Độ ngập nước của đĩa Tỉ lệ hoàn lưu Loại Các yếu tố ảnh hưởng đến hoạt động của công trình Bùn hoạt tính Loại bể phản ứng Thời gian lưu của nước thải trong bể phản ứng Chế độ nạp nước thải và các chất hữu cơ Hiệu suất sục khí Thời gian lưu trữ VSV trong bể phản ứng Tỉ lệ thức ăn/vi sinh vật (F/M) Tỉ lệ bùn bơm hoàn lưu về bể phản ứng Các chất dinh dưỡng Các yếu tố môi trường (nhiệt độ, pH) Bể lọc sinh học nhỏ giọt Loại nguyên liệu làm giá bám và chiều cao của cột nguyên liệu này Chế độ nạp nước thải và các chất hữu cơ Hiệu suất thông khí Tỉ lệ hoàn lưu Cách sắp xếp các cột lọc Cách phân phối lưu lượng nước Đĩa quay sinh học Số bể, đĩa Chế độ nạp nước thải và các chất hữu cơ Bộ phận truyền động Mật độ của nguyên liệu cấu tạo đĩa Vận tốc quay Các trục quay Độ ngập nước của đĩa Tỉ lệ hoàn lưu Nguồn: Wastewater Engineering: treatment, reuse, disposal, 1991 Quá trình yếm khí Các hệ thống yếm khí ứng dụng khả năng phân hủy chất hữu cơ của vi sinh vật trong điều kiện không có oxy. Quá trình phân hủy yếm khí chất hữu cơ rất phức tạp liên hệ đến hàng trăm phản ứng và sản phẩm trung gian. Tuy nhiên người ta thường đơn giản hóa chúng bằng phương trình sau đây: Chất hữu cơ lên men -----------> yếm khí CH4 + CO2 + H2 + NH3 + H2S CAÙC QUAÙ TRÌNH XÖÛ LYÙ HIEÁU KHÍ   Beå thoâng khí, beå buøn hoaït tính (Aeroten, Activated sludge)   Beå loïc sinh hoïc nhoû gioït (Trickling Filter)   Ñiaõ tieáp xuùc hay ñiaõ quay sinh hoïc (Rotating Biological Contactor) BỂ BÙN HOẠT TÍNH Để thiết kế bể bùn hoạt tính người ta phải chú ý đến loại bể, lưu lượng nạp, lượng bùn sinh ra, nhu cầu và khả năng chuyển hóa oxy, nhu cầu về dinh dưỡng cho vi khuẩn, đặc tính của nước thải đầu vào và đầu ra, điều kiện môi trường, giá thành, chi phí vận hành, bảo trì. Các bước để thiết kế một bể bùn hoạt tính: 1.  Chọn thời gian cư trú trung bình của vi khuẩn trong bể. Các yếu tố cần biết:        BOD5 của nước thải đầu ra        SS của nước thải đầu ra        Khả năng chịu đựng của bể đối với sự biến động lớn của nước thải đầu vào (lưu lượng, hàm lượng chất gây ô nhiễm)        Nhu cầu về năng lượng cho các thiết bị cung cấp khí        Nhu cầu về dưỡng chất 2.  Chọn thời gian lưu tồn của nước thải trong bể. Các yếu tố cần biết:        Thích hợp cho việc loại bỏ các chất ô nhiễm        Quá trình ổn định, không bị ảnh hưởng của các chất độc        Lượng MLSS được giữ ổn định 3.  Xác định thể tích bể lắng thứ cấp cần thiết. Các yếu tố cần biết:        Diện tích bề mặt của bể lắng        Diện tích cần thiết cho việc cô đặc bùn 4.   Xác định công suất thiết bị sục khí. Các yếu tố cần biết:        Xác định nhu cầu về oxy        Xác định nhu cầu điện năng để duy trì các chất rắn ở dạng lơ lửng. 5.   Chọn tỉ lệ hoàn lưu bùn 6.   Ước tính lượng bùn thải bỏ Các sự cố thường gặp trong quá trình vận hành bể bùn hoạt tính và nguyên nhân  Sự cố Nguyên nhân Hiệu suất loại BOD hoà tan thấp 1. Thời gian cư trú của vi khuẩn trong bể quá ngắn 2.  Thiếu N và P        pH quá cao hoặc quá thấp        Trong nước thải đầu vào có chứa độc tố        Sục khí chưa đủ        Khuấy đảo chưa đủ hoặc do hiện tượng ngắn mạch Nước thải chứa nhiều chất rắn 1. Thời gian cư trú của vi khuẩn trong bể quá lâu 2. Quá trình khử nitơ diễn ra ở bể lắng        Do sự phát triển của các vi sinh vật hình sợi (trong điều kiện thời gian cư trú của vi khuẩn ngắn, thiếu N và P, sục khí không đủ)        Tỉ lệ hoàn lưu bùn quá thấp Mùi 1. Sục khí không đủ 2. Quá trình yếm khí xảy ra ở bể lắng Cách hiệu chỉnh các sự cố Sự cố Cách hiệu chỉnh Thời gian cư trú của VK        Quá thấp Giảm bớt lượng bùn thải        Xây thêm bể điều lưu        Quá cao Tăng lượng bùn thải Thiếu dưỡng chất N và P Cung cấp thêm dưỡng chất cho nước thải đầu vào pH quá cao hoặc quá thấp Xây thêm bể điều lưu        Trung hòa nước thải đầu vào Nước thải đầu vào có chứa độc tố Xây thêm bể điều lưu        Loại bỏ các chất độc trong nước thải đầu vào Sục khí không đủ Tăng công suất thiết bị sục        Phân bố lại các ống phân phối khí trong bể Khuấy đảo không đủ, "mạch ngắn" Tăng mức độ sục khí        Gắn thêm các đập phân phối nước Quá trình khử nitơ ở bể lắng Giảm thời gian giữ bùn trong bể lắng bằng cách tăng tỉ lệ hoàn lưu        Gắn thêm gàu múc bùn        Tăng lượng bùn thải Quá trình yếm khí ở bể lắng Các phương pháp tương tự phương pháp áp dụng để tránh quá trình khử nitơ của bể lắng SƠ ĐỒ BỂ BÙN HOẠT TÍNH BỂ LỌC SINH HỌC NHỎ GIỌT Bể lọc sinh học nhỏ giọt đã được dùng để xử lý nước thải hơn 100 năm. Bể lọc nhỏ giọt đầu tiên xuất hiện ở Anh năm 1893, hiện nay được sử dụng ở hầu khắp các nước với các trạm xử lý công suất nhỏ. Ở nước ta bể lọc sinh học nhỏ giọt đã được xây dựng tại nhà máy cơ khí Hà Nội, xí nghiệp chế biến thuốc thú y Hà Tây, bệnh viện đa khoa Gia Lâm v.v... Nước thải được phân phối đều trên bề mặt nguyên liệu lọc (hoạt động như giá bám cho vi khuẩn) theo kiểu nhỏ giọt hoặc phun tia. Lượng không khí cần thiết cho quá trình được cấp vào nhờ quá trình thông gió tự nhiên qua bề mặt hở phía trên và hệ thống thu nước phía dưới của bể lọc. Ngày nay người ta thường sử dụng chu trình lọc 2 pha bao gồm 2 bể lọc nối tiếp nhau. Bể lọc sinh học nhỏ giọt chia ra bể lọc vận tốc chậm, bể lọc vận tốc trung bình và nhanh, bể lọc cao tốc, bể lọc thô (xử lý nước thải sơ bộ trước giai đoạn xử lý thứ cấp), bể lọc hai pha.        Bể lọc vận tốc chậm: có hình trụ hoặc chữ nhật, nước thải được nạp theo chu kỳ, chỉ có khoảng 0,6 ¸ 1,2 m nguyên liệu lọc ở phía trên có bùn vi sinh vật còn lớp nguyên liệu lọc ở phía dưới có các vi khuẩn nitrat hóa. Hiệu suất khử BOD cao và cho ra nước thải chứa lượng nitrat cao. Tuy nhiên cần phải lưu ý đến vấn đề mùi hôi và sự phát triển của ruồi Psychoda. Nguyên liệu lọc thường dùng là đá sỏi, xỉ.        Bể lọc vận tốc trung bình và nhanh: thường có hình trụ tròn, lưu lượng nạp chất hữu cơ cao hơn, nước thải được bơm hoàn lưu trở lại bể lọc và nạp liên tục, việc hoàn lưu nước thải giảm được vấn đề mùi hôi và sự phát triển của ruồi Psychoda. Nguyên liệu lọc thường sử dụng là đá sỏi, plastic.        Bể lọc cao tốc: có lưu lượng nạp nước thải và chất hữu cơ rất cao, khác với bể lọc vận tốc nhanh ở điểm có chiều sâu cột lọc sâu hơn do nguyên liệu lọc làm bằng plastic, do đó nhẹ hơn so với đá sỏi.        Bể lọc thô: lưu lương nạp chất hữu cơ lớn hơn 1,6 kg/m3.d, lưu lượng nước thải là 187m3/m2.d bể lọc thô dùng để xử lý sơ bộ nước thải trước giai đoạn xử lý thứ cấp.        Bể lọc hai pha: thường sử dụng để xử lý nước thải có hàm lượng chất ô nhiễm cao và cần nitrat hóa đạm trong nước thải. Giữa 2 bể lọc thường có bể lắng để loại bỏ bớt chất rắn sinh ra trong bể lọc thứ nhất. Bể lọc thứ nhất dùng để khử BOD của các hợp chất chứa carbon, bể thứ hai chủ yếu cho quá trình nitrat hóa. SƠ ĐỒ BỂ LỌC SINH HỌC NHỎ GIỌT ẢNH CHỤP BỂ LỌC SINH HỌC NHỎ GIỌT HỆ THỐNG PHÂN PHỐI NƯỚC THẢI CỦA  BỂ LỌC SINH HỌC NHỎ GIỌT ĐIÃ TIẾP XÚC SINH HỌC Đĩa tiếp xúc sinh học đầu tiên được lắp đặt ở Tây Đức vào năm 1960, sau đó du nhập sang Mỹ. Ở Mỹ và Canada 70% số đĩa tiếp xúc sinh học được dùng để khử BOD của các hợp

Các file đính kèm theo tài liệu này:

  • docXây dựng hệ thống xử lý nước thải nhiễm dầu với sự kết hợp giữa hai phương pháp xử lý, lắng gạn cơ học và phân huỷ sinh học (70 trang).doc