Luận văn Xác định một vài thông số đặc trưng của chùm electron năng lượng 6 MeV, 9 MeV và 15 MeV phát ra từ máy gia tốc PRIMUS dùng trong xạ trị

Nhiệm vụ của luận văn là xác định phân bố liều của chùm tia electron phát ra từ máy gia tốc

PRIMUS – Siemens. Trong thực nghiệm ta tiến hành đo liều hấp thụ trong các phantom. Do cấu

tạo mô cơ thể con người chủ yếu là nước nên người ta sử dụng môi trường nước để đo liều hấp thụ

(gọi là phantom nước) khi tính toán liều để điều trị chính xác nhất. Nhưng trên thực tế, khi đo liều

lượng thường ngày không cần thiết đến loại phantom nước to, cồng kềnh, mà dùng loại phantom

đặc biệt tiện lợi hơn. Loại phantom này không nhất thiết phải có mật độ vật chất chính xác như mô

cơ thể mà chỉ gần đúng. Đó là các tấm mỏng làm bằng polystyrence có tỉ trọng lớn hơn nước một

chút. Trong đó có lỗ khoan để đặt đầu đo đúng với độ sâu đo liều tham khảo là 5 cm.

Việc đo liều hấp thụ trong các phantom có mật độ vật chất giống với mô cơ thể người nhằm mục

đích tính toán được liều hấp thụ trong cơ thể bệnh nhân điều trị bằng tia xạ. Tuy nhiên việc hấp thụ

trong môi trường lại tỷ lệ thuận với liều chiếu.

pdf79 trang | Chia sẻ: maiphuongdc | Lượt xem: 2987 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận văn Xác định một vài thông số đặc trưng của chùm electron năng lượng 6 MeV, 9 MeV và 15 MeV phát ra từ máy gia tốc PRIMUS dùng trong xạ trị, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
h 1.3. Ở mức liều thấp, đường cong có một đoạn suy giảm chậm. Khoảng này tương ứng với khả năng tự phục hồi của tế bào bị tổn thương. Hình 1.3: Mối tương quan giữa liều lượng hấp thụ và tỷ lệ sống sót của tế bào Tuy nhiên ở liều cao hơn, khả năng sửa chữa của tế bào đạt ở mức bão hòa, tỷ lệ sống sót giảm rất nhanh theo quy luật hàm mũ. Hình 1.4 chỉ sự phụ thuộc độ sai sót của nhiễm sắc thể vào liều lượng. Các mối tương quan hiệu ứng - liều tương tự cũng quan sát thấy đối với hiệu ứng đột biến. Tùy theo liều lượng bức xạ do cơ thể hấp thụ ít hay nhiều mà các biến đổi nói trên có thể được phục hồi. Ngoài các yếu tố liều lượng, tác hại của bức xạ còn phụ thuộc vào yếu tố thời gian. Cùng với một liều lượng bức xạ, nếu cơ thể hấp thụ làm nhiều lần, thì các biến đổi về bệnh lý ít xảy ra hơn so với trường hợp hấp thụ ngay một lúc. Nguyên nhân này liên quan tới khả năng tự phục hồi của tế bào ở cơ thể sống. Hình 1.4: Mối tương quan giữa liều hấp thụ và sai sót của nhiễm sắc thể 1.4. Phương pháp xạ trị dùng chùm electron 1.4.1. Khái niệm và mục đích xạ trị Phương pháp xạ trị là tên gọi ngắn gọn của phương pháp điều trị bằng tia xạ trong y học, là một trong ba phương pháp chính được sử dụng hiện nay để điều trị bệnh ung thư cùng với hai phương pháp là phẫu thuật và hóa chất [1, 6]. Xạ trị là quá trình điều trị sử dụng các bức xạ ion hóa hay các tia xạ với liều lượng thích hợp chiếu tới khối u nhằm tiêu diệt các tế bào ung thư đồng thời gây ra tổn thương nhỏ nhất cho các tế bào lành xung quanh. Mục đích của phương pháp xạ trị là nhằm phá hủy các tế bào ung thư và ngăn chặn sự phát triển thêm nữa và sự lây lan của các khối u. Điều trị bằng tia xạ sử dụng độc lập có thể chữa khỏi nhiều loại ung thư còn ở giai đoạn khu trú tại chỗ như ung thư da, ung thư vòm họng, ở vùng đầu, cổ,…. Phương pháp này cũng có thể được sử dụng kết hợp với phương pháp phẫu thuật trong những trường hợp ung thư đã phát hiện tương đối lớn. Khi đó có thể chiếu xạ trước để giảm bớt kích thước khối u cho dễ mổ, hạn chế sự di căn lúc mổ. Cũng có thể sử dụng chiếu xạ sau khi mổ để diệt nốt những tế bào ung thư còn sót lại. Cũng có thể kết hợp cả xạ trị trước và sau khi mổ. Tùy theo từng trường hợp ta có thể lựa chọn phương pháp điều trị sao cho đạt hiệu quả cao nhất. Phương pháp xạ trị cũng có thể kết hợp với những phương pháp điều trị hóa chất để tiêu diệt những tế bào ung thư tại khu vực mà điều trị hóa chất không thể tiêu diệt được. 1.4.2. Nguyên tắc điều trị bằng tia xạ Phác đồ điều trị phải dựa trên những nguyên tắc sau [2]:  Đánh giá sự lan rộng của khối u bằng các biện pháp CT scanner, X - quang, phóng xạ… để biết thể tích cần chiếu.  Biết rõ những đặc điểm bệnh lý của khối u.  Chọn lựa phương pháp thích hợp: Chỉ dùng xạ trị hay phối hợp phẫu thuật, hóa chất… hay chọn phối hợp cả hai phương pháp, chọn loại tia thích hợp, chiếu từ ngoài vào hay đặt tại khối u.  Quy định liều tối ưu và thể tích dựa trên vị trí giải phẫu, loại tổ chức học, độ ác tính… và những cấu trúc lành trong vùng chiếu xạ. Bác sĩ không bao giờ do dự trong việc thay đổi những điều đã quy định với những điều phát sinh.  Đánh giá từng giai đoạn về thể lực của bệnh nhân, sự đáp ứng của khối u và thể trạng của tổ chức lành trong khu vực điều trị. Bác sĩ điều trị phải cùng làm việc chặt chẽ với đội ngũ vật lý, kế hoạch điều trị và bộ phận đo lường, không thể nhầm lẫn được khi đánh giá lâm sàng, hiểu sai về những quan niệm vật lý, không hoàn hảo về phác đồ điều trị và thực hiện phác đồ. 1.4.3. Các phương pháp xạ trị Có hai phương pháp xạ trị phổ biến đã và đang được sử dụng là xạ trị ngoài (hay còn gọi là xạ trị từ xa) và xạ trị trong (hay còn gọi là xạ trị áp sát). Xạ trị trong (hay còn gọi là xạ trị áp sát) là kỹ thuật xạ trị mà khoảng cách từ nguồn phóng xạ đến các khối u là rất nhỏ. Trong phương pháp này người ta sử dụng các nguồn phóng xạ có dạng kim, dạng ống, tube để đưa sát lại vùng có khối u. Có ba cách thực hiện kỹ thuật này: Cách thứ nhất dùng tấm áp bề mặt để điều trị các vùng như da mặt, vùng đầu, vùng cổ,…; Cách thứ hai là dùng các applicator để điều trị ở các khoang tự nhiên của cơ thể; Cách thứ ba người ta sử dụng các kim cắm trực tiếp vào trong các khe, kẽ, trong mô,… Xạ trị ngoài hay còn gọi là xạ trị từ xa là phương pháp xạ trị mà nguồn phát tia ở cách bệnh nhân một khoảng nào đó. Đây là phương pháp rất phổ biến trong điều trị ung thư hiện nay. Phương pháp này được tiến hành với chùm photon từ nguồn phát như nguồn Co60 hoặc chùm phát tia X năng lượng cao được tạo bởi chùm electron đã được gia tốc bởi máy gia tốc tuyến tính lái cho đập vào bia, cũng có thể dùng trực tiếp chùm electron đã được gia tốc phát ra từ máy gia tốc. Nội dung của luận văn này đề cập đến xạ trị trực tiếp bằng chùm eletron được tạo ra từ máy gia tốc PRIMUS – SIEMENS. 1.4.4. Phương pháp xạ trị dùng máy gia tốc a. Các thiết bị xạ trị từ xa Các thiết bị cung cấp chùm bức xạ trong phương pháp xạ trị từ xa gồm có: máy Cobal 60, máy phát tia X và máy gia tốc [1, 6]. Trước đây máy Cobal 60 được sử dụng khá rộng rãi trong phương pháp xạ trị từ xa. Cho đến nay nó vẫn được áp dụng nhiều tại các cơ sở điều trị ung thư và vẫn đóng vai trò quan trọng tại các nước đang phát triển, trong đó có Việt Nam. Máy gia tốc ra đời cùng với sự phát triển, tin học đã tạo ra bước phát triển vượt trội về những đặc tính vật lý cũng như sinh học phóng xạ. Ngày nay tại các nước công nghiệp phát triển, máy gia tốc đã gần như thay thế hoàn toàn các thiết bị cũ trong lĩnh vực điều trị ung thư. Tại các nước đang phát triển, ở các trung tâm điều trị quan trọng, máy gia tốc cũng đang được đưa vào áp dụng. Từ những năm 1960 – 1970 người ta đã chế tạo ra một số máy gia tốc để ứng dụng trong xạ trị. Đó là loại máy gia tốc có nguyên tắc chế tạo dựa trên nguyên lý của máy gia tốc Van de Graaff, máy gia tốc Betatron. Tuy nhiên trong các loại máy gia tốc này cho năng lượng hoặc là ở mức độ thấp hoặc năng lượng cao nhưng suất liều ở đầu ra của chùm tia còn thấp, mặt khác chúng lại khá cồng kềnh nên không thuận tiện cho việc sử dụng trong các kĩ thuật điều trị đồng tâm. Sau này, máy gia tốc tuyến tính (hay còn gọi là máy gia tốc thẳng hoặc Linac) xuất hiện đã trở thành một công cụ vượt trội trong lĩnh vực điều trị bằng phương pháp xạ trị ngoài. Vượt lên hẳn các máy gia tốc được ứng dụng trước đây với suất liều chùm tia cao hơn rất nhiều (khoảng 10 Gy/phút), kích thước trường chiếu rộng, hoàn toàn đồng tâm, đặc biệt lại có kích thước nhỏ gọn hơn và ít ồn hơn. Điều này đã làm cho Linac gạt các loại máy gia tốc kia ra ngoài lề. b. Phương pháp xạ trị dùng máy gia tốc Kỹ thuật xạ trị từ xa trước đây thường được sử dụng những thiết bị tạo chùm tia photon là loại máy Cobalt, máy phát tia X. Đây là những loại máy đơn giản cho năng lượng chùm tia tạo ra không cao. Trong đó máy Cobalt được ứng dụng rộng rãi nhất. Nhưng bất lợi của nó là: - Loại máy này chỉ cho hai loại chùm photon với năng lượng là 1,17 MeV và 1,33 MeV, nghĩa là không điều khiển được năng lượng. - Chùm tia có nhược điểm: độ đâm xuyên kém, liều mặt da cao, liều sâu phần trăm thấp, độ rộng bán dạ của chùm tia lớn. - Có độ rò rỉ bức xạ từ đầu nguồn. Suất liều bức xạ thấp và giảm theo thời gian. Do đó, càng về sau thì thời gian điều trị càng phải kéo dài. Sau khoảng thời gian nào đó (khoảng 5 đến 7 năm) lại phải thay nguồn. - Độ an toàn không cao. Do nguồn Cobalt 60 là nguồn phóng xạ nên nó luôn phát chùm tia ngay cả khi ngừng chiếu xạ và ngay cả khi nguồn không được sử dụng bị thay đi. Kĩ thuật xạ trị từ xa hiện đại nhất là sử dụng máy gia tốc tuyến tính. Trong đó chùm electron được gia tốc bằng sóng cao tần theo nguyên lí gia tốc thẳng rồi được đưa ra ngoài sử dụng để điều trị bằng electron hoặc được lái đập vào bia tạo ra chùm photon. Phương pháp xạ trị sử dụng máy gia tốc tuyến tính là một bước tiến lớn trong kỹ thuật xạ trị hiện đại. Cơ sở của nhận định này là dựa trên những ưu việt của máy gia tốc: - Máy gia tốc có thể cho hai loại chùm tia là chùm electron và chùm photon. - Có thể điều khiển được năng lượng chùm tia phát ra từ máy gia tốc. - Kích thước của vùng bán dạ chùm tia nhỏ, suất liều bức xạ cao. - Không cần thay thế nguồn bức xạ như trường hợp máy Cobalt. - Độ an toàn phóng xạ cao, do máy gia tốc không có nguồn phóng xạ, nó chỉ phát chùm tia khi hoạt động. - Các đặc tính của chùm tia tốt hơn. Để đáp ứng yêu cầu cao nhất cho mục đích xạ trị, máy gia tốc phải được thiết kế đạt yêu cầu cơ bản: - Chùm bức xạ phát ra từ máy gia tốc phải được xác định rõ năng lượng và có thể thay đổi được kích thước. - Liều lượng bức xạ của chùm tia phải đồng đều. - Liều lượng bức xạ phát ra từ thiết bị phải ổn định trong suốt thời gian sử dụng. nghĩa là năng lượng, cường độ và vị trí chùm tia có thể kiểm soát được. - Liều lượng có thể đo đạc một cách chính xác. - Hướng của chùm tia bức xạ có thể thay đổi được để có thể điều chỉnh được đến mọi vị trí khác nhau. - Hệ thống giường điều trị có thể chuyển động được theo ba chiều với độ chính xác cao. - Hệ thống cơ khí ổn định, linh hoạt. Có hệ thống đo liều bức xạ, cảnh báo độ nhiễm phóng xạ, che chắn đảm bảo khi vận hành thiết bị, tự động ngắt máy khi có sự cố. Ở Việt Nam, máy gia tốc trong xạ trị được đưa vào sử dụng đầu tiên vào tháng 01 năm 2001, tại Bệnh viện Ung Thư Trung Ương tạo ra hiệu quả điều trị ung thư rất cao, hầu hết bệnh nhân điều trị đều cho kết quả điều trị rất tốt. Được sử dụng để điều trị ung thư vú, ung thư vòm họng, ung thư cổ tử cung, phổi, não, xoang, hàm, ung thư da,… Bất lợi lớn nhất của phương pháp xạ trị này là chi phí mua sắm, xây dựng cơ bản và bảo dưỡng hàng năm rất lớn. Giá trị một chiếc máy gia tốc khoảng 21 tỉ đồng, thời hạn sử dụng khoảng 15 năm. Tại Mỹ điều trị theo phương pháp này bệnh nhân phải trả 30 000 USD. Còn ở Việt Nam, chi phí phần lớn của bệnh nhân đã được Nhà nước hỗ trợ, bệnh nhân phải trả một phần nhỏ. Đồng thời, để hỗ trợ cho xạ trị cần đến các công đoạn chụp X quang, chụp cắt lớp CT, MRI,… để xác định chu vi, thể tích, vị trí khối u để lập kế hoạch điều trị chính xác. Các công đoạn hỗ trợ cho việc xạ trị bằng máy gia tốc có thể được mô tả trong Hình vẽ 1.5 [7]. Máy gia tốc Accelerator Máy mô phỏng Simulator Hệ thống phần mềm lập kế hoạch điều trị TPS CT - Scanner Máy gia tốc Accelerator Máy mô phỏng Simulator Hệ thống phần mềm lập kế hoạch điều trị TPS CT - Scanner Khuôn chắn tia nhiều lá Giá định vị bệnh nhân Hình 1.5: Mô hình hệ thống xạ trị cơ bản Chương 2. MÁY GIA TỐC PRIMUS – SIEMENS DÙNG TRONG XẠ TRỊ 2.1. Nguyên lý làm việc của máy gia tốc electron 2.1.1. Nguyên lý cấu tạo của máy gia tốc tuyến tính dùng trong xạ trị Máy gia tốc tuyến tính dùng trong xạ trị thường được chia thành năm hệ thống là [2, 14]:  Hệ thống bơm, là một nguồn electron hay còn gọi là súng điện tử  Hệ thống tần số vô tuyến bao gồm nguồn tần số vô tuyến sử dụng magneton hoặc klyston, bộ điều chế, ống dẫn sóng cao tần có chân không thấp trong đó electron được gia tốc,…  Hệ thống vận chuyển chùm tia có vai trò vận chuyển electron trong chân không từ ống dẫn sóng gia tốc tới bia hoặc lá tán xạ.  Hệ thống phụ trợ gồm hệ thống bơm chân không, hệ thống làm lạnh bằng nước, hệ thống chất điện môi bằng ga để truyền vi sóng từ bộ phận phát sóng vô tuyến tới ống dẫn sóng.  Hệ thống theo dõi và chuẩn trực chùm tia. Có thể minh họa các bộ phận chính của một máy gia tốc xạ trị bằng sơ đồ khối đơn giản như Hình 2.1. Hình 2.1: Các bộ phận chính của máy gia tốc xạ trị Bên cạnh đó còn rất nhiều phần khác đi kèm với máy gia tốc là [1]: - Hệ thống collimator chuẩn thông dụng. - Hệ thống laser xác định trục quay của máy, trục thẳng đứng của chùm tia, bộ hiển thị chùm tia bằng ánh sáng nhìn thấy. - Hệ thống camera theo dõi bệnh nhân, hệ thống đàm thoại giữa thầy thuốc và bệnh nhân. - Hệ thống máy tính điều khiển thiết bị; màn hình thông báo các số liệu liên quan tới việc điều trị. - Hệ thống che chắn phóng xạ. - Hệ thống tự ngắt máy gia tốc khi có sự cố. Các hệ thống liên quan đến quá trình điều trị bằng máy gia tốc [1]: - Giường máy có thể điều khiển lên, xuống, quay theo các góc. - Hệ thống tính liều lượng và lập kế hoạch điều trị. - Hệ thống đo liều: máy đo tia phóng xạ, máy đo phòng hộ tia xạ,… - Hệ thống làm khuôn chì,… 2.1.2. Nguyên lý hoạt động của máy gia tốc trong xạ trị Ban đầu, các electron được sinh ra do bức xạ nhiệt từ súng điện tử, do catot được nung nóng. Các electron sinh ra từ súng điện tử được điều chế thành các xung sau đó được phun vào buồng tăng tốc. Buồng tăng tốc có dạng cấu trúc dẫn sóng ở đó năng lượng cung cấp cho electron được lấy từ bộ phát sóng siêu cao tần với tần số khoảng 3000 Mhz. Bức xạ vi sóng phát ra dưới dạng xung ngắn. Các bức xạ này được tạo ra bởi các bộ phát tần số vi sóng, đó là các “van” magnetron và klystron. Klystron thường được dùng với các máy gia tốc năng lượng cao với năng lượng đỉnh là 5 MW hoặc hơn nữa để gia tốc điện tử. Các electron được phun vào ống dẫn sóng sao cho đồng bộ với xung của bức xạ vi sóng để chúng có thể được gia tốc. Hệ thống ống dẫn sóng và súng electron được hút chân không sao cho các electron gia tốc có thể chuyển động trong đó mà không bị va chạm với nguyên tử khí. Chùm electron được gia tốc trong buồng tăng tốc có xu hướng phân kỳ và không chuyển động chính xác dọc theo trục được. Có nhiều nguyên nhân gây ra hiện tượng này. Đó là do lực đẩy Coulomb giữa các electron mang điện tích cùng dấu, do sự lắp ghép không hoàn hảo làm cho cấu trúc ống dẫn sóng không hoàn toàn xuyên tâm, do tác động của điện từ trường ngoài,… Do đó, chùm electron gia tốc phải được lái một cách chủ động. Trước hết sử dụng một điện trường hội tụ đồng trục để hội tụ chùm tia theo quỹ đạo thẳng. Sau đó các cuộn lái tia tạo ra từ trường tác dụng lực lên các electron để dẫn chùm tia đi đúng theo hướng ống dẫn sóng từ đó hướng ra ngoài theo đường cong nào đó hoặc được uốn để hướng đến bia tạo tia X. Khi máy gia tốc ở chế độ phát chùm electron thì chùm electron được đưa trực tiếp vào đầu điều trị qua một cửa sổ nhỏ. Sau đó được tán xạ trên các lá tán xạ hoặc được một từ trường quét ra trên một diện rộng theo yêu cầu của hình dạng, diện tích trường chiếu trong các trường hợp điều trị cụ thể. Chùm tia được tạo hình dạng bằng các bộ lọc phẳng, nêm, collimator sơ cấp, thứ cấp. Liều lượng được kiểm soát bằng các detector. Còn nếu chế độ phát tia X thì chùm electron đã được gia tốc lại được uốn theo một đường cong thiết kế để đập vào bia. Chùm electron có động năng lớn xuyên sâu vào bia, tương tác với các nguyên tử vật chất và bị hãm lại, phát ra tia X năng lượng cao. Phổ năng lượng của tia X phát xạ và suất liều bức xạ phụ thuộc vào mức năng lượng của điện tử, số nguyên tử, bề dày bia và chất liệu dùng làm bia. Chùm tia X phát ra cũng được kiểm soát về liều lượng, được định dạng phù hợp. Hầu hết các máy gia tốc xạ trị hiện nay đều có hai chế độ phát chùm photon và chế độ phát electron. Do đó, về cơ khí được chế tạo phù hợp để thay đổi cơ chế từ chế độ này sang chế độ khác một cách linh hoạt. Ví dụ như bia tia X có thể đưa ra khi sử dụng chế độ phát tia X và được rút vào khi phát chùm electron. Trong quá trình hoạt động, khi hãm chùm electron, bia tia X bị nóng lên, do đó cần có hệ thống làm nguội bằng nước. Với mục đích điều trị, máy gia tốc được thiết kế cơ khí chuyển động linh hoạt như cần máy và giường điều trị. Các hệ thống này đều được kiểm soát an toàn bằng một chuỗi khóa liên động điện, cơ khí, nhiệt độ, áp suất và kiểm soát chùm bức xạ với nhau. 2.2. Sơ đồ nguyên lý của máy gia tốc PRIMUS - SIEMENS dùng trong xạ trị 2.2.1. Nguyên lý gia tốc thẳng Máy gia tốc tuyến tính là loại máy mà hạt tích điện được gia tốc nhờ điện trường một chiều hoặc xoay chiều có điện thế cao và quỹ đạo hạt là đường thẳng khi chuyển động trong điện trường. Năm 1932, Walt và Cokraft đã thành công trong việc biến đổi hạt nhân bền thành hạt nhân phóng xạ bằng phản ứng hạt nhân với photon. Để gia tốc electron đạt đến năng lượng cần thiết, hai ông dùng phương pháp gia tốc điện trường bằng một sơ đồ nối tiếp các tụ điện để tạo ra điện thế cao từ 600 000 Volt đến 800 000 Volt và đưa điện áp đó vào trong chân không. Nhưng sử dụng điện trường một chiều chỉ gia tốc 2 đến 3 MeV không thể giải quyết được những vấn đề liên quan đến hạt nhân nguyên tử. Lawriton và Sloan đã giải quyết vấn đề bằng cách thay đổi việc sử dụng điện trường một chiều bằng điện trường xoay chiều. Lúc đầu người ta nghi ngờ về khả năng điện trường xoay chiều có thể gia tốc được các hạt hay không? Vì là điện trường xoay chiều nên hướng của điện trường thay đổi theo chu kỳ. Khi hướng của nó trùng với hướng chuyển động của hạt thì hạt được gia tốc. Nhưng khi điện trường có hướng ngược lại thì hạt sẽ bị giảm tốc. Nếu thời gian hạt được gia tốc bằng thời gian hạt bị hãm thì quá trình này có thể nhận được một năng lượng đáng kể không? Chính vì lý do đó mà thời gian đầu người ta đã nghĩ đến việc tạo ra các điện trường một chiều để tránh sự thay đổi chiều của lực điện trường theo chu kỳ [2]. Do hạn chế về mặt năng lượng nên gia tốc electron nhờ điện trường một chiều trong máy gia tốc xạ trị ít được sử dụng. Để thu được chùm electron với năng lượng cao người ta đã sử dụng phương pháp gia tốc hạt trong điện trường xoay chiều. Sơ đồ gia tốc electron trong điện trường xoay chiều có dạng như Hình 2.2a và Hình 2.2b: Hình 2.2a: Sắp xếp các ống tạo sự gia tốc Hình 2.2 b: Sắp xếp các ống tạo sự gia tốc Giả thiết giữa các cực A và B được tạo ra một điện trường xoay chiều (Hình 2.2a). Ta đặt vào giữa các cực này một loạt ống hình trụ được ký hiệu C1, C2, C3, C4,và C5. Ống C1, C3, C5 được nối với điện cực B còn C2, C4 nối với cực A. Từ Hình vẽ 2.2a nhận thấy hiệu điện thế giữa A và C1 bằng hiệu điện thế giữa C2 và C3 và bằng hiệu điện thế giữa C4 và C5. Tương tự điện thế giữa C1 và C2 bằng điện thế giữa C3 và C4. Giả sử tại thời điểm nào đó thế tại A âm còn ở B dương khi đó điện trường hướng từ C1 sang A, còn tại đầu giữa C1 và C2 điện trường hướng từ C1 sang C2. Giả sử tại thời điểm này electron chuyển động từ A sang C1, electron sẽ được gia tốc động năng thu được là eU. Chọn chiều dài ống C1 là l1 thích hợp để electron đi trong ống C1 mất ½ chu kỳ thì đến đầu kia của C1, điện trường tại hai đầu C1 và C2 đổi chiều khi đó electron chuyển từ C1 đến C2 được gia tốc và động năng tăng thêm eU. Như vậy khi chuyển động trong ống C2 động năng của electron là 2 eU. Cứ như vậy electron khi đi trong ống C5 có động năng 5 eU. Nếu ta không chỉ sử dụng 5 ống mà nhiều hơn và độ dài ống được lựa chọn sao cho mỗi lần điện trường thay đổi dấu trong khi hạt chuyển động trong ống thì hạt sẽ được gia tốc mỗi lần đi từ ống này sang ống kia [2]. Để thực hiện việc gia tốc hạt là đồng bộ khi chuyển động trong các ống thì thời gian chúng chuyển động trong mỗi ống phải bằng nhau. Điều đó đòi hỏi chiều dài các ống phải tăng dần. Thời gian hạt được gia tốc đi trong các ống được tính theo công thức sau: 3 3 2 2 1 1 v l v l v l t  (2.1) Trong đó l1, l2, l3… và v1, v2, v3… là độ dài và vận tốc của hạt chuyển động trong các ống tương ứng. Mặt khác giữa thế gia tốc và động năng của electron liên hệ với nhau theo công thức: eU mv  2 2 (2.2) Do đó: m eU v .1.2 1  , m eU v .2.2 2  , m eU v .3.2 3  … (2.3) Từ công thức (2.1) và công thức (2.3) ta có: ... 3.22.21.2 321  m eU l m eU l m eU l (2.4) Vì vậy ta có tỷ số l1 :l2: l3: … = 1: 3:2 : … Nếu như trong máy gia tốc có n điện cực thì năng lượng hạt thu được khi chuyển động từ cực thứ nhất đến cực thứ n sẽ là eUn . Như vậy có thể nói rằng nếu ta có một hệ thống gồm một lượng lớn điện cực có kích thước phù hợp với một hiệu điện thế U nhỏ chúng ta có khả năng cung cấp cho hạt một năng lượng rất lớn. Tần số của nguồn điện xoay chiều theo tính toán cỡ hàng chục MHz. 2.2.2. Các môđun chính và các thành phần của nó trong máy gia tốc tuyến tính a. Các thành phần chính chứa trong khung đỡ như sau [2, 14] 1. Klystron (hoặc magnetron) là một loạt các khoang vi sóng đặt trên đỉnh bể chứa dầu cách ly và cung cấp một nguồn vi sóng để gia tốc các electron. 2. Ống dẫn sóng mang nguồn công suất vi sóng này tới cấu trúc gia tốc trong dàn quay. 3. Circulator là một thiết bị được đưa vào trong ống dẫn sóng gia tốc để cách ly klystron khỏi các sóng vi ba phản xạ trở lại từ cấu trúc gia tốc. 4. Hệ thống làm mát nước sẽ làm mát các thành phần khác nhau bằng cách giải phóng năng lượng nhiệt và thiết lập sự ổn định nhiệt độ vận hành. Hình 2.3: Sơ đồ mặt cắt một máy gia tốc tuyến tính năng lượng cao cho xạ trị (Các thành phần bên trong chứa trong khung đỡ và dàn quay) b. Các thành phần chính trong dàn quay là [2] 1. Cấu trúc gia tốc gồm một loạt các khoảng vi sóng được cấp năng lượng bởi nguồn vi sóng được cung cấp bởi klystron qua ống dẫn sóng. 2. Súng điện tử (hoặc catốt) cung cấp nguồn electron đưa vào ống dẫn sóng. 3. Từ trường uốn uốn các electron trên bia để tạo ra các tia X hoặc sử dụng chùm electron trực tiếp cho điều trị. 4. Đầu điều trị bao gồm thiết bị định dạng và theo dõi chùm. 5. Bộ chặn chùm tia nhằm giảm yêu cầu về che chắn phòng đối với chùm tia điều trị thoát ra từ bệnh nhân và có thể kéo ra từ phía chân dàn quay 6. Tủ điều chế chứa các thành phần phân bố và điều khiển nguồn điện sơ cấp tới tất cả các vị trí của máy từ các kết nối, cung cấp các xung cao áp cho việc phun chùm tia và cho phát công suất vi sóng. 7. Bàn điều khiển (Hình 2.4) là trung tâm hoạt động của máy gia tốc tuyến tính. Nó cấp xung định thời để khởi động mỗi xung bức xạ. Nó theo dõi các thông số hoạt động chính của máy gia tốc tuyến tính, bao gồm cả liều điều trị cho mỗi bệnh nhân. Hình 2.4: Bàn điều khiển (trung tâm hoạt động của máy gia tốc tuyến tính) 2.2.3. Đầu điều trị máy gia tốc tuyến tính Các electron, phát ra từ súng điện tử, được gia tốc trong ống dẫn sóng gia tốc và sau đó được mang dưới dạng một chùm tia hình bút chì, qua hệ thống vận chuyển chùm tới đầu điều trị máy gia tốc, trong đó các photon và chùm electron lâm sàng được tạo ra. Như minh họa ở Hình 2.5 đầu điều trị máy gia tốc tuyến tính gồm vài thành phần, các thành phần đó ảnh hưởng đến việc hình thành, tạo dạng, định vị và theo dõi chùm tia lâm sàng [2]. Hình 2.5 a: Hình cắt đầu điều trị Hình 2.5 b: Sơ đồ mặt cắt đầu điều của một máy gia tốc tuyến tính trị của một máy gia tốc tuyến tính cho chùm electron và photon cho chùm electron và photon 2.2.4. Các hệ thống cơ khí Trong suốt quá trình chiếu bức xạ điều trị, bệnh nhân cần phải được giữ yên. Cách tốt nhất để thực hiện điều này là đặt bệnh nhân đó trong một vị trí thoải mái và bộ phát tia điều trị phải được đặt thẳng với bệnh nhân. Các hệ thống được mô tả trong chương này được thiết kế chế tạo để thực hiện các chức năng này. 2.3. Phương pháp thực nghiệm xác định một số thông số đặc trưng của chùm electron từ lối ra của máy gia tốc PRIMUS – Siemens 2.3.1. Các thiết bị đo Sử dụng các thiết bị đo liều có sẵn tại Bệnh viện K Hà Nội bao gồm: máy gia tốc tuyến tính xạ trị, hệ thống phantom nước, hoặc phantom nhựa, hệ thống điều khiển và các buồng ion hóa đo liều. 2.3.1.1. Máy gia tốc tuyến tính xạ trị Hãng sản xuất: Siemens - Xuất xứ: Đức. Các tính năng của máy gia tốc tuyến tính này là có thể phát ra hai loại bức xạ (Photon và Electron) với các mức năng lượng khác nhau phục vụ trong xạ trị:  Các mức năng lượng photon: 6 MeV và 15 MeV.  Các mức năng lượng electron: 5 MeV, 6 WeV, 7 MeV, 8 MeV, 9 MeV, 10 MeV, 12 MeV, 14 MeV và 15 MeV. 2.3.1.2. Thiết bị đo liều Trong phương pháp xạ trị, việc kiểm tra liều chiếu từ máy gia tốc phải được tiến hành thường xuyên bằng thiết bị đo liều chính xác do IAEA cung cấp. Phần thực nghiệm của luận văn tiến hành đo phân bố liều trên máy gia tốc xạ trị PRIMUS tại bệnh viện K Hà Nội, sử dụng thiết bị đang được dùng để kiểm tra liều chiếu hàng ngày tại đây. Thiết bị đo là Dosimeter kết hợp với đầu đo là buồng ion hóa Farmer chamber FC65 – P. Trên Hình 2.6 là thiết bị đo liều Dosimeter. Hình 2.6: Thiết bị đo liều Dosimeter Trên Hình 2.7 đưa ra dạng đầu đo FC65 – P được sử dụng trong luận văn Hính 2.7: Đầu đo Farmer type chamber FC65 – P Một số thông số kỹ thuật của buồng ion hóa Farmer type chamber FC65 – P như sau:  Ứng dụng: + Đo liều tuyệt đối chùm photon và electron trong xạ trị. + Đo trong chất rắn, không khí, phantom nước. Sử dụng trong việc đo liều thường quy.  Các đặc trưng: + Buồng ion hóa không khí. + Có cấu trúc lớp nhựa vững chắc giúp việc kiểm tra liều hàng ngày. + Không thấm nước. + Có các lỗ thoát khí qua c

Các file đính kèm theo tài liệu này:

  • pdfLVVLVLNT014.pdf