DANH MỤC CÁC KÝ HIỆU, CÁC TỪ VIẾT TẮT
DANH MỤC CÁC BẢNG
DANH MỤC CÁC HÌNH, SƠ ĐỒ
DANH MỤC CÁC PHỤ LỤC
LỜI MỞ ĐẦU
CHƯƠNG 1: TỔNG QUAN VỀ Ô MÔI
1.1 GIỚI THIỆU THỰC VẬT [2], [3] . 12
1.1.1 PHÂN LOẠI KHOA HỌC: .12
1.1.2 MÔ TẢ CHUNG [2], [3] .12
1.1.3 PHÂN BỐ VÀ SINH THÁI [2], [3] . 13
1.1.4 MỘT SỐ HÌNH ẢNH:. 13
1.2 Y HỌC DÂN GIAN[2], [3] . 14
1.3 TÌNH HÌNH NGHIÊN CỨU. 15
1.3.1 THÀNH PHẦN HÓA HỌC. 15
1.3.2 HOẠT TÍNH SINH HỌC. 27
CHƯƠNG 2: PHƯƠNG PHÁP
2.1 PHÂN LẬP VÀ TINH CHẾ CÁC HỢP CHẤT [4] . 29
2.1.1 PHƯƠNG PHÁP CHIẾT. 29
2.1.2 PHƯƠNG PHÁP SẮC KÝ BẢN MỎNG (TLC) . 29
2.1.3 PHƯƠNG PHÁP TINH CHẾ. 30
70 trang |
Chia sẻ: honganh20 | Ngày: 14/02/2022 | Lượt xem: 417 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Khóa luận Khảo sát thành phần hóa học của cao ethyl acetate lá cây ô môi (cassia grandis l.f) họ vang (caesalpiniaceae), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
, chất nhầy, tannin, saponins, calcium oxalate,
anthraglucoside, sáp, tinh dầu và chất nhựa, trong hạt có chứa chất béo. Trong
lá có anthraglucoside và flavonoids. [3]
• NƯỚC NGOÀI
Năm 1998, Meenarani và cộng sự đã cô lập được 3 hợp chất từ thân của
Cassia grandis:[16] (1) palmitic acid, (2) β-sitosterol và (3) emodin-9-
anthrone
O
OH
(1) Palmitic acid
HO
H
HH
(2) β-sitosterol
HO
OH OHO
(3) Emodin-9-anthrone
Năm 1996, A G González và cộng sự đã cô lập được (10) trans-3-
methoxy-4,5-methylene-dioxycinnamaldehyde từ Cassia grandis cùng với
những hợp chất đã biết:[6] (11) aloe emodin ( 1,8-dihydroxy-3-
(hydroxymethyl)anthraquinone) , (4) centaureidin, (5) catechin, (6)
myristicin, (7) 2,4-dihydroxybenzaldehyde, (8) 3,4,5-
trimethoxybenzaldehyde, (9) 2,4,6-trimethoxybenzaldehyde
O
O
HO
OH
O
OH
O
O
(4) Centaureidin
OH
OH
HO O
OH
OH
(5) Catechin
O
O
O
(6) Myristicin
O
HO OH
(7) 2,4-dihydroxybenzaldehyde
O
O
O
O
(8) 3,4,5-trimethoxybenzaldehyde
O
O O
O
(9) 2,4,6-trimethoxybenzaldehyde
O
O
O
O
(10) trans-3-methoxy-4,5-methylene-dioxycinnamaldehyde
O
O
OH
OH OH
(11) 1,8-dihydroxy-3-(hydroxymethyl)anthraquinone
Năm 1995, Valencia và cộng sự đã cô lập được một furoquinoline
alkaloid: [25] (13) kokusaginine và một piperidine alkaloid: (12) 1,1’-
bipiperidine
N N
(12) 1,1’-bipiperidine
N O
O
O
O
(13) Kokusaginine
Năm 1994, Verma R. P. và cộng sự đã cô lập được một anthraquinone từ
vỏ của Cassia grandis và xác định là [20] 14) 1,3,4-trihydroxy-6,7,8-
trimethoxy-2-methyl anthraquinone
O
OO
O
O
OH
OH
OH
(14) 1,3,4-trihydroxy-6,7,8-trimethoxy-2-methyl anthraquinone
Năm 1996, Verma R. P. và cộng sự đã cô lập được từ vỏ của Cassia
grandis và xác định là [21] (15) 1,3,4-trihydroxy-6,7,8-trimethoxy-2-methyl
anthraquinone-3-O-β-D-glucopyranoside
O
OO
O
O
OH
OH
O
H
HO
H
HO
H
H
OHH
O
HO
(15) 1,3,4-trihydroxy-6,7,8-trimethoxy-2-methyl anthraquinone-3-O-
ß-D-glucopyranoside
Năm 1993, Ibadur Rahman Siddiqui và cộng sự đã cô lập từ hạt của
Cassia grandis được 3 anthraquinone glucoside: [13]
(16) 1,2,4,8 - tetrahydroxy-6-methoxy-3 methyl anthraquinone - 2 -
O -β - D – glucopyranoside
(17) 3 - hydroxy-6, 8-dimethoxy-2- methyl anthraquinone - 3 - O-β -
D -glucopyranoside
(18) 1, 3- dihydroxy-6, 7, 8-trimethoxy anthraquinone-3 - O - β - D –
glucopyranoside
OO
O
OH
OH
OH
O
H
HO
H
HO
H
H
OHH
O
HO
(16) 1,2,4,8 - tetrahydroxy-6-methoxy-3 methyl anthraquinone - 2 -
O -β - D – glucopyranoside
O
OO
O
O
H
HO
H
HO
H
H
OHH
O
HO
(17) 3 - hydroxy-6, 8-dimethoxy-2- methyl anthraquinone - 3 - O-β -
D –glucopyranoside
OOO
O
O
HO
O
H
HO
H
HO
H
H
OHH
O
OH
(18) 1, 3- dihydroxy-6, 7, 8-trimethoxy anthraquinone-3 - O - β - D –
glucopyranoside
Năm 1981, YS Srivastava và cộng sự đã cô lập từ hạt của Cassia
grandis một flavonol glycoside: [28] (19) kaempferol-3-O-β-D-
mannopyranosyl (14)-O-β-D-glucopyranoside
O
O
HO
HO
OH
O
H
H
HO
H
H
OHH
O
HO
O
H
HO
H
HO
OH
H
HH
O
OH
(19) kaempferol-3-O-β-D-mannopyranosyl (14)-O-β-D-
glucopyranoside
Năm 2010, Pino J.A đã nghiên cứu các hợp chất dễ bay hơi được phân
lập từ trái cây Cassia grandis L từ Cuba [18]. Tổng cộng có 108 hợp chất được
xác định (30,47 mg/kg), từ đó Linalool (31,5% tổng số các chất bay hơi) là hợp
chất chính.
HO
(20) Linalool
Năm 1984, V. K Mahesh và cộng sự đã cô lập được từ lá cây ô môi
Cassia grandis L được 4 hợp chất và xác định được là: [24]
(21) Chrysophanol( 1,8-dihydroxy-3-methylanthraquinone)
(22) Rhein( 4,5-dihydroxyanthraquinone-2-carboxylic acid)
(23) Kaempferol( 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-
chromen-4-one)
(24) Physcion( 1,8-dihydroxy-3-methoxy-6-methylanthraquinone)
OH O
O
OH
(21) Chrysophanol
( 1,8-dihydroxy-3-methylanthraquinone)
OH
O
O OH
OH
O
(22) Rhein
( 4,5-dihydroxyanthraquinone-2-carboxylic acid)
OH
HO O
O
OH
OH
(23) Kaempferol
( 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one)
OH
O
O OH
O
(24) Physcion
( 1,8-dihydroxy-3-methoxy-6-methylanthraquinone)
• TRONG NƯỚC
Năm 2011, Đào Huy Phong trong đề tài luận văn thạc sĩ hóa học đã cô
lập được 5 hợp chất flavonoids: [1]
(25) (-)-epicatechin ( 3,3’,4’,5,7-pentahydroxyflavan),
(26) (-)-epiafzelechin ( 4’,5,7-trihydroxy flavanol),
(27) 2,3,6’-trihydroxy-2’-methoxy-4’-hydroxymethylbenzophenone,
(28)Quercitrin(3’,4’,5,7-tetrahydroxy-3-O-α-L-
rhamnopyranosylflavonol),
(29)Isoquercitrin(3’,4’,5,7-tetrahydroxy-3-O-β-D-
glucopyranosylflavonol)
OOH
HH
HO
OH
OH
OH
(25) (-)-epicatechin
( 3,3’,4’,5,7-pentahydroxyflavan)
O
OH
HH
HO
OH
(26) (-)-epiafzelechin
(4’,5,7-trihydroxy flavanol)
O
HO
OH
CH3
OH
OH
O
(27) 2,3,6’-trihydroxy-2’-methoxy-4’-hydroxymethylbenzophenone
OHO
OH
O
OH
OH
O
HO
H3C
HO
O
OH
H
(28) Quercitrin
( 3’,4’,5,7-tetrahydroxy-3-O-α-L-rhamnopyranosylflavonol)
OHO
OH
O
OH
O
OH
O
H
HO
H
HO
H
H
OHH
OH
(29) Isoquercitrin
( 3’,4’,5,7-tetrahydroxy-3-O-β-D-glucopyranosylflavonol)
1.3.2 HOẠT TÍNH SINH HỌC
Năm 2010, Sandesh R Lodha [22]và cộng sự nghiên cứu đánh giá hiệu quả
của Cassia grandis làm giảm carbon tetrachloride đã gây ra nhiễm độc gan cấp
tính cho chuột bạch. Có thể kết luận rằng ethanolic trích xuất từ Cassia grandis
sở hữu đặc tính bảo vệ gan đáng kể.
Năm 2003, Harsha Joshi và Virendra P Kapoor [12] nghiên cứu
galactomannan hạt Cassia grandis, có chứa khoảng 50% nội nhũ gum và có
những đặc điểm để trở thành nguồn tiềm năng của hạt giống gum. Polysaccharide
tinh khiết có đặc điểm như là một galactomannan tinh khiết có một tỉ lệ mannose-
galactose là 3,15.
Năm 2009, MA Awal [15] và cộng sự đã nghiên cứu hoạt động kháng khuẩn
và độc tính của ethanol chiết xuất từ lá cassia grandis đối với Brine Shrimp.
Cassia grandis có thể hữu ích chống lại các loại bệnh vi sinh vật.
Năm 1987, Hosamani [8]và cộng sự đã nghiên cứu dầu hạt giống Cassia
grandis chứa một lượng nhỏ sterculic acid và malvalic acid được xác định bởi
chuyển đổi ester với AgNO3/MeOH, NMR và IR.
Năm 2004, Tillan Capo, Juana [14] và cộng sự nghiên cứu hoạt động của
Cassia grandis trong một mô hình thử nghiệm thiếu máu thiếu sắt ở chuột, sử
dụng bột khô thu được từ trái như là một bổ sung dinh dưỡng.
Năm 2005, Montejo Cuenca Emilio [11]và cộng sự đã nghiên cứu Cassia
grandis như một loại thuốc bổ trong suy dinh dưỡng của bê. Mục đích chính của
điều tra này là chứng minh hiệu quả của thuốc.
Năm 2008, Joscineia Kelli Clippel [9] và cộng sự nghiên cứu thành phần của
của một số cây thân thảo và thân gỗ ở Brazil, phân tích mức độ polysaccharide lưu
trữ thành tế bào và khoáng chất dinh dưỡng trong hạt giống.
Năm 1993, Cáceres A [7]và cộng sự nghiên cứu thực vật được sử dụng ở
Guatemala trong điều trị các bệnh nhiễm trùng dermatophytes. Các bộ phận hoạt
động kháng nấm nhiều nhất là vỏ cây và lá cây. Các loài có hoạt động tích cực
nhất là Byrsonima crassifolia, Cassia grandis, Gliricidia sepium và Malpighia
glabra.
Năm 2010, Sandesh R Lodha [23]và cộng sự đã đánh giá tiềm năng trị đái
tháo đường của Cassia grandis bằng cách sử dụng một mô hình in vivo. Các
chất chiết xuất từ dung dịch nước và ethanolic của Cassia grandis được đánh
giá hoạt động trị đái tháo đường bằng một xét nghiệm dung nạp glucose ở
chuột bình thường và chuột bị mắc bệnh tiểu đường gây ra bởi alloxan. Những
kết quả cho thấy Cassia grandis sở hữu hoạt động trị đái tháo đường đáng kể.
Năm 2007, Singh V [26]và cộng sự đã nghiên cứu loại bỏ chì từ dung dịch
nước bằng cách sử dụng hạt gum Cassia grandis-ghép-
poly(methylmethacrylate). Sử dụng hệ thống oxi hóa khử persulfate/ascorbic
acid, một loạt hạt gum Cassia grandis-ghép-poly(methylmethacrylate) được
tổng hợp. Các mẫu copolymer được đánh giá loại bỏ Pb(II) khỏi dung dịch
nước mà khả năng hấp phụ được tìm thấy tỉ lệ với mức độ ghép.
CHƯƠNG 2: PHƯƠNG PHÁP
2.1 PHÂN LẬP VÀ TINH CHẾ CÁC HỢP CHẤT [4]
2.1.1 PHƯƠNG PHÁP CHIẾT
Kỹ thuật này không đòi hỏi thiết bị phức tạp, có thể dễ dàng thao tác với
một lượng lớn mẫu cây. Ngâm nguyên liệu trong một bình chứa thủy tinh hoặc
bằng thép không rỉ, bình có nắp đậy.
Rót dung môi sử dụng để chiết vào bình cho đến xấp xấp bề mặt của
nguyên liệu.
Giữ yên ở nhiệt độ phòng trong một đêm hoặc một ngày, để cho dung môi
xuyên thấm vào cấu trúc tế bào thực vật và hòa tan các hợp chất tự nhiên.
Sau đó, dung dịch chiết được lọc qua một tờ giấy lọc thu được dịch chiết.
Cô quay loại dung môi thu được cao chiết.
Rót tiếp dung môi mới vào bình chứa nguyên liệu và tiếp tục chiết thêm
một số lần nữa cho đến khi chiết kiệt mẫu cây.
2.1.2 PHƯƠNG PHÁP SẮC KÝ BẢN MỎNG (TLC)
Sắc ký bản mỏng hay sắc ký lớp mỏng (Thin Layer Chromatography) dựa
chủ yếu vào hiện tượng hấp thu.
Bình sắc ký là chậu, hũ, lọ, bằng thủy tinh, hình dạng đa dạng, có nắp
đậy.
Pha tĩnh là một lớp mỏng silica gel khoảng 25mm phủ lên bề mặt một tấm
nhôm phẳng.
Mẫu cần phân tích thường là hỗn hợp gồm nhiều hợp chất với độ phân cực
khác nhau. Sử dụng khoảng 1μL dung dịch mẫu với nồng độ loãng 2-5%, nhờ
một vi quản để chấm mẫu thành một điểm gọn trên pha tĩnh, ở vị trí phía trên
cao hơn một chút so với mặt thoáng của chất lỏng đang chứa trong bình.
Pha động là dung môi hoặc hỗn hợp các dung môi di chuyển chầm chậm
dọc theo tấm bản mỏng và lôi kéo mẫu chất đi theo nó. Dung môi di chuyển lên
cao nhờ vào tính mao quản. mỗi thành phần của mẫu chất sẽ di chuyển với vận
tốc khác nhau, đi phía sau mức dung môi. Vận tốc di chuyển này tùy thuộc vào
hiện tượng hấp thu của pha tĩnh và tùy vào độ hòa tan của mẫu chất trong dung
môi.
2.1.3 PHƯƠNG PHÁP TINH CHẾ
• Kết tinh
Đối với những chất dễ kết tinh, dựa vào tính tan của các chất.
Kết tinh nhiều lần để thu được chất tinh khiết
• Sắc ký lỏng
Đối với những hỗn hợp chất khó tách hay những chất khó làm sạch, sử
dụng phương pháp sắc ký cột hấp phụ.
Pha động là chất lỏng, pha tĩnh là chất rắn. Ở phương pháp sắc ký này
các chất của hỗn hợp sẽ hấp phụ lên bề mặt của pha tĩnh. Các hợp chất khác
nhau sẽ có những mức độ hấp phụ khác nhau lên pha tĩnh và chúng cũng phụ
thuộc vào tính chất của pha động. Kết quả là trong quá trình pha động di
chuyển chúng sẽ tách xa nhau ra.
Sự hấp phụ xảy ra là do sự tương tác lẫn nhau giữa các phân tử phân
cực, do sự tương tác giữa những phân tử có mang các nhóm phân cực đối với
pha tĩnh rắn là chất rất phân cực. Trong sắc ký hấp phụ, pha tĩnh thường là
những hạt silicagel. Trên bề mặt của những hạt này có mang nhiều nhóm –OH
nên đây là những pha tĩnh có tính rất phân cực.
2.2 PHƯƠNG PHÁP PHỔ CỘNG HƯỞNG TỪ HẠT NHÂN
[5]
2.2.1 PHỔ 1H-NMR
Cho thông tin về các proton 1H có trong phân tử. Các thông số của phổ
1H-NMR cho biết độ dịch chuyển hóa học, hình dạng tín hiệu và hằng số tương
tác (J) spin – spin giữa các proton không tương đương kế cận nhau sẽ cho các
kiểu ghép vân phổ (tín hiệu bội), cường độ tích phân của tín hiệu thể hiện số
lượng proton tương ứng với tín hiệu đó.
2.2.2 PHỔ 13C-NMR
Cho thông tin về khung carbon của phân tử. Các tín hiệu phổ 13C-NMR
xuất hiện trong khoảng thang chia độ rộng (0 – 250 ppm) (có thể đến 600ppm
cho trường hợp đặc biệt) nên các tín hiệu tách rõ ràng, mũi đơn dễ quan sát.
Mỗi loại cacbon trong hợp chất hữu cơ có độ dịch chuyển hóa học khác nhau.
Dựa vào độ dịch chuyển hóa học của cacbon trong phổ 13C-NMR, có thể dự
đoán được loại cacbon và liên kết của cacbon đó.
2.2.3 PHỔ HSQC VÀ HMBC
Khảo sát hạt nhân 1H ghép cặp với 13C.
Phổ HSQC cho tín hiệu của cacbon gắn trực tiếp vào proton, nghĩa là
cacbon và proton chỉ cách nhau qua 1 nối hóa trị. Từ những tín hiệu của
cacbon ghi trên trục hoành, kẻ những đường chấm thẳng đứng, từ trên xuống,
hết bề dọc của phổ đồ; từ những tín hiệu của proton ghi trên trục tung, kẻ
những đường chấm nằm ngang,từ bên trái qua bên phải, hết bề ngang của phổ
đồ. Nếu tại những vị trí các đường chấm đó giao nhau, có xuất hiện tín hiệu
giao, có nghĩa là proton này đã gắn trực tiếp vào cacbon kia.
Phổ HMBC tương tự phổ HSQC, nhưng phổ HMBC cho biết tương tác
cacbon và proton ngang qua 2 và 3 nối hóa trị và không xuất hiện tín hiệu
tương tác ngang qua 1 nối hóa trị. Tuy nhiên, quá trình giải phổ khá vất vả do
khi nhìn vào phổ, với một tín hiệu giao bất kỳ nào đó thì không thể nào biết
được rằng đó là của tương tác qua 2 nối hay ngang qua 3 nối. Do vậy phải kết
hợp giải phổ HMBC với các phổ khác để xác định cấu trúc phân tử.
2.2.4 PHỔ COSY
Phổ cho biết trong một phân tử các proton nào đã ghép cặp với nhau.
Trong biểu đồ phổ COSY, độ dịch chuyển hóa học của các proton, giống như
trong phổ 1H-NMR một chiều, được trình bày trên cả 2 trục hoành và trục tung.
Hệ quả là về mặt lý thuyết sẽ có một biểu đồ hình vuông, có tính đối xứng, đối
xứng qua đường chéo, bởi vì cả hai chiều tần số đều biểu diễn cùng một thông
tin về độ chuyển dịch hóa học của proton. Nhưng trên thực tế, ít khi được sự
đối xứng bởi vì khả năng phân giải số (digital resolution) hoàn toàn khác nhau
cho 2 chiều. Để khắc phục nhược điểm này người ta đã áp dụng phương pháp
toán học gọi là sự đối xứng hóa, nhờ thế các số liệu của phổ trên hai trục biểu
đồ đã trở nên đối xứng, giúp việc giải đoán phổ dễ dàng hơn.
CHƯƠNG 3: THỰC NGHIỆM
3.1 THIẾT BỊ, DỤNG CỤ, HÓA CHẤT
3.1.1 THIẾT BỊ, DỤNG CỤ
− Máy cô quay chân không BUCHI Ratavapor R-200 (Đức)
− Máy soi UV: MINERALIGHT ® LAMP, bước sóng 254 nm (Mỹ)
− Máy đo phổ NMR Brucker Advant 500 MHz (Đức)
− Cân điện tử TANITA KD – 200 và PRECISA XB 2200 ( Nhật, Đức)
− Bản mỏng sắc ký (TLC) được thực hiện trên bản silicagel 60 F254,
MERCK tráng sẵn
− Cột sắc ký dùng silicagel 60, MERCK, cỡ hạt: 0,04 – 0,06 mm
− Bình phun xịt thuốc thử
− Bình giải ly TLC
− Bếp điện dùng nướng bản mỏng Blacker®
− Ống nghiệm 10 ml
− Bình tam giác 250 ml
− Bình cầu
3.1.2 HÓA CHẤT
− Cloroform ( A, Trung Quốc)
− Ethyl acetate ( A, Trung Quốc)
− Metanol ( A, Trung Quốc)
− n-Hexan ( A, Trung Quốc)
− Etanol 96o ( T, Việt Nam)
− Silicagel 60, MERCK, cỡ hạt: 0,04 – 0,06 mm
− H2SO4 đđ 10%/ EtOH
3.2 THỰC NGHIỆM
3.2.1 NGUYÊN LIỆU
Lá cây ô môi Cassia grandis tươi được thu hái tại thành phố Cần Thơ.
Sau khi thu hái, lá cây được loại bỏ phần chết, già, rửa sạch, cắt ngắn, để ráo,
phơi khô, ngâm dầm với ethanol để chiết xuất cao tổng. Các cao phân đoạn
được điều chế bằng phương pháp trích pha rắn cao ethanol ban đầu với các
dung môi có độ phân cực tăng dần như: n-hexan, ethyl acetate và methanol.
Sơ đồ 3.1: Quy trình tổng quát chiết tách hợp chất hữu cơ
3.2.2 TIẾN HÀNH
Từ cao EtOAc, tiến hành sắc ký cột cao áp như sau:
− Nhồi cột với khối lượng cao: 4 g
− Tiến hành ổn định cột với dung môi là n-Hexan trong 30 phút
− Sau khi ổn định, nạp mẫu cao ethyl acetate của lá cây ô môi (4 g) dạng
khô vào cột.
− Sử dụng các dung môi có độ phân cực khác nhau để rửa giải các hợp
chất:
n-Hexan 100 %; n-Hexan - EtOAc (75:25); n-Hexan - EtOAc (50:50);
Ngâm dầm với ethanol
Cao tổng
497g
Cao n-Hexan
161g
Cao EtOAc
43g
Cao MeOH
278g
♦ Chiết xuất lần lượt với các dung môi
EtOH, n-Hexan, EtOAc
♦ Cô quay loại dung môi
Lá ô môi khô
3.4 kg
n-Hexan - EtOAc (25:75); EtOAc 100 %; EtOAc - MeOH (85:15); EtOAc -
MeOH (70:30)
− Dùng bình tam giác 250 ml để hứng dịch chảy ra
− Tiến hành cô quay loại dung môi thu được các hợp chất
− Kiểm tra các phân đoạn bằng sắc ký bản mỏng, hiện vết với thuốc thử
H2SO4 đđ 10%/ EtOH và gom các phân đoạn có Rf giống nhau vào cùng
một lọ chứa
Bảng 3.1: Các phân đoạn sau khi sắc ký cột cao EtOAc
Phân
đoạn
Hệ dung môi
Kết quả
thử TLC
Ghi chú
EA CHCl3 – CH3OH (95:5)
2 vết
chính
Khảo sát
EB CHCl3 – CH3OH (90:10) Nhiều vết
EC CHCl3 – CH3OH (90:10) Nhiều vết
ED CHCl3 – CH3OH (90:10) Nhiều vết
EF CHCl3 – CH3OH (85:15) Nhiều vết
EG CHCl3 – CH3OH (80:20)
3 vết
chính
Khảo sát
EH CHCl3 – CH3OH(80:20) Nhiều vết
• PHÂN ĐOẠN EA
Tại phân đoạn EA, chúng tôi thấy xuất hiện dạng bột vô định hình. Sau
đó, phân đoạn EA được rửa nhiều lần với ethyl acetate thu được dạng bột vô
định hình màu vàng cam. Tiếp theo, dạng bột màu vàng cam được hòa tan
trong hỗn hợp dung môi cloroform, methanol và chờ kết tinh, thu được tinh thể
hình kim màu vàng cam, khối lượng 90mg. Ký hiệu là Cg01. Kiểm tra bằng sắc
ký bản mỏng, hiện màu bằng dung dịch H2SO4 10 % trong EtOH cho vết tròn
rõ màu vàng có Rf = 0,43 hệ giải ly CHCl3 – CH3OH (96:4).
Hình 3.1: Chất Cg01 Hình 3.2: Bản mỏng hiện vết Cg01
• PHÂN ĐOẠN EG
Tại phân đoạn EG, chúng tôi thấy xuất hiện dạng bột vô định hình màu
vàng. Sau đó, phân đoạn EG được rửa nhiều lần với ethyl acetate thu được
dạng bột vô định hình màu vàng. Kiểm tra bằng sắc ký bản mỏng, hiện màu
bằng dung dịch H2SO4 10 % trong EtOH cho 3 vết tròn rõ. Tiếp theo, chúng tôi
tiến hành sắc ký cột trung áp đối với dạng bột vừa nêu trên.
− Nhồi cột với khối lượng mẫu: 157 mg
− Tiến hành ổn định cột với dung môi là CHCl3 – CH3OH (85:15) trong
30 phút
− Sau khi ổn định, nạp mẫu EG dạng khô vào cột.
− Sử dụng hệ dung môi CHCl3 – CH3OH (85:15), rửa giải đẳng dòng
− Sau khi sắc ký cột, chúng tôi thu được dạng bột màu vàng, khối lượng
16 mg. Kiểm tra bằng sắc ký bản mỏng, hiện màu bằng dung dịch
H2SO4 10 % trong EtOH cho vết tròn rõ màu vàng có Rf = 0,34 hệ giải
ly CHCl3 – CH3OH (80:20). Ký hiệu là Cg02.
Hình 3.3: Chất Cg02 Hình 3.4: Bản mỏng hiện vết Cg02
Sơ đồ 3.2: Quy trình cô lập và tinh chế các hợp chất
Cao EtOAc (E)
4g
• Thêm khoảng 5g Silica Gel vào bình cầu có chứa cao, trộn đều rồi cô
quay đến khô, sau đó nạp vào cartridge 10g.
• Chuẩn bị cột. Nén đầy Silica gel vào cột 40x300cm.
• Ổn định cột bằng n-Hexan trong 30 phút
• Gắn cartridge chứa mẫu vào đầu cột và tiến hành
EA ED EC EG EE EF EB
Hexane HE
75:25
HE
50:50
HE
25:75
EtOAc
100%
EM
85:15
EM
70:30
Hệ dung môi
• HE: n-Hexane_EtOAc
• CM: CHCl3_MeOH
• EM: EtOAc_MeOH
EH
Cg01
90 mg
Cg02
16mg
Kết tinh Sắc ký cột trung áp
CHƯƠNG 4: KẾT QUẢ VÀ BÀN LUẬN
4.1 KẾT QUẢ CỦA QUÁ TRÌNH PHÂN LẬP VÀ TINH
CHẾ
Trong quá trình phân lập và tinh chế các hợp chất, chúng tôi đã phân lập
và tinh chế được 2 hợp chất: Cg01 từ phân đoạn EA và Cg02 từ phân đoạn EG
đã được xác định cấu trúc.
4.2 KẾT QUẢ NHẬN DANH CẤU TRÚC CÁC CHẤT TINH
KHIẾT
4.2.1 NHẬN DANH Cg01
− Phổ 1H-NMR (DMSO, δ ppm, 500 MHz) ( phụ lục 1) cho thấy sự hiện diện
của 5 proton vòng thơm δH [ 7.68 (1H, d, J = 1.5 Hz), 7.28 (1H, d, J = 1.5
Hz), 7.37 (1H, dd, J = 8.3, 1.3 Hz), 7.79 (1H, dd, J = 8.5, 7.5 Hz), 7.70
(1H,dd, J = 7.5, 1.0 Hz)], 2 proton của (-CH2-) có δH 4.62 (2H, d, J = 5.0
Hz), 1 proton –OH δOH 5.58 (1H, t, J = 5.8 Hz), 1 mũi đơn của 2 proton –
OH có δOH 11.92 cho thấy phân tử Cg01 có 2 nhóm –OH kiềm nối
− Phổ 13C-NMR (DMSO, δ ppm, 125 MHz) (phụ lục 2) cho các tín hiệu ứng
với 15 cacbon, gồm 2 cacbon tứ cấp của vòng thơm mang oxigen (−O−C=)
có δC [ 161.57, 161.28], 5 cacbon tứ cấp mang nối đôi (>C=) có δC [
114.37, 133.04, 133.27, 115.82, 153.64], 5 cacbon metin mang nối đôi (–
CH=) có δC [ 124.29, 137.23, 119.25, 120.62, 117.05], 2 cacbon cacbonyl
(>C=O) có δC [ 191.55, 181.35], 1 cacbon hydroxymetylen (−CH2−O−) có
δC 62.03.
− Dữ liệu phổ 1H-NMR và 13C-NMR cho phép dự đoán hợp chất Cg01 là một
anthraquinone
− Vòng A có phổ 1H-NMR cho tín hiệu của 3 proton nhân thơm trong đó có 2
proton với δH [ 7.37 (1H, dd, J = 8.3, 1.3 Hz), 7.70 (1H,dd, J = 7.5, 1.0 Hz)]
chứng tỏ 2 proton vừa ghép cặp ortho vừa ghép cặp meta; 1 proton với δH [
7.79 (1H, dd, J = 8.5, 7.5 Hz)] chứng tỏ proton này ghép cặp ortho với 2
proton khác; một trong 2 proton −OH kiềm nối có δOH 11.92. Theo khung
anthraquinone, −OH kiềm nối có δOH 11.92 gắn trên C-8. Vòng A có 3 vị trí
mang nhóm thế và proton với δH 7.79 ở vị trí H-6. Từ phổ HSQC (phụ lục
4) xác định được C-6 có δC 137.23. Do chịu ảnh hưởng cho điện tử của
nhóm –OH tại C-8 nên H-7 cộng hưởng ở vùng trường mạnh hơn so với H-
5. Vì thế, 2 tín hiệu trong phổ 1H-NMR δH [ 7.37, 7.70] lần lượt của H-7 và
H-5. Từ phổ HSQC, xác định được C-7 có δC 124.29 và C-5 có δC 119.25.
Phổ HMBC (phụ lục 3), cả 3 proton H-5, H-6, H-7 đều cho tương quan với
1 cacbon tứ cấp của vòng thơm mang oxigen (−O−C=) có δC 161.28. Như
vậy cacbon tứ cấp của vòng thơm mang oxigen (−O−C=) có δC 161.28 là C-
8. Ngoài ra, proton H-6, H-7 còn cho tương quan với 2 cacbon tứ cấp mang
nối đôi (>C=) có δC [ 133.27, 115.82]. Do chịu ảnh hưởng cho điện tử của
nhóm –OH tại C-8 và cacbon cacbonyl nên C-8a cộng hưởng ở vùng trường
cao hơn so với C-5a nên xác định được C-8a có δC 115.82 và C-5a có δC
133.27. 2 cacbon cacbonyl (>C=O) có δC [ 191.55, 181.35] lần lượt là C-9
và C-10.
O
O
H
H
H
OH
6
7
8 9
10
4a5a
8a 1a
5
A
Hình 4.1: Một số tương quan HMBC trong vòng A của Cg01
− Vòng B phổ 1H-NMR có tín hiệu của 2 proton nhân thơm với δH [7.68 (1H,
d, J = 1.5 Hz), 7.28 (1H, d, J = 1.5 Hz)] chứng tỏ 2 proton ghép cặp meta,
một trong 2 proton −OH kiềm nối có δOH 11.92. Sự hiện diện của hai proton
–OH kiềm nối, cùng với sự khác biệt về độ chuyển dịch hóa học của hai
cacbon cacbonyl có δC 191.55 (C-9), 181.35 (C-10), cho thấy hai nhóm OH
phenol ở cùng phía để tạo liên kết hydrogen với chỉ một trong hai cacbon
cacbonyl và như vậy, một trong 2 proton −OH kiềm nối còn lại có δOH
11.92 gắn trên C-1. Do chịu ảnh hưởng ảnh hưởng cho điện tử của nhóm –
OH tại C-1 nên H-2 cộng hưởng ở vùng trường mạnh hơn so với H-4. Vì
thế, 2 tín hiệu trong phổ 1H-NMR δH [7.68 (1H, d, J = 1.5 Hz), 7.28 (1H, d,
J = 1.5 Hz)] lần lượt của H-4 và H-2. Từ HSQC, xác định được C-4 có δC
117.05 và C-2 có δC 120.62. Phổ HMBC còn cho tín hiệu proton –OH δOH
5.58 (1H, t, J = 5.8 Hz) có tương quan với 1 cacbon tứ cấp mang nối đôi
(>C=) có δC 153.64; 2 proton của (−CH2−) có δH 4.62 (2H, d, J = 5.0 Hz)
có tương quan với: 2 cacbon tứ cấp mang nối đôi (>C=) có δC [ 133.04,
153.64], 2 cacbon metin mang nối đôi (–CH=) có δC [ 120.62, 117.05], 1
cacbon tứ cấp của vòng thơm mang oxigen (−O−C=) có δC 161.57. Điều
này chứng tỏ, nhóm –OH δOH 5.58 gắn trên C-11 ( cacbon hydroxymetylen)
và cacbon hydroxymetylen (−CH2−OH) này có δC 62.03 và gắn trên C-3 (
δC 153.64). Còn lại 2 cacbon tứ cấp mang nối đôi (>C=) có δC [ 114.37,
133.04]. Do chịu ảnh hưởng cho điện tử của nhóm –OH tại C-1 và cacbon
cacbonyl nên C-1a cộng hưởng ở vùng trường cao hơn so với C-4a nên xác
định được C-1a có δC 114.37 và C-4a có δC 133.04.
O
O
CH2
OH
H
H1
2
3
4
9
10
1a
4a 11
OHB
Hình 4.2: Một số tương quan HMBC trong vòng B của Cg01
Từ các dữ liệu phổ phân tích trên, so sánh với tài liệu tham khảo, hợp
chất Cg01 được xác định là 1,8-dihydroxy-3-(hydroxymethyl)anthraquinone
(aloe-emodin)
6
7
8
5a
8a
5
O
O
CH2
OH
1
2
3
4
9
10
1a
4a 11 OH
OH
Bảng 4.1: Dữ liệu phổ 1H-NMR, 13C-NMR, HMBC của Cg01
(phụ lục 1, 2, 3)
Vị
trí
C/H
1H-NMR (DMSO) δppm
(số H, dạng mũi, J = Hz)
13C-NMR
(DMSO)
δppm
Loại
carbon
HMBC
1H → 13C
1 161.57 −O−C=
2 7.28 (1H, d, J = 1.5) 120.62 −CH=
H2 → C4,
C1a, C1, C3,
C9
3 153.64 >C=
4 7.68 (1H, d, J = 1.5) 117.05 −CH=
H4 → C10,
C2, C1a, C11,
C9
5 7.7 (1H, dd, J = 7.5, 1.0) 119.25 −CH=
H5 → C10,
C8, C7, C8a,
C6, C9
6 7.79 (1H, dd, J = 8.5,7.5) 137.23 −CH=
H6 → C10,
C8, C5a, C7,
C8a
7 7.37 (1H, dd, J = 8.5,1.5) 124.29 −CH=
H7 → C5,
C8a, C5a, C8,
C9
8 161.28 −O−C=
9 191.55 >C=O
10 181.35 >C=O
1a 114.37 >C=
4a 133.04 >C=
5a 133.27 >C=
8a 115.82 >C=
11 4,62 (2H, d,J = 5.0) 62.03 −CH2−O−
H11→ C3,
C4, C2, C4a,
C1
5.58 (1H, t, J = 5.8 , 11-
OH)
OH11→ C3
Bảng 4.2: Dữ liệu phổ 1H-NMR, 13C-NMR, HSQC của Cg01
(Phụ lục 1, 2, 4)
Vị
trí
C/H
1H-NMR δppm
(số H, dạng mũi, J = Hz)
13C-NMR
δppm
Loại
carbon
HSQC
1 161.57 −O−C=
2 7.28 (1H, d, J = 1.5) 120.62 −CH= H2 → C2
3 153.64 >C=
4 7.68 (1H, d, J = 1.5) 117.05 −CH= H4 → C4
5 7.7 (1H, dd, J = 7.5, 1.0) 119.25 −CH= H5 → C5
6 7.79 (1H, dd, J = 8.5,7.5) 137.23 −CH= H6 → C6
7 7.37 (1H, dd, J = 8.5,1.5) 124.29 −CH= H7 → C7
8 161.28 −O−C=
9 191.55 >C=O
10 181.35 >C=O
1a 114.37 >C=
4a 133.04 >C=
5a 133.27 >C=
8a 115.82 >C=
11 4,62 (2H, d,J = 5.0) 62.03 −CH2−O− H11 → C11
5.58 (1H, t, J = 5.8, 11-OH)
Bảng 4.3: So sánh dữ liệu phổ 1H_NMR và 13C_NMR của Cg01 với tài liệu
tham khảo: [19]
Vị trí
C/H
Cg01 Aloe-emodin
1H-NMR
(DMSO)
δ ppm
13C-NMR
(DMSO)
δ ppm
1H-NMR
(CDCl3)
δ ppm
13C-NMR
(CDCl3)
δ ppm
1 161.57 162.5
2 7.28 120.62 7.26 121.2
3 153.64 152.5
4 7.68 117.05 7.69 119.9
5 7.7 119.25 7.74 117.7
6 7.79 137.23 7.60 136.9
7 7.37 124.29 7.22 124.5
8 161.28 162.0
Các file đính kèm theo tài liệu này:
- khoa_luan_khao_sat_thanh_phan_hoa_hoc_cua_cao_ethyl_acetate.pdf