Using a combination of chromatographic methods and modern
spectroscopy methods, 22 compounds from the two starfish A. aspera and A.
sibogae have been isolated and determined, including 6 new compounds.
From starfish A. sibogae 11 compounds (ASB1-ASB11), including 6 new
compounds (ASB5-ASB10) were isolated: anthenoside S1, anthenoside S2,
anthenoside S3 , anthenoside S4, anthenoside S5, anthenoside S6 and 5 known
compounds are cholesterol (ASB1), thymine (ASB2), L-tyrosine (ASB3),
tryptophan (ASB4) and mixture of anthenoside J and anthenoside K (ASB11).
From starfish A. aspera 11 compounds (AA1-AA11) were isolated:
cholesterol (AA1), lathosterol (AA2), cholest -4-ene-3β, 6β-diol (AA3),
cholestane 3β,5α,6β,15α,16β,26-hexol) (AA4), cyclo (L-glycine-L-proline)
(AA5), L-glycine-L-prolin (AA6), cyclo (L-alanine-4-hydroxyl-L-proline) (AA7),
L-phenyl alanine (AA8), tyramine (AA9), thymine (AA10) and uracil (AA11). All
these compound were isolated from the genus Anthenea. For the first time.
29 trang |
Chia sẻ: honganh20 | Lượt xem: 332 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Chemical constituents and biological activities of two starfish anthenea sibogae and anthenea aspera collected from Vietnamese coast, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
es MeOH (t = 45 0C)
F6.3.3 (3,2 mg), F6.3.4 (5,8 mg),
F6.4.1 (13,5 mg),
CH2Cl2 (3x500 ml)
Dissolved in H2O (1.0 L).
Elution AgNO3; EtOH
F6.3 (87 mg)
F6.4 (25 mg)
F6.3.2 (2,3 mg)
HPLC (Diasfer-110-C18)
80%MeOH; 0,5 ml/min
ASB5 (2,4 mg; tR = 35 min)
ASB6 (2,1 mg; tR = 39,8 min)ASB8 (1,2mg; tR = 30,4 min)
ASB9 (0,6 mg; tR = 27,6 min)
ASB10 (1,0 mg; tR = 27,5 min)
ASB11 (1,9 mg; tR = 58,2 min)
ASB7 (0,3 mg; tR = 31,7 min)
83%MeOH; 0,5 ml/min
75% EtOH,; 25 ml/min
85% MeOH: 0,5 ml/min
HPLC (Diasorb-130-C16T)
HPLC (Diasfer-110-C18)
HPLC (Diasfer-110-C18)
Figure 3.1. Diagram for the isolation procedure of starfish A. sibogae
3.1.2. Physical properties and spectral data of isolated compounds
3.2. Extraction and isolation procedure for starfish A. aspera
This section details how to isolate compounds from A. aspera. The
separation of compounds was summarized in the diagram in Figure 3.2.
3.2.1. Sample treatment of starfish A. aspera
5
Fresh Anthenea aspera (10 Kg)
Crude EtOH 213 g
1. Chopped
2. Extracted by EtOH (3x8L), filtered
3. Evaporated
Crude EtOAc (SDE)
68 g
Crude hexane
(SDH)
45 g
MeOH (1Lx3)
n-hexane (1Lx3)
EtOAc (1Lx3)
Crude MeOH
(SDM)
96 g
SDH4
SDH6
SDE1
SDE3
AA7
17 mg
SDM1
...
SDH9
SDH1
hexane/CH2Cl2 100:0-0:100
..
Hexane/EtOAc gradien
AA1
0,17 g
AA2
0,53 g
AA3
1,02 g
AA4
15 mg
CH2Cl2/ MeOH 05/1
SDM4
RP-C18
MeOH/H2O/NH4OH
70/29/1
AA5
48 mg
CHCl3/MeOH gradien
SDE7
SDE9
AA6
30 mg
CHCl3/MeOH/H2O 4/1/0,1
AA8
33 mg
CHCl3/MeOH/H2O 5/1/0,1
CH2Cl2/ MeOH 10:0-8:2
.
SDM7
CH2Cl2/ MeOH 3/1
AA10
10 mg
AA11
8 mg
AA9
9 mg
CHCl3/MeOH/H2O
2/1/0,1
CH2Cl2/ MeOH 100:0-0:100
.
SDM11
Figure 3.2. Diagram for the isolation procedure of starfish A. aspera
3.2.2. Physical properties and spectral data of isolated compounds.
CHAPTER 4 - RESULTS AND DISCUSSION
This chapter presents the results of isolation and structural elucidation
of isolated compounds from 2 starfish A. aspera and A. sibogae, cytotoxic
activity, tumor suppression activity on soft agar and anti-proliferative activity of
some isolated compounds.
4.1. Structural elucidation of isolated compounds from the starfish A. sibogae
This section details the results of the structural determination of 11
compounds isolating from A. sibogae, including 6 new compounds and 5 known
compounds.
ASB1. Cholesterol
ASB2. Thymine
6
ASB3. L-tyrosine
ASB4. Tryptophan
ASB5. Anthenoside S1 (new compound)
ASB6. Anthenoside S2 (new compound)
ASB7. Anthenoside S3 (new compound)
ASB8. Anthenoside S4 (new compound)
ASB9. Anthenoside S5 (new compound)
ASB10. Anthenoside S6 (newcompound)
ASB11. Mixture of Anthenoside J và Anthenoside K
7
4.1.5. ASB5 compound: (20R, 22E)-7-O- (6-O-methyl-β-D-galactofuranosyl) -
16-O- (3-O-methyl- β -D-glucopyranosyl) -24-nor- 5α-cholesta-8(14), 22(23) -
diene-3α, 6β, 7β, 16α-tetraol (anthenoside S1, new compound)
The molecular formula of ASB5 was determined to be of C40H66O14 from
the [M + Na]
+
sodium adduct ion peak at m/z 793,4346 in the (+)-HR-ESI-MS
spectrum. The
1
H- and
13
C-NMR spectroscopic data reffered to the steroidal
nucleus of ASB5 revealed the chemical shifts of H- and C-atoms of two angular
Me groups H3–C(18) [δ(H) 0,91 (s), δ(C) 20,3] and H3–C(19) [δ(H) 0,84 (s); δ(C)
15,5], an 8(14) double bond (δ(C) 126,6; 147,6), two HC–O groups, including H‒
C(3) [δ(H) 4,07 ‒ 4,08 (m, W = 11,8); δ(C) 67,5] and H‒C(6) [δ(H) 3,64 (t, J =
2,8); δ(C) 75,2], as well as two HC–O groups bearing Omonosaccharide residues,
including H‒C(7) [δ(H) 4,23 (d, J = 2,8); δ(C) 78,5] and H‒C(16) [δ(H) 4,63 (td, J
= 9,0; 5,0); δ(C) 79,2]. The width of the multiplet of H‒C(3) about 12 Hz
corresponded well to the 3α-OH configuration while the width of the multiplet of
H‒C(3) at the 3β-OH configuration is more than 30 Hz. The H- and C-atom
resonances of the H3‒C(18), H3‒C(19), H‒C(3), H‒C(6), H‒C(7), and H‒C(16)
were similar to the same signals in the NMR spectra of anthenoside Q and
testified about a Δ8(14)-3α,6β,7β,16α-tetrahydroxysteroidal nucleus glycosylated at
the C(7) and C(16) positions in ASB5. The NMR spectra of the aglycon side chain
showed the presence of three secondary Me groups H3–C(21) [δ(H) 1,10 (d, J =
7,0); δ(C) 23,8], H3–C(26) [δ(H) 0,98 (d, J = 6,7); δ(C) 23,2], and H3–C(27) [δ(H)
0,97 (d, J = 6,7); δ(C) 23,1], and a 22(23) double bond [δ(H) 5,74 (ddd, J = 15,3;
8,8; 1,2), 5,30 (dd, J = 15,3; 6,8); δ(C) 133,9; 137,2]. Based on these data, a
(22E)-Δ22-24-nor-cholestane side chain has been assumed in ASB5. A thorough
analysis of the COSY, HSQC, HMBC, and ROESY spectra led to the assignment
of all the H- and C-atom resonances of the steroidal moiety in ASB5 (Tables 4.6
and 4.7, Fig. 4.1.27). The H- and C-atom sequences at H-C(1) to H-C(7), H-C(9)
8
to H-C(12) through H-C(11), H-C(15) to H-C(17), H-C(17) to H-C(20), H-C(20)
to H-C(22), H-C(23) to H3-C(27) were ascertained using the COSY and HSQC
experiments. The total structure of the steroidal aglycon of ASB5 was supported
by the key HMBC correlations H-C(6)/C(8), C(10); H-C(15)/C(8), C(14), C(17);
H3-C(18)/C(12), C(13), C(14), C(17); H3-C(19)/С(1), С(9), С(10); H3-
C(21)/C(17), C(20), C(22); H-C(22)/C(25); and H-C(23)/C(20), C(25), C(26),
C(27). The key ROESY cross-peaks, such as H3-C(19)/Hβ-C(2), Hβ-C(4), Hβ-
C(11); H3-C(18)/Hβ-C(12), Hβ-C(15), H-C(16); H-C(5)/Hα-C(1), Hα-C(9); Hα-
C(4)/Hα-C(6); Hβ-C(4)/H-C(19); and Hα‒C(7)/Hα-C(15), along with the values
of the coupling constants of H-C(6), H-C(7), and H-C(16), confirmed the
3α,6β,7β,16α relative configurations of O-bearing substituents and 5α/9α/10β/13β
steroidal nucleus in ASB5. The resonance of H3-C(21) at δ(H) 1,10 (δ(H) 1,10 for
(20R)-Δ22- and δ(H) 1,00 for (20S)-Δ22-steroids) as well as the ROESY
correlations of H3-C(18)/H-C(20), H3-C(21); H3-C(21)/Hβ-C(12); and H-C(22)/H-
C(16) allowed us to assume the (20R)-configuration. As a result, we proposed the
(20R,22E)-24-nor-5α-cholesta-8(14),22(23)-diene-3α,6β,7β,16α-tetraol structure
as the aglycon moiety of ASB5.
The
1
H-NMR spectrum of ASB5 showed two resonances of anomeric H-
atoms at δ(H) 4,33 and 5,02, correlated in the HSQC experiment with
corresponding C-atom signals at δ(C) 102,9 and 108,4, resp. The (+)-ESI-MS/MS
spectrum of the [M + Na]
+
ion peak at m/z 793 exhibited fragment ion peaks at
m/z 599 ([(M + Na) – С7H14O6]
+) and 217 ([С7H14O6 + Na]
+). The (‒)-ESI-
MS/MS spectrum of the [M ‒H]- ion peak at m/z 769 displayed fragment ion
peaks at m/z 575 ([(M – H) – С7H14O6]
-) and 193 ([С7H13O6]
-
). All peaks
corresponded to the loss of O-methyl-hexose residue. The chemical shifts and
coupling constants of H-C(1)-H-C(6) of two O-methyl-hexose units were
determined by the irradiation of anomeric H-atoms in the 1D TOCSY
9
experiments. Moreover, the H- and C-atom signals of the monosaccharide
residues of ASB5 were established using 2D-NMR experiments (Tables 4.6 and
4.7). These chemical shifts and the corresponding coupling constants coincided
well with those of terminal 3-O-methyl-β-glucopyranosyl and 6-O-methyl-β-
galactofuranosyl residues. Acid hydrolysis of glycoside 1 with 2M TFA was
carried out to ascertain the stereochemical series of its monosaccharide units.
Alcoholysis of the obtained monosaccharides by (R)-(-)-2-octanol followed by
acetylation, GC analysis, and comparison of retention times of acetylated (-)-2-
octyl glycoside derivatives with the corresponding derivatives of standard
monosaccharides allowed us to establish the D-configuration of the 3-O-methyl-
glucose and 6-O-methyl-galactose (Experimental Section). The attachment
positions of the monosaccharide units to the steroidal aglycon were defined by the
HMBC and ROESY spectra, where the cross-peaks between H-C(1’) of 3-OMe-
Glcp and C(16), H-C(16) of the aglycon and H-C(1’’) of 6-OMe-Galf and C(7),
H-C(7) of the aglycon were observed (Fig. 1.27). On the basis of all the above
mentioned data, the structure of anthenoside S1 was elucidated to be (20R,22E)-7-
O-(6-O-methyl-β-D-galactofuranosyl)-16-O-(3-O-methyl-β-D-glucopyranosyl)-
24-nor-5α-cholesta-8(14),22(23)-diene-3α,6β,7β,16α-tetraol (ASB5).
Fig. 4.1.27. Chemical structure ASB5
10
Table 4.6.
1
H-NMR data of compounds ASB5-ASB10
Vị
trí
ASB5 ASB6 ASB7 ASB8 ASB9 ASB10
1 1,51-1,55
(m)
1,29-1,31
(m)
1,51-
1,55 (m)
1,28-
1,30 (m)
1,50-1,56 (m)
1,28-1,31 (m)
1,51-1,55
(m)
1,28-1,34
(m)
1,52-
1,55 (m)
1,29-
1,32 (m)
1,50-
1,54 (m)
1,28-
1,30 (m)
2 1,61-1,63
(m)
1,60-
1,64 (m)
1,60-1,64 (m) 1,60-1,62
(m)
1,60-
1,63 (m)
1,60-
1,63 (m)
3 4,07-4,08
(m)
4,06-
4,08 (m)
4,06-4,08 (m) 4,06-4,08
(m)
4,07-
4,09 (m)
4,07-
4,09 (m)
4 1,96 (td, J
= 14,0;
2,8)
1,37 (br d,
J = 14,0)
1,96 (td,
J = 14,0;
2,8)
1,36 (td,
J=14,0)
1,96 (td, J =
14,0, 2,8)
1,36 (br d, J =
14,0)
1,96 (td, J
=14,0;2,8)
1,36 (br d, J
= 14,0)
1,98 (td,
J =
13,7,
2,8)
1,38 (br
d, J =
13,7)
1,96 (td,
J = 14,0;
2,8)
1,37
(brd, J =
14,0)
5 2,12 (dt, J
= 14,0,
2,8)
2,12 (dt,
J =14,0;
2,8)
2,12 (dt, J =
14,0; 2,8)
2,13 (dt, J
=14,0, 2,8)
2,16 (td,
J =13,7;
2,8)
2,13 (dt,
J = 14,0,
2,8)
6 3,64 (t, J
= 2,8)
3,63 (t, J
= 2,8)
3,64(t, J = 2,8) 3,64 (t, J =
2,8)
3,53 (t,
J = 2,8)
3,61-
3,63 (m)
7 4,23 (d, J
= 2,8)
4,22 (d, J
= 2,8)
4,26 (d, J = 2,8) 4,27 (d, J =
2,8)
4,25 (d,
J = 2,8)
4,23 (d,
J = 2,8)
8 - - - - - -
9 2,25-2,28
(m)
2,25-
2,28 (m)
2,26-2,28 (m) 2,25-2,29
(m)
2,24-
2,26 (m)
2,25-
2,28 (m)
10 - - - - - -
11 1,63-1,67
(m)
1,52-1,55
(m)
1,63-
1,66 (m)
1,51-
1,55 (m)
1,62-1,66 (m)
1,50-1,56 (m)
1,62-1,66
(m)
1,51-1,56
(m)
1,65-
1,68 (m)
1,50-
1,56 (m)
1,63-
1,67 (m)
1,51-
1,57 (m)
12 1,82 (dt, J 1,81 (dt, 1,85 (dt, J = 1,87-1,89 1,80 (dt, 1,82 (dt,
11
=
12,5;3,3)
1,23-1,27
(m)
J = 12,4;
3,4)
1,23-
1,27 (m)
12,0; 3,3)
1,28-1,32 (m)
(m)
1,30-1,34
(m)
J =
12,0;
3,4)
1,19-
1,22 (m)
J = 12,3;
3,5) 1,24
‒ 1,28
(m)
13 - - - - - -
14 - - - - - -
15 2,86 (ddd,
J = 17,0;
9,0, 2,8)
2,64(ddd,
J = 17,0;
5,0, 2,1)
2,85
(ddd, J =
17,0; 9,0,
2,8)
2,64
(ddd, J =
17,0; 5,0,
2,1)
2,84 (ddd, J =
17,0; 8,7; 3,0)
2,68 (ddd, J =
17,0; 4,1; 1,8)
2,85 (ddd, J
= 17,0; 8,6;
2,9)
2,62-2,69
(m)
2,93
(ddd, J
= 16,8;
9,0; 3,0)
2,38-
2,41 (m)
2,87
(ddd, J =
17,0;
9,0, 3,1)
2,60
(ddd, J =
17,0;
5,2, 1,8)
16 4,63(td, J
= 9,0; 5,0)
4,62 (td,
J = 9,0;
5,0)
4,55 (td, J =
8,7; 4,1)
4,57 (td, J =
8,6, 4,2)
4,47
(ddd, J
= 9,8,
9,0; 6,0)
4,46 (td,
J = 9,0;
5,2)
17 1,53 (dd,
J = 9,0;
4,0)
1,54 (dd,
J = 9,0;
4,0)
1,49-1,51 (m) 1,51 (dd, J
= 8,6, 6,7)
1,46
(dd, J =
9,8; 2,7)
1,48 (dd,
J = 9,0;
4,6)
18 0,91 (s) 0,91 (s) 0,94 (s) 0,95 (s) 0,89 (s) 0,93 (s)
19 0,84 (s) 0,84 (s) 0,85 (s) 0,85 (s) 0,83 (s) 0,85 (s)
20 2,38-2,42
(m)
2,38-
2,42 (m)
1,67-1,74 (m) 1,69-1,75
(m)
2,37-
2,42 (m)
1,66-
1,71 (m)
21 1,10 (d, J
= 7,0)
1,10 (d,
J = 7,1)
1,03 (d, J = 6,8) 1,03 (d, J =
6,8)
1,09 (d,
J = 7,3)
1,06 (d,
J = 6,8)
22 5,74 (ddd,
J = 15,3;
8,8, 1,2)
5,76 (d, J
= 15,3;
8,8, 1,2)
1,71-1,76 (m)
1,43-1,47 (m)
1,85-1,89
(m)
1,52-1,56
(m)
5,65
(dd, J =
15,4,
7,3)
1,79-
1,86 (m)
1,43-
1,47 (m)
23 5,30 (dd,
J = 15,3,
5,31(dd,
J = 15,3;
2,07-2,12 (m)
1,88-1,93 (m)
2,19-2,23
(m)
5,37
(dd, J =
2,21-
2,24 (m)
12
6,8) 6,8) 1,87-1,91
(m)
15,4,
7,3)
1,92-
1,97 (m)
24 - - 5,14 (br t, J
=7,5)
- 1,92(br
td, J
=7,3,
3,3)
-
25 2,22-2,30
(m)
2,26-
2,29 (m)
- 2,24-2,31
(m)
1,56-
1,62 (m)
2,24-
2,30 (m)
26 0,98 (d, J
= 6,7)
0,98 (d, J
= 6,6)
1,67 (s) 1,03 (d, J =
6,9)
0,89 (d,
J = 6,5)
1,04 (d,
J = 6,9)
27 0,97 (d, J
= 6,7)
0,97 (d, J
= 6,6)
1,60 (s) 1,03 (d, J =
6,9)
0,89 (d,
J = 6,5)
1,04 (d,
J = 6,9)
28 4,72 (d, J =
1,3)
4,70 (br s)
4,75 (br
s)
4,72 (br
d, J
=1,3)
3-OMe-β-
D-Glcp
4-OMe-
β-D-
Glcp
3-OMe-β-D-
Glcp
3-OMe-β-
D-Glcp
3-OMe-
β-D-
Galf
β-D-
Galf
1’ 4,33 (d, J
= 7,7)
4,29 (d, J
=7,8)
4,32 (d, J = 7,7) 4,32 (d, J =
7,8)
4,97 (br
s)
4,95 (d,
J = 2,4)
2’ 3,23 (dd,
J = 9,3;
7,7)
3,17 (dd,
J =9,3;
7,8)
3,21(dd, J = 9,1,
7,7)
3,22 (dd, J
=9,1, 7,8)
4,00
(dd, J =
2,5; 1,1)
3,96 (dd,
J = 4,8;
2,4)
3’ 3,09 (t, J
= 9,3)
3,46 (t, J
= 9,3)
3,08 (t, J = 9,1) 3,08 (t, J =
9,1)
3,74
(dd, J =
5,6; 2,5)
4,04 (dd,
J = 7,2;
4,8)
4’ 3,36 (t, J
= 9,3)
3,10 (t, J
= 9,3)
3,32 (t, J = 9,1) 3,27-3,29
(m)
4.08
(dd, J =
5.6, 3.5)
3,88 (dd,
J = 7,2;
2,4)
5’ 3,27 (ddd,
J =
9,3;5,5,
3,26
(ddd, J =
9,3; 5,1,
3,25 (ddd, J =
9,1; 5,7; 2,5)
3,26 (m) 3.73-
3.75 (m)
3,70-
3,73 (m)
13
2,5) 2,2)
6’ 3,88(dd,
J=11,6;
2,5)
3,70(dd,
J=11,6;
5,5)
3,86(dd,
J=11,6;
2,2)
3,71(dd,
J=11,6;
5,1)
3,86(dd, J=11,6,
2,5)
3,65(dd,J=11,6,
5,7)
3,86(dd,
J=11,6, 2,5)
3,63(dd,
J=11,6, 5,6)
3,65(br
d,
J=6,1)
3,62 (dd,
J = 11,2;
7,2)
3,59 (dd,
J = 11,2,
4,5)
OMe 3,63 (s) 3,56 (s) 3,62 (s) 3,62 (s) 3,41 (s)
6-OMe-β-
D-Galf
6-OMe-
β-D-Galf
6-OMe-β-D-
Galf
6-OMe-β-
D-Galf
6-OMe-
β-D-
Galf
1’’ 5,02 (d, J
= 2,0)
5,01 (d, J
= 2,0)
5,05 (d, J = 2,0) 5.04 (d, J =
2.0)
4.99 (d,
J = 2.3)
2’’ 3,90 (dd,
J = 3,7;
2,0)
3,89-
3,91 (m)
3,90 (dd, J =
4,3, 2,0)
3.90 (dd, J
=3.6, 2.0)
3.91 (dd,
J = 3.8,
2.3)
3’’ 3,94 (dd,
J = 6,2;
3,7)
3,94 (dd,
J = 6,1;
3,6)
3,90-3,96 (m) 3.93 (dd, J
= 6.8, 3.6)
3.95 (dd,
J = 6.2,
3.8)
4’’ 3,90-
3,91(m)
3,89-
3,91 (m)
3,91(dd, J = 5,8,
3,4)
3.92 (dd, J
= 6.8, 3.5)
3.88 (dd,
J = 6.2,
3.9)
5’’ 3,82 (ddd,
J = 7,0;
5.2; 3,4)
3,82
(ddd, J =
7,0; 5,2,
3,3)
3,82 (ddd, J =
7.2, 4.8, 3.4)
3.82 (ddd, J
= 7.1, 4.8,
3.5)
3.82 ‒
3.85 (m)
6’’ 3,53 (dd,
J = 10,3;
5,2)
3,52 (dd, J
=
10,3;7,0)
3,53 (dd,
J = 10,1;
5,2)
3,52 (dd,
J = 10,1;
7,0)
3,53(dd, J =
10,1, 4,8)
3,52 (dd, J =
10,1; 7,2)
3,54 (dd, J
= 10.1, 4.8)
3,52 (dd, J
= 10.1, 7,1)
3,53 (d,
J = 6,0)
OMe 3,38 (s) 3,38 (s) 3,38 (s) 3,38(s) 3,39(s)
14
Measured in CD3OD, 700 MHz
Table 4.7.
13
C-NMR spectroscopic data of compounds ASB5-ASB10
Position ASB5 ASB6 ASB8 ASB9 ASB10
1 34.6 34.5 34.6 34.5 34.5
2 29.6 29.6 29.6 29.5 29.6
3 67.5 67.5 67.3 67.4 67.5
4 33.3 33.3 33.2 33.4 33.3
5 38.0 38.0 37.9 37.7 38.0
6 75.2 75.5 75.5 77.4 75.2
7 78.5 78.7 78.7 72.1 78.4
8 126.6 126.6 126.6 128.4 127.0
9 45.9 45.9 45.6 45.8 45.8
10 38.8 38.8 38.9 38.7 38.9
11 19.5 19.5 19.6 19.4 19.5
12 37.2 37.1 37.6 36.9 37.3
13 45.4 45.4 45.4 44.9 45.1
14 147.6 147.6 148.0 146.8 147.4
15 34.3 34.5 34.2 33.5 33.8
16 79.2 79.4 80.1 76.9 77.7
17 62.8 62.8 62.7 62.6 62.7
18 20.3 20.3 19.7 20.5 20.1
19 15.5 15.4 15.5 15.3 15.4
20 37.2 37.1 34.1 37.1 32.9
21 23.8 23.8 20.8 24.6 21.4
22 133.9 133.8 34.6 137.7 33.8
23 137.2 137.4 33.0 129.5 33.3
24 - - 158.4 43.2 157.7
25 32.3 32.3 34.9 29.9 34.9
26 23.2 23.2 22.6 22.8 22.5
27 23.1 23.1 22.4 22.3
28 108.6 107.2
3-OMe-β-D-
Glcp
4-OMe-
β-D-
Glcp
3-OMe-β-
D-Glcp
3-OMe-
β-D-
Galf
β-D-
Galf
1’ 102.9 103.0 102.6 108.2 107.6
2’ 75.2 75.2 75.1 80.9 83.7
3’ 87.9 78.2 87.8 88.9 78.3
4’ 71.5 81.2 71.7 84.3 84.4
15
5’ 77.8 77.2 77.9 73.2 72.4
6’ 63.2 62.7 63.4 65.1 65.4
OMe 61.0 60.8 61.0 58.1
6-OMe -β-
D-Galf
6-OMe-
β-D-
Galf
6-OMe-β-
D-Galf
6-
OMe-
β-D-
Galf
1’’ 108.4 108.4 108.5 108.4
2’’ 83.4 83.4 83.4 83.5
3’’ 78.7 78.7 78.7 78.7
4’’ 85.0 85.0 85.0 85.0
5’’ 70.8 70.8 70.8 70.8
6’’ 75.5 75.5 75.5 75.5
OMe 59.4 59.4 59.4 59.4
Measured in CD3OD, 176 MHz
4.2. Structure elucidation of isolated compounds from the starfish A. aspera
4 sterols and 7 other compounds were isolated for the first time from
hexane, ethyl acetate and methanol extracts of starfish A. aspera collected in
Northeast Vietnam.
AA1. Cholesterol
AA2. Lathosterol
AA3. Cholest-4-ene-3β,6β-diol
AA4.Cholestan-3β,5α,6β,15α,16β-26-hexol
AA5. Cyclo(L-glycine-L-proline)
AA6. L-glycine-L-propyl
16
AA7.Cyclo(L-alanine-4-hydroxyl-L-prolyl
AA8. L-Phenylalanine
AA9. Tyramine
AA10. Thymine AA11. Uracil
4.2.1. AA1 compound: cholesterol
Compound AA1 has melting point, Rf and NMR spectrum coincide with
compound ASB1
4.2.2. AA2 compound: Lathosterol (Cholest-7,8-ene-3-ol)
Fig. 4.2.8. Chemical structure of AA2
Table 4.14. NMR spectrum data of AA2 and reference substance
Position #C C
a,c
H
a,b
(mult., J, Hz)
1 37.1 37.1 1.82 m/ 1.07 m
2 31.3 31.4 1.80 m/ 1.61 m
3 70.7 71.1 3.60 m
4 37.8 38.0 1.27 m/ 1.72 m
5 40.2 40.3 1.40 m
6 29.6 29.7 1.76 m
7 117.2 117.4 5.15 m
8 139.3 139.6 -
9 49.4 49.5 1.61 m
10 34.1 34.2 -
11 21.5 21.6 1.57 m, 1.45 m
12 39.5 39.5 1.20; 2.02 m
13 43.2 43.4 -
17
14 54.9 55.0 1.80 overlap
15 22.9 23.0 1.40 m; 1.52 m
16 27.9 27.9 1,88 m; 1.26 m
17 56.1 56.1 1.20 m
18 11.8 11.8 0.53 s
19 12.9 13.0 0.79 s
20 36.1 36.0 1.36 m
21 18.8 18.8 0.92 d (6.5)
22 36.1 36.2 0.99 m; 1.34 m
23 23.9 23.9 1.14 m, 1.34 m
24 39.4 39.6 1.13-1.10 m
25 27.9 28.0 1.52 m
26 22.5 22.6 0.86 d (7.0)
27 22.7 22.8 0.87 d (7.0)
a
CD3OD,
b
500 MHz,
c
125 MHz,
#δC data of [58]
4.2.3. AA3 compound: cholest-4-ene-3,6-diol
Fig. 4.2.13. Chemical structure of AA3
Table 4.15. NMR spectrum data of AA3 and reference substance
Position C
a,c
H
a,b
(mult., J, Hz) C δC
a,c
H
a,b
(mult., J, Hz)
1 37.4 1.76 (m); 1.32 (m) 15 25.2 1.64 (m); 1.40 (m)
2 29.6 1.91 (m); 1.49 (m) 16 29.2 1.88 ( m), 1.32 (m)
3 69.2 4.11-4.16 (trùng H-6) 17 57.6 1.14 (m)
4 121.4 5.67 (d, J 1.5 Hz) 18 12.4 0.75 (s)
5 149.5 - 19 19.2 1.08 (s)
6 68.6 4.11-4.16 (trùng H-3) 20 37.1 1.43 (m)
7 43.7 0.87 (m) 21 19.2 0.95 (d, J 6.5)
8 35.8 1.58 (m) 22 37.3 1.39 (m); 1.05 (m)
9 55.9 0.75 (m) 23 24.9 1.14-1.22 (m)
10 38.9 - 24 40.7 1.10-1.21 (m)
11 22.1 1.39; 1.53 (m) 25 29.1 1.55 (m)
12 41.1 2.04-2.06 (m) 26 23.2 0.89 (d, 6.5)
18
13 43.2 - 27 22.9 0.86 (d, 6.5)
14 57.4 1.07 (m)
a
CD3OD,
b
500 MHz,
c
125 MHz,
#δC data of [77]
4.2.4. AA4 compound: cholestane 3,5,6,15,16,26-hexol
Fig. 4.2.21. Chemical structure of AA4
Table 4.16. NMR spectrum data of AA4 and reference substance
Position
#C C
ac
H
ab
, mult (J = Hz) HMBC (HC) NOESY
1 31.7 31.7 1.79 m; 1.51 m C-5, C-19
2 33.5 33.5 1.62 m; 1.35 m C-10
3 68.4 68.3 4.03 m (5.5)
4 41.6 41.5 2.08 dd (11.5; 13.0) C-3, C-5
5 76.6 76.6 -
6 76.6 76.4 3.49 dd (2.5; 3.0) C-4, C-5, C-8,
C-10
H-4, H-7
7 35.4 35.2 1.89 m C-6, C-8, C-9,
C-14
8 32.2 31.1 2.01 m C-7, C-9, C-14
9 46.7 46.6 1.41 m
10 39.5 39.3 -
11 22.0 21.9 1.38 m C-13
12 42.1 42.0 1.98 m; 1.20 m C-9, C-14
13 44.9 44.7 -
14 61.2 60.9 0.98 m C-13, C-16, C-18
15 85.0 85.1 3.76 dd (2.5; 10.0) C-8, C-14, C-16 H-18
16 83.2 83.0 3.99 dd (2.5; 7.5) C-13, C-15 H-17
17 60.1 59.9 1.27 m C-13, C-18, C-20
18 15.2 15.1 0.93 s C-12, C-13,
C-14, C-17
19
19 17.2 17.3 1.20 s C-1, C-5, C-9,
C-10
20 31.0 31.0 1.89 m C-17
21 18.6 18.6 0.98 d (5.5) C-17, C-20, C-22
22 37.5 37.4 1.08 m C-21
23 24.8 24.8 1.46 m; 1.23 m C-24
24 35.0 34.9 1.43 m; 1.06 m C-27
25 37.0 37.0 1.58 m
26 68.6 68.4 3.45 dd (6.0; 10.5);
3.34 overlapped
C-24, C-25, C-27
27 17.3 17.4 0,93 d (6,5) C-24, C-25, C-26
a
CD3OD,
b
500 MHz,
c
125 MHz,
#δC data of [78]
4.2.5. AA5 compound: cyclo(L-glycine-L-proline)
Fig. 4.2.27. Chemical structure of AA5
Table 4.17. NMR spectrum data of AA5 and reference substance
Position
,
H
a cδ
(mult, J,
Hz)
cyclo(L-
Gly-L-
Pro) [79]
,
H
a cδ (mult, J,
Hz) (AA5)
,b
C
aδ
(AA5)
HMBC
(H→C)
(AA5)
,d e
C
δ
L-Gly-L-
Pro [80]
Gly
1 - 163.6 175.6
2
4.10
3.87 (dd)
4.10
*
3.90 (dd, 4.5;
16.5)
46.5
C-1, C-1′
46.2
NH 7.15 7.35 (brs) C-1, C-2′
Pro
1′ 170.1 169.3
2′ 4.11 4.10* 58.5 C-3’, C-4’ 59.6
20
3′
1.75-2.55 2.38 (m)/2.06
*
(2.34-2.41)
28.4
C-1′, C-2′,
C-4′, C-5′
29.2
4′
1.75-2.55 1.92 (m)/2.06
*
(1.86-2.11)
22.3
C-2′, C-3′,
C-5′
23.6
5′
3.58 (m) 3.64 (m)/3.56
(m)
(3.58, m)
45.2
C-1, C-2′,
C-3′, C-4′ 43.0
a
CDCl3, ,
b
125 MHz,
c
500 MHz,
*
signal overlap,
d
D2O,
e
CD3OD.
4.2.6. AA6 compound: L-glycine-L-prolin
Fig. 4.2.31. Chemical structure of AA6
Table 4.18. NMR spectrum data of AA6 and reference substance
Position
#δC [80]
L-Gly-L-Pro
,a b
C
δ (AA6)
, a c
H
δ (mult, J.,Hz)
(AA6)
HMBC
(H→C) (AA6)
Gly
1 175.6 172.0
2 46.2 47.0
4.12 (ddd, 17,0; 2,0;
1,0)
3.76 (d, 17.0)
C-1, C-1’
NH
Pro
1′ 169.3 166.5
2′ 59.6 59.9 4.25 (m) C-3’
3′ 29.2 29.3
2.35 (m)
1.99 (m)
4′ 23.6 23.3
2.04 (m)
1.96 (m)
C-5’
5′ 46.3 46.3 3.52-3.60 (m) C-4’
a
MeOD–d4,
#
D2O,
b
125 MHz,
c
500 MHz.
21
4.2.7. AA7 compound: cyclo(L-alanyl-4-hydroxyl-L-prolyl)
Fig. 4.2.37. Chemical structure of AA7
Table 4.19. NMR spectrum data of AA7 and reference substance
Position #C C
ac
H
ab
, mult (J = Hz) HMBC
(HC)
1 163.6 169.1 -
2 46.5 52.1 4.26 C-1
3 15.7 - C-1
1’ 170.1 172.8 -
2’ 58.5 58.9 4.54 C-1’
3’ 28.4 38.2 2.30 (dd, dd, 6.5; 13.5) C-1’
4’ 22.3
69.1 4.49
2.11 (ddd, 4.0 ; 11.0; 13.5)
-
5’ 45.2
55.2 3.69 (dd,4.5; 13.0)
3.45 (d,13.0)
C-1
N-H - - 4.63 -
a
CD3OD,
b
500 MHz,
c
125 MHz,
#δC data of [81].
4.2.8. AA8 compound: L-phenylalanine
Fig. 4.2.43. Chemical structure of AA8
Table 4.20. NMR spectrum data of AA8 and reference substance
Position
#C C
ac
H
ab
, mult (J = Hz) HMBC
(HC)
1 135.3 137.3 -
2 128.7 130.0 7.28-7.38 (m, 5H, H-Ar);
3 129.7 130.4 7.28-7.38 (m, 5H, H-Ar);
4 130.7 128.4 7.28-7.38 (m, 5H, H-Ar);
22
5 129.7 130.4 7.28-7.38 (m, 5H, H-Ar);
6 128.7 130.0 7.28-7.38 (m, 5H, H-Ar);
7 37.8 38.3 3.33 (dd, 1H, J = 4.5; 14.5 Hz, H-7),
3.02 (dd, 1H, J = 9.0; 14.5 Hz, H-7).
C-8, C-2,
C-6,
C-1, C-9
8 55.5 57.6 3.79 (dd, 1H, J = 4.5; 9.0 Hz, H-8); C-7, C-1,
C-9
9 174.2 173.8 -
a
CD3OD,
b
500 MHz,
c
125 MHz,
#δH data of [82] in CD3OD.
4.2.9. AA9 compound: tyramine
Fig. 4.2.46. Chemical structure of AA9
Table 4.21. NMR spectrum data of AA9 and reference substance
Position #C C
ac
H
ab
, mult (J = Hz)
1 128.3 128.5 -
2 130.5 130.8 7.11 d (8.5)
3 116.2 116.7 6.79 d (8.5)
4 156.6 157.8 -
5 116.2 116.7 6.79 d (8.5)
6 130.5 130.8 7.11 d (8.5)
7 35.1 34.0 2.88 dd (8.0; 7.0)
8 42.3 42.3 3.13 dd (8.0; 7.0)
C=O 177.0 -
CH3 10.5 -
a
CD3OD,
b
500 MHz,
c
125 MHz,
#δC data of [83] in CD3OD.
4.2.10. AA10 compound: thymine
Phổ 1H-NMR cũng như Rf và điểm nóng chảy của AA10 hoàn toàn đồng nhất với
các dữ liệu ASB2.
4.2.11. AA11 compound: uracil
23
Fig. 4.2.51. Chemical structure of AA11
Table 4.22. NMR spectrum data of AA11 and reference substance
Position #C C
ac
H
ab
, mult (J = Hz)
1 167.5 164.3 -
2 110.4 100.2 5.44 ppm (J =7,5Hz, H-2)
3 139.2 142.1 7.38 ppm (J =7,5Hz, H-3)
4 150.3 151.5 -
5 12.1 - -
N-H 11.8 11.0
a
CD3OD,
b
500 MHz,
c
125 MHz,
#δc data of TLTK [84,85]
4.3. Anticancer activity of steroid glycosides from starfish species A. sibogae
4.3.1. Cytotoxic activity
ASB5-ASB11 compounds were tested for cytotoxicity on human breast
cancer cell lines T-47D using MTS method. Cisplatin was used as positive
control. The results showed that compounds ASB5, ASB6, ASB8 and the mixture
ASB11 as well as cisplatin were not cytotoxic to T-47D cell line at concentrations
up to 150 μM after 24 hours and 48 hours.
4.3.2 Anti-proliferative activity
Compounds ASB5, ASB6 and ASB8 did not show significant
proliferative inhibitory activity against T-47D cell lines at a concentration of 50
μM, while the mixture ASB11 inhibited T-47D cell proliferation after 24 h, 48
hours and 72 hours at the same concentration cisplatin. After 24 hours of ASB11
mixture decreased T-47D cell proliferation by 10% while control cisplatin
decreased T-47D cell proliferation by 20%. After 48 hours of ASB11 mixture
decreased T-47D cell proliferation by 20% while cisplatin decreased T-47D cell
proliferation by 50%. The ASB11 mixture (50 μM) reduced T-47D cell
24
proliferation after 72 hours by 47%,
Các file đính kèm theo tài liệu này:
- tom_tat_luan_an_chemical_constituents_and_biological_activit.pdf