Luận văn Nghiên cứu một số kỹ thuật xác định độ đo tương tự và ứng dụng

MỤC LỤC

Nội dung Trang

ĐẶT VẤN ĐỀ . 8

LỜI NÓI ĐẦU . 9

Chương 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀ ĐỘ ĐO TưƠNG TỰ

TRONG XỬ LÝ ẢNH . 11

1.1. Khái quát về xử lý ảnh . 11

1.1.1. Một số khái niệm cơ bản . 11

1.1.2. Một số vấn đề trong xử lý ảnh . 12

1.1.2.1. Các hệ thống xử lý ảnh . 12

1.1.2.2. Các hình thái của ảnh. 14

1.1.2.3. Một số ứng dụng trong xử lý ảnh . 15

1.1.2.4. Một số khái niệm, định nghĩa trong xử lý video . 17

1.1.2.5. Lược đồ màu (Color Histogram) . 22

1.1.2.6. Lược đồ tương quan màu (Color Correlogram) . 25

1.1.2.7. Đặc trưng chuyển động (Motion) . 26

1.1.2.8. Các bước thao tác với file video . 28

1.2. Độ đo tương tự trong xử lý ảnh . 30

Chương 2: MỘT SỐ PHưƠNG PHÁP XÁC ĐỊNH ĐỘ ĐO TưƠNG TỰ . 32

2.1. Độ đo dựa trên khoảng cách . 32

2.1.1. Độ đo khoảng cách min – max. 32

2.1.2. Độ đo khoảng cách Euclid . 32

2.1.3. Độ đo khoảng cách toàn phương: . 32

2.2. Độ đo sử dụng trọng số . 32

2.2.1. Độ đo có trọng số: . 32

2.2.2. Độ đo hỗn hợp . 33

2.2.2.1. Thuộc tính rời rạc . 33

2.2.2.2. Thuộc tính có thứ tự . 34

2.2.2.3. Thuộc tính liên tục . 35

2.2.2.4. Kết hợp độ đo của các thuộc tính . 36

2.2.2.5. Thuật toán nhanh cho thuộc tính liên tục . 38

2.2.2.6. Thuật toán nhanh cho thuộc tính có thứ tự . 40

2.3. Độ đo tương tự có thể học (Trainable similarity measure) . 41

2.4. Độ đo dựa trên Histogram . 43

2.4.1. Giới thiệu . 43

2.4.2. Định nghĩa . 43

2.4.3. Lược đồ mức xám hai chiều. 44

2.4.4. Các tính chất của lược đồ mức xám . 45

2.4.5. Quan hệ giữa lược đồ mức xám và ảnh . 46

2.4.6. Một chiều . 46

2.4.7. Hai chiều . 47

CHưƠNG 3: ỨNG DỤNG ĐỘ ĐO TưƠNG TỰ TRONG VIỆC PHÂN

LOẠI ẢNH TRONG FILE VIDEO . 49

3.1. Giới thiệu bài toán . 49

3.2. Cài đặt thuật toán . 49

3.2.1. Code đọc ảnh . 49

3.2.2. Code đọc và extract frame file video . 56

3.3. Kết quả thực nghiệm và đánh giá . 59

PHẦN KẾT LUẬN . 62

TÀI LIỆU THAM KHẢO .

pdf63 trang | Chia sẻ: maiphuongdc | Lượt xem: 3030 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu một số kỹ thuật xác định độ đo tương tự và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
reen), lam (blue). Không gian màu RGB cũng gồm có 3 thành phần màu: Red, Green, và Blue. Những thành phần này được gọi là màu gốc để cộng vào, vì mỗi màu được tạo nên bằng cách cộng thêm các phần tử vào màu đen(0,0,0). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20 Hình 1.8. Không gian RGB Hình 1.9. Không gian RGB Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21 Hình 1.10. Không gian RGB - Không gian màu CMY Không gian CMY được dùng chủ yếu trong in ấn. CMY là viết tắt của Cyan-Magenta-Yellow (màu lục lam, màu đỏ tươi, màu vàng), đó là ba màu chính tương ứng với ba màu mực in. Chúng được gọi là những màu gốc để trừ, vì mỗi màu trong không gian CMY được tạo ra thông qua việc hấp thu độ sáng. Cyan hấp thu sự chiếu sáng của màu đỏ, Magenta hấp thu màu xanh lục, Yellow hấp thu màu xanh dương. Hình 1.11. Không gian CMY Mối quan hệ giữa RGB và CMY : C = 1 – R M = 1 – G Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 22 Y = 1 - B - Không gian màu HSV Mô hình HSV(Hue, Saturation, Value), còn gọi là HSB (Hue, Saturation, Brightness) định nghĩa một không gian màu gồm có 3 thành phần tạo nên : Hue, loại màu (chẳng hạn màu đỏ, xanh, hay vàng) Có giá trị từ 0 - 360 hoặc từ 0 - 2đ Saturation, độ thuần khiết của màu Có giá trị từ 0 – 100%, thường được chuẩn hoá về 0 – 1. Độ thuần khiết của một màu càng thấp, độ xám của màu đó càng nhiều và màu đó càng mờ. Value, độ sáng của màu Có giá trị từ 0 – 100%, thường được chuẩn hóa về 0 – 1. Mô hình HSV được tạo ra từ nãm 1978 bởi Alvy Ray Smith. Nó là một phép biến đổ i phi tuyến của không gian màu RGB. Mô hình HSV giúp tách bạch màu (H, S) và độ sáng (V), phù hợp với cảm nhận của con người. 1.1.2.5. Lược đồ màu (Color Histogram) * Định nghĩa Lược đồ màu của ảnh cho biết sự phân bố của các màu trong ảnh. n in iH ][ ][  Trong đó : i là một bin màu, nếu ảnh độ xám thì i[0,255] , nếu ảnh màu RGB thì i [0,224 ] n[i] : số điểm ảnh có giá trị màu là i n : tổng số điểm ảnh Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 23 Hình 1.12. Lược đồ màu ứng với frame Hình 1.13. Mắt người không nhạy cảm với sự thay đổi màu sắc Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 24 Để cải tiến phù hợp cho việc ứng dụng trong tìm kiếm, các màu trong không gian màu HSV được định lượng trước khi tính lược đồ màu. Có nhiều cách định lượng, một trong những cách đó là chia Hue thành 18 vùng, chia Saturation thành 3 vùng chia Value thành 3 vùng Khi đó, tổng số màu bằng HxSxI = 162 màu, chi phí tính toán và lư u trữ giảm đi rất nhiều, và lược đồ màu này rất thích hợp cho việc truy tìm thông tin thị giác. Hình 1.14. Các màu đã được định lượng trong không gian HSV * Ý nghĩa của lược đồ màu Đối với một màu ci, Hci(I) thể hiện số điểm ảnh có màu ci trong ảnh I. Nói cách khác, với mỗi điểm ảnh trong ảnh I, Hci(I) thể hiện xác suất điểm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 25 ảnh đó có màu là ci. Không có mang thông tin về không gian. * Đánh giá ưu điểm, khuyết điểm Ưu điểm - Tính toán lược đồ màu ít tốn chi phí, đơn giản, nhanh chóng. - Lược đồ màu bất biến đối với một số phép biến đổi hình học như phép biến đổi Affine : tịnh tiến, xoay, sự co, giãn. Khuyết điểm Lược đồ màu chỉ xét phân bố toàn cục về màu của ảnh mà không xét đến yếu tố cục bộ về vị trí, làm mất thông tin về quan hệ không gian giữa các màu. Dẫn đến việc có thể có nhiều ảnh khác nhau nhưng lại có cùng lược đồ màu Ứng dụng Được ứng dụng nhiều trong việc phân đoạn video và truy tìm thông tin thị giác. 1.1.2.6. Lược đồ tương quan màu (Color Correlogram) * Giới thiệu lược đồ tương quan màu Quan sát thấy rằng lược đồ màu thiếu thông tin về cách mà màu sắc được phân bố theo không gian, Một đặc trưng mới được giới thiệu gọi là lược đồ tương quan màu. Lược đồ tương quan màu hứa hẹn mô tả không chỉ là phân phối màu của các điểm ảnh mà còn là sự tương quan về không quan giữa các cặp màu. * Tính lược đồ tương quan màu Gọi [D] là tập gồm D khoảng cách d1 , d 2 ,..., d D được đo bằng độ đo L . Lược đồ tương quan màu của ảnh I được xác định với cặp màu ci , c j và khoảng cách d như sau: ]|||[Pr)( 212 , )( , 21 dppIpI Lc IpIp d cc j c ji    Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 26 Trong đó I là ảnh, kích thước MxN (Điểm ảnh), I c  p  I | Ip c, lược đồ tương quan màu thể hiện xác suất cặp điểm ảnh bất kỳ p1và p2 chịu sự ràng buộc về màu ( p1 có màu ci, p2 có màu c j ) và vị trí ( p1  p2 |L  d ). * Lược đồ tự tương quan màu Nếu chúng ta xét đến tất cả sự kết hợp có thể có của các cặp màu, kích thước của lược đồ tương quan màu sẽ rất lớn, hơn nữa, thời gian tính toán sẽ lâu. Do đó, một phiên bản đơn giản hơn được sử dụng, gọi là lược đồ tự tương quan màu. Lược đồ này chỉ quan tâm đến sự tương quan về không gian giữa những màu giống nhau và do đó giảm được số chiều và chi phí tính toán. Lược đồ tự tương quan màu được xác định như sau: )()( )(, )( II dcc d c   c ( d) (I ) là lược đồ tự tương quan màu của ảnh I ứng với màu c và khoảng cách d. * Ứng dụng - Dùng trong việc phân đoạn video - Tạo chỉ mục và so sánh ảnh - Định vị đối tượng, theo vết đối tượng So với lược đồ màu, lược đồ tự tương quan màu cho những kết quả truy tìm tốt hơn nhưng tốn chi phí nhiều hơn. 1.1.2.7. Đặc trưng chuyển động (Motion) * Giới thiệu Chuyển động là một trong những đặc trưng của dữ liệu video. Đây là một đặc trưng nổi bật của video mà ảnh tĩnh không có. Đặc trưng chuyển động được sử dụng rất rộng rãi trong các nghiên cứu cũng như cài đặt ứng dụng xử lý video số. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 27 Hình 1.15. Đặc trưng chuyển động * Lược đồ chuyển động Nếu như lược đồ màu thể hiện sự phân phối màu trong ảnh thì lược đồ chuyển động cho thấy sự phân phối chuyển động của các khung hình liên tiếp. Sự phân phối này được thể hiện dưới dạng các góc chuyển động. - Thuật toán tính lược đồ chuyển động Chia khung hình thành n khối điểm ảnh, và định lượng các góc từ 0 đến 360 độ thành 8 phần : 0o-44o, 45o-89o,…, 315o-359o. Bước 1: khởi động mảng các góc đã định lượng : H [i] 0 , với i từ 0 đến 7. Bước 2: Xét một khối điểm ảnh của khung hình hiện tại, tính độ dịch chuyển của nó bằng cách : trong khung hình tiếp theo, tìm khối có sự khác biệt đặc trưng nhỏ nhất so với khối đang xét và sự khác biệt này cũng nhỏ hơn một ngưỡng định trước. Mục đích của bước này là để xem khối này dịch chuyển đến vị trí nào. Nếu không tìm thấy thì xem như khối điểm ảnh này không di chuyển. Bước 3 : Sau khi tính độ dịch chuyển, dễ dàng tính được góc dịch chuyển của khối và định lượng góc đó về một giá trị a, a nằm trong khoảng từ 0 đến 7. Bước 4 : tăng giá trị của H [a] H [a] 1 . Quay lại bước 2 cho đến khi tính hết tất cả các khối điểm ảnh của khung hình. ảnh tại vị trí điểm ảnh đang xét. Lặp lại bước 2 cho đến khi tính hết các điểm ảnh trong khung hình. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 28 Sau khi tính toán cho tất cả điểm ảnh trong khung hình, ta có được 2 ảnh chuyển động của khung hình theo 2 phương . - Ý nghĩa Ảnh chuyển động cho biết độ lớn chuyển động theo 2 phương của mỗi điểm ảnh của khung hình. Tại vị trí nào đó mà ảnh chuyển động có giá trị lớn thì điểm ảnh đó chuyển động càng nhiều. 1.1.2.8. Các bước thao tác với file video [1] AVI là chuẩn video thường được tích hợp trong các thư viện của các môi trường lập trình. Để xử lý video, cần có các thao tác cơ bản để chuyển về xử lý ảnh các khung hình (các frames). Bƣớc 1: Mở và đóng thƣ viện Trước mọi thao tác với file AVI, chúng ta phải mở thư viện: AVIFileInit( ) Hàm này không cần tham số, có nhiệm vụ khởi động thư viện cung cấp các hàm thao tác với file AVI. (Đó là thư viện vfw32.lib, được khai báo trong file vfw.h). Sau tất cả các thao tác bạn phải nhớ đóng thư viện đã mở lúc đầu, chỉ bằng lệnh: AVIFileExit( ) Nếu thiếu bất cứ hàm nào, dù là mở hay đóng thư viện thì trình biên dịch đều sẽ thông báo lỗi. Bƣớc 2: Mở và đóng file AVI để thao tác: Sau khi mở thư viện, bạn phải mở file AVI bạn định thao tác: AVIFileOpen(PAVIFILE* ppfile, LPCSTR fname, UINT mode, CLSID pclsidHandler) Thực chất, hàm này tạo ra một vùng đệm chứa con trỏ trỏ đến file có tên là fname cần mở. Và ppfile là con trỏ trỏ đến vùng bộ đệm đó. Tham số Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 29 mode quy định kiểu mở file; chẳng hạn OF_CREATE để tạo mới, OF_READ để đọc, OF_WRITE để ghi …. Tham số cuối dùng là NULL. Trước khi đóng thư viện, bạn phải đóng file AVI đã mở, bằng cách dùng hàm: AVIFileRelease(PAVIFILE pfile) Trong đó, pfile là con trỏ trỏ đến file cần đóng. Bƣớc 3: Mở dòng dữ liệu hình ảnh hay âm thanh trong file AVI đã mở ra để thao tác: AVIFileGetStream(PAVIFILE pfile, PAVISTREAM * ppavi, DWORD fccType, LONG lParam) Trong đó, pfile là con trỏ đến file đã mở; ppavi trỏ đến dòng dữ liệu kết quả; fccType là loại dòng dữ liệu chọn để mở, là streamtypeAUDIO nếu là tiếng và streamtypeVIDEO nếu là hình,…lParam đếm số loại dòng được mở, là 0 nếu chỉ thao tác với một loại dòng dữ liệu. Sau các thao tác với dòng dữ liệu này, bạn nhớ phải đóng nó lại: AVIStreamRelease(PAVITREAM pavi). Bƣớc 4: Trƣờng hợp thao tác với dữ liệu hình của phim Chuẩn bị cho thao tác với khung hình (frames): AVIStreamGetFrameOpen(PAVISTREAMpavi,LPBITMAPINFOHEADER lpbiWanted) Trong đó pavi trỏ đến dòng dữ liệu đã mở, lpbiWanted là con trỏ trỏ đến cấu trúc mong muốn của hình ảnh, ta dùng NULL để sử dụng cấu trúc mặc định. Hàm này trả về đối tượng có kiểu PGETFRAME để dùng cho bước 5. Sau khi thao tác với các frame rồi, phải gọi hàm : AVIStreamGetFrameClose(PGETFRAME pget) Bƣớc 5: Thao tác với frame Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 30 Dùng hàm AVIStreamGetFrame(PGETFRAME pget, LONG lpos) Hàm này trả về con trỏ trỏ đến dữ liệu của frame thứ lpos. Dữ liệu đó có kiểu là DIB đã định khối. Thực hiện các thao tác mong muốn. 1.2. Độ đo tƣơng tự trong xử lý ảnh[3] Hiện nay trên thế giới có rất nhiều phương tiện dùng để thu thập thông tin và lưu dưới dạng số hoá. Trong khi lưu trữ các thông tin này người sử dụng gặp phải vấn đề với quá nhiều hình ảnh khác nhau và vấn đề quản lý những hình ảnh này. Rất nhiều các nhà lập trình đã tiếp cận và tạo ra hệ thống để quản lý một cách có hiệu quả nhất tức là dùng bộ nhớ thị giác của máy tính để lưu trữ và đối sánh những hình ảnh này. Nghiên cứu “sự tương tự” (thường ở dạng đối ngẫu của nó là “khoảng cách”) thuộc phạm vi toán học, chẳng hạn trong lý thuyết tôpô và xấp xỉ; nhưng trong khoa học máy tính và các ứng dụng máy tính có phần khác. Trong khoa học máy tính, phép tính xấp xỉ thường được sử dụng theo một lối không có tính hệ thống (non-systematic) và không theo thể thức (ad-hoc). Trong ngữ cảnh này, khái niệm “sự tương tự” xuất hiện ở nhiều dạng, diễn xuất, và nhiều ứng dụng. Khái niệm “sự tương tự” có nhiều dạng khác nhau. Bất chấp những khác biệt, chúng đều có điểm chung: “sự tương tự” được sử dụng để so sánh hai (hay nhiều) đối tượng, hai hoàn cảnh, hai vấn đề, v.v… với nhiều nguyên do khác nhau. Luôn có mục đích nào đó với một phép so sánh như thế, bởi vì một hành động tiếp sau đó được thực hiện và cuối cùng thì một vấn đề nào đó phải được giải quyết. Vì lý do đó, hai đối tượng được đem so sánh giữ những vai trò khác nhau. Đối tượng thứ nhất đang được xem xét và được gọi là vấn Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 31 đề (problem). Đối tượng thứ hai là đã biết và đã lưu; thường được gọi là bản mẫu (prototype) hay tình huống (case). - Trong diễn xuất hình ảnh (Image Interpretation), các hình ảnh được diễn xuất theo ý nghĩa của chúng và chúng được so sánh với nhau. Ví dụ, một ảnh y khoa thực tế và một ảnh không có bệnh lý nào đó được so sánh với nhau; độ tương tự giữa những ảnh này được sử dụng để cho biết ảnh thực kia có chứa bệnh lý hay không. Xác minh hình ảnh (Image Identification) cũng thuộc về lĩnh vực này. - Trong tâm lý học nhận thức và xã hội (Cognitive and Social Psychology), “sự tương tự” là cái gì đó chủ quan; ám chỉ thái độ, giá trị, sở thích, và cá tính giữa những con người tương xứng mức độ nào. Có nhiều dạng mô hình về sự tương tự trong tâm lý học, bốn mô hình nổi bật là hình học (geometric), đặc tính (featural), dựa trên canh lề (alignment-based), và biến đổi (transformational). - Trong lĩnh vực an ninh, quốc phòng để xác định đối tượng ảnh khi muốn xác định vân tay, kiểm tra những băng đĩa mang những nội dung cần kiểm soát... Độ đo tương tự là một trong những phương pháp tốt để máy tính phân biệt được các hình ảnh qua nội dung của chúng. Thông thường hệ thống CBIR(content-based image retrieval) sẽ truy vấn hình ảnh bằng phương pháp đo tương tự dựa trên các chức năng, việc xác định nó có thể dưới nhiều hình thức như phát hiện biên, màu sắc, vị trí điểm ảnh… các phương pháp như histogram, màu sắc và phân tích histogram dòng cột sử dụng biểu đồ để xác định độ tương tự. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 32 Chƣơng 2: MỘT SỐ PHƢƠNG PHÁP XÁC ĐỊNH ĐỘ ĐO TƢƠNG TỰ 2.1. Độ đo dựa trên khoảng cách 2.1.1. Độ đo khoảng cách min – max Được thực hiện dựa trên ý tưởng lấy phần giao của hai lược đồ cần so sánh, ta sẽ được một lược đồ, tính tổng các giá trị có được từ lược đồ này cho ta được độ đo min – max Đối với độ đo min: ta tính dựa vào giá trị min tại mỗi K bin Intersection (h(I), h(M) =   K j 1 h(M)[j]}{h(I)[j],min Đối với độ đo max: ta tính dựa vào giá trị max tại mỗi K bin Intersection (h(I), h(M) =   K j 1 h(M)[j]}{h(I)[j],max Matching(h(I),h(M)) =        ii iMhiIh MhIhtionInter ])[(,])[(max ))(),((sec 2.1.2. Độ đo khoảng cách Euclid Đây là cách tính khoảng cách Euclid thông thường giữa các K bin: Intersection (h(I), h(M) =   K j 1 2h(M))-(h(I) Hoặc có thể là: Intersection (h(I), h(M) =    K j MhIh 1 )()( 2.1.3. Độ đo khoảng cách toàn phương: Intersection (h(I), h(M) =     K j K j ij jhihajhih 1 1 )]()([)()([ 2.2. Độ đo sử dụng trọng số 2.2.1. Độ đo có trọng số: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 33 dhist(I,Q) = (h(I) – h(Q)) T A(h(I) – h(Q)) trong đó, h(I) và h(Q) là những lược đồ tương ứng của ảnh I và Q và A là ma trân đồng dạng K x K. Trong ma trận này, những màu mà rất giống nhay thì gần với giá trị một còn những màu khác nhau thì sẽ cí giá trị gần với không. 2.2.2. Độ đo hỗn hợp Một trong các độ đo hỗn hợp (độ đo MSM) được đưa ra bởi Goodall [1]. Để tính độ đo giống nhau giữa các đối tượng, đầu tiên ta tính độ đo cho từng thuộc tính, sau đó kết hợp lại. Dưới đây ta sẽ lần lượt xét các độ đo cho từng loại thuộc tính liên tục và rời rạc. Ngoài ra, ta cũng xét độ đo cho loại thuộc tính thứ tự trên thuộc tính rời rạc. 2.2.2.1. Thuộc tính rời rạc Loại thuộc tính đầu tiên mà ta xét là thuộc tính rời rạc. Các giá trị khác nhau thuộc tính không thể được so sánh. Ta coi cặp các giá trị khác nhau có độ giống nhau bằng 0; cặp các giá trị trùng nhau có độ giống nhau khác 0 và phụ thuộc vào xác suất xuất hiện của cặp giá trị đó. Cặp giá trị trùng nhau có xác suất xuất hiện nhỏ hơn sẽ có độ giống nhau lớn hơn. Kí hiệu Vi là các giá trị khác nhau của thuộc tính. Xác suất xuất hiện của các giá trị này là 1,1, 1    n i ii pnip . Kí hiệu Sij là độ giống nhau của cặp giá trị Vi và Vj, ta có: 0 0 ij ij i j S i j S       ngoài ra,      i k ij kli j k l p p S S       Gọi Pij là xác suất xuất hiện một cặp giá trị có độ giống nhau lớn hơn cặp (Vi, Vj). Dễ thấy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 34 2 , 1,          k k Q ij p i j P i j trong đó   : k iQ k p p  Từ đó, suy ra 21 , 1 0,             k k Q ij ij p i j S P i j với Q được xác định theo công thức ở trên. Trong thực tế, các giá trị xác suất pi là không biết trước nhưng ta có thể xấp xỉ các giá trị này bằng tần suất xuất hiện của chúng trong tập mẫu. Gọi m là số lượng các phần tử trong tập mẫu và fi là tần suất của giá trị Vi, độ đo giống nhau có thể được tính xấp xỉ bởi     1 1 , 1 0,            k k ij k Q f f i j S m m i j trong đó   : k iQ k f f  2.2.2.2. Thuộc tính có thứ tự Trong trường hợp này, ta cần phải tính tới tính có thứ tự trong độ đo giống nhau. Do có tính thứ tự nên thông thường một cặp giá trị sẽ có độ giống nhau nhỏ hơn so với các cặp giá trị nằm giữa chúng. Ví dụ, ta nói cặp (B, C) sẽ có độ giống nhau lớn hơn cặp (A, C) và (B, E). Tuy nhiên, ta không thể có sự so sánh như vậy với hai cặp (A, C) và (B, E). Trong trường hợp này, chúng ta lại sử dụng đến xác suất xuất hiện của các giá trị. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 35 Giả sử các giá trị của thuộc tính là 1 2, ,..., nV V V . Theo cách hiểu thông thường và lập luận ở trên, ta có      i k ij kli j k l p p S S           ij kli j k l S S        ij ik jk iki j k S S S S      và       j l t t ij kl t i t k i j k l p X S S                       j l t t ij kl t i t k i j k l p X S S                 Xác suất ijP để xuất hiện một cặp có độ giống nhau hơn cặp  ,i jV V là 2 ,ij k k Q P p i j    với   : k iQ k p p  và 1 2 1 1 1 2 , n n ij k k l k k l k P p p p i j          trong đó  là số thoả mãn 1j t t t t k t i t k p p p           Trong trường hợp phải tính xấp xỉ, ta sử dụng công thức           1 1 1 1 1 , 1 1 2 , 1 1                       i i k Q ij n n i i k l k k l k f f i j m m P f f f f i j m m m m 2.2.2.3. Thuộc tính liên tục Với thuộc tính liên tục, ta sẽ sử dụng khoảng cách – trị tuyệt đối của hiệu của hai giá trị – làm tiêu chuẩn chính trong việc đo độ giống nhau. Cặp của hai giá trị trùng nhau thì có độ giống nhau lớn hơn cặp của hai giá trị khác Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 36 nhau; cặp có khoảng cách nhỏ hơn sẽ giống nhau hơn cặp có khoảng cách lớn hơn. Và khi các cặp có cùng khoảng cách ta sẽ sử dụng đến xác suất. Ta có:     i j k l ij kl j l i j k l t t ij kl t i t k j l i j k l t t ij kl t i t k V V V V S S V V V V p p S S V V V V p p S S                                      Tương tự, xác suất Pij là 2 2 i jk i i t i Q t T P p p p              trong đó       : 1i jQ i j k p p i n         và      :                                       t i k j k ti t i k j u u u j u i V V V V T t i t n V V V V p p Công thức để tính gần đúng độ giống nhau trong trường hợp này:     1 1 2 1 i jk i i i t i Q t T P f f f f m m                 2.2.2.4. Kết hợp độ đo của các thuộc tính Trong các phần trên ta đã xét độ giống nhau cho từng thuộc tính riêng rẽ. Độ đo giống nhau cho cặp hai đối tượng sẽ được kết hợp từ các độ đo này. Để có thể kết hợp được, ta phải giả sử là các giá trị của các thuộc tính của một đối tượng là độc lập với nhau. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 37 Kí hiệu Og và Oh là hai đối tượng cần tính độ giống nhau và k ghP là xác suất xuất hiện cặp giá trị của thuộc tính k có độ giống nhau lớn hơn cặp  ,k kg hv v . Ta định nghĩa quan hệ giữa hai đối tượng như sau: 1 1      t t k k gh ij gh ij k k P P S S trong đó t là số lượng thuộc tính và S là kí hiệu chỉ độ giống nhau giữa hai đối tượng. Nếu kí hiệu 1 gh ghP S là xác suất xuất hiện một cặp đối tượng có độ giống nhau lớn hơn cặp (Og, Oh), thì tương tự như đối với thuộc tính riêng rẽ, ta có: 1 1   t t k l gh i j Q k l p pP trong đó k ip là xác suất xuất hiện giá trị thứ i của thuộc tính thứ k và Q là tập tất cả các cặp đối tượng (Oi, Oj) thoả mãn 1 1    t t k k ij gh k k P P Việc tính chính xác S theo công thức trên yêu cầu số lượng tính toán rất lớn và trong thực tế người ta thường tính xấp xỉ nó bằng các phân bố của Fisher và Lancaster như sau  2 22 0 1 2 !       i t i e i P trong đó 1d ct t t   và 2 2 2 d c    , với 2 1 2 ln     ct k c k P cho các thuộc tính liên tục (phân bố Fisher) và ' ' 2 ' 1 ln ln 2 1          dt k k k k d k k k P P P P P P cho thuộc tính rời rạc (phân bố Lancaster). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 38 2.2.2.5. Thuật toán nhanh cho thuộc tính liên tục Để tính độ đo giống nhau trong trường hợp thuộc tính liên tục, ta cần phải duyệt qua các xác suất xuất hiện của giá trị của thuộc tính. Do đó, độ phức tạp tính toán trong trường hợp này là ( )n , với n là số lượng giá trị. Trong trường hợp thuộc tính liên tục (số), nếu tính trực tiếp theo công thức MSM như C. Li và G. Biswas [2] đề nghị thì độ phức tạp tính toán trong trường hợp xấu nhất là 2( )n . Chúng tôi đã đề xuất cách tính gián tiếp độ đo cho kết quả hoàn toàn trùng khớp những chỉ với độ phức tạp tính toán là ( )n như nêu trong [3, 4, 5]. Ý tưởng chính của phương pháp này là không tính trực tiếp độ đo theo công thức 2 2 i jk i i t i Q t T P p p p              trong đó T là tập các chỉ số t ( k t n  ) thoả mãn t i k jV V V V   hoặc   k t t i k j u u u j u i V V V V p p               mà tính gián tiếp thông qua 1jk jkS P  . Ta chỉ cần quan tâm đến trường hợp j k , bời vì khi j = k thì 2 jk i i Q P p   , với   : i kQ i p p  và tính Pjk với độ phức tạp tuyến tính. Dễ thấy, 1 1 2 , i n jk jk i t i t T S P p p j k              với iT là tập      : k t i t i k j t i k j u u u j u i T t V V V V V V V V p p i t n                                  Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 39 Ta có thể viết iT ở dạng đơn giản hơn như sau   0:i i iT t t t n T    trong đó it là giá trị nhỏ nhất còn thoả mãn t i k jV V V V   và 0 iT là tập chỉ số t thoả mãn   k t t i k j u u u j u i V V V V p p               . Chú ý rằng 0 iT hoặc là rỗng hoặc chỉ có một phần tử. Công thức tính Sjk còn có thể biến đổi như sau   1 2 1 , n jk i i i S p s j k     trong đó, 0 1 1 i it T i t t s p      Tính Sjk theo công thức này ta có thể tận dụng si tính được trong bước trước. Dưới đây là thuật toán với độ phức tạp tuyến tính. Một số kí hiệu trong thuật toán sij: độ đo giống nhau của cặp giá trị (Vi, Vj). sumij: tổng các tần xuất từ i tới j. dij: trị tuyệt đối của hai giá trị Vi và Vj. beforek: tổng các tần xuất từ 1 tới k – 1. sumt: tổng các tần xuất 1 tới t. f[k]: tần xuất của giá trị thứ k. n: số lượng giá trị của thuộc tính. Thuật toán (cho trường hợp i j ) t = 1; beforek = 0.0; sumt = 0.0; sij = 0.0; sumij = 0.0; dij = abs(v[j] – v[i]); for k = i to j do sumij = sumij + f[k]; for k = 1 to n do { Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 40 if (v[k] + dij <= v[n]) { if (k > 1) beforek = beforek + f[k-1]; while (t <= n and abs(v[t] – v[k] <= dij)) { sumt = sumt + f[t]; t = t + 1; } sij = sij + 2 * f[k] * (1 – sumt); if (abs(v[t – 1] – v[k]) = dij and sumt – beforek <= dij) sij = sij + 2 * fk * f[t – 1]; } } 2.2.2.6. Thuật toán nhanh cho thuộc tính có thứ tự Áp dụng phương pháp tương tự như đối với thuộc tính liên tục, ta cũng có thể tính độ đo giống nhau cho thuộc tính có thứ tự với độ phức tạp tuyến tính. Trước hết ta viết lại biểu thức tính Pij dưới dạng 1 2 1 1 1 1 2 1 1 1 2 1 2 2 2 n n ij k k l k k l k n n k k l k l k n n k l k k l k P p p p p p p p p p p p                                         trong đó  thoả mãn   1 1 j t t t t k t i t k k p p p                     . Ta có thể viết lại 1 2 n ij k l k k l k P p p p             với  bây giờ có thể nhận thêm giá trị k. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 41 Sử dụng các kí hiệu như trên, thuật toán tính nhanh cho thuộc tính có

Các file đính kèm theo tài liệu này:

  • pdf10LV09_CNTT_KHMTTranQuangHuy.pdf