MỤC LỤC
Trang
MỤC LỤC 1
MỞ ĐẦU .2
Chương I
ĐIỀU KIỆN TỐI ƯU CẤP CAO CHO BÀI TOÁN TỐI ưU ĐƠN MỤC
TIÊU KHÔNG TRƠN KHÔNG CÓ RÀNG BUỘC
1.1. Đạo hàm theo phương cấp cao Ginchev và điều kiện tối ưu cấp cao .4
1.2. Xấp xỉ đa thức và điều kiện đủ tối ưu . 13
1.3. Điều kiện tối ưu cấp hai . 19
1.4. Cực tiểu cô lập .26
Chương II
ĐIỀU KIỆN TỐI ƯU CẤP CAO CHO BÀI TOÁN TỐI ƯU ĐA MỤC
TIÊU KHÔNG TRƠN CÓ RÀNG BUỘC TẬP
2.1. Các khái niệm và kết quả bổ trợ 33
2.2. Điều kiện cần cấp cao cho cực tiểu địa phương yếu .42
2.3. Điều kiện đủ cấp cao cho cực tiểu Pareto địa phương chặt .44
2.4. Trường hợp Q = r .. .48
KẾT LUẬN 55
TÀI LIỆU THAM KHẢO 56
59 trang |
Chia sẻ: netpro | Lượt xem: 1634 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Luận văn Về điều kiện tối ưu cấp cao trong tối ưu không trơn, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
đƣa ra, điều kiện đủ của định lý 1.2. đều thoả mãn.
Do đó, x0 là điểm cực tiểu địa phƣơng chặt.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17
Ví dụ 1.4
Lấy E = và
( )
m
f x x
với m là số nguyên không âm nào đó và
0 <
1 ( so sánh với ví dụ 1.3.). Khi đó, đa thức
11( )
2
mt t
hiển nhiên là cận dƣới bậc m + 1 của f tại x0 = 0 theo cả hai phƣơng u = 1 và
u = – 1. Vậy
thoả mãn điều kiện đủ của định lý 1.5, do đó x0 = 0 là điểm
cực tiểu địa phƣơng chặt của f .
Ví dụ 1.5
Cho hàm
:f
xác định nhƣ sau
f (x) =
211 sin , 0,
0 , 0.
x x khi x
x
khi x
Hiển nhiên, x0 = 0 là điểm cực tiểu chặt nếu
> 0 ( không là cực tiểu
chặt nếu
= 0 ) và x
0
không là cực tiểu nếu
< 0.
Nếu
> 0 thì điểm cực tiểu chặt x0 = 0 có thể tìm đƣợc bằng cách áp
dụng định lý 1.5 khi lấy phƣơng u = 1, u = – 1 và đa thức
21( )
2
t t
.
Trƣờng hợp
< 0, ta có x
0
không phải là điểm cực tiểu.
Tiếp theo ta chỉ ra rằng đạo hàm theo phƣơng cấp cao có thể biểu diễn
dƣới ngôn ngữ hiệu chia.
Giả sử
:f E
. Ta nhắc lại: miền hữu hiệu của hàm f là tập
: ( ) dom f x E f x
.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18
Lấy 0x E và u0, ..., un S là các phƣơng cho trƣớc. Giả sử t0, ..., tn là
các biến thực dƣơng khác nhau và
0' ,..., ' Snu u
là các biến phƣơng.
Ta định nghĩa hiệu chia cấp n
0
0 0( , ' ,..., ' , ,..., )
n n
n nf f x u u t t
nhƣ
sau:
0
0
0 0
0
1
( ' )
( , ' ,..., ' , ,..., )
( )
n
n i i
n n
i
n i
f x t u
f x u u t t
t
=
0
0
0
( ' )
( )
n
i i
n
i
i j
j
j i
f x t u
t t
Ở đây
1
0
( ) ( )
n
n j
j
t t t
và
1( )n t
là đạo hàm của
1( )n t
. Hơn nữa, ta đặt
0( ) 1t
.
Ta thừa nhận rằng : hiệu chia cấp n xác định khi và chỉ khi
0 ' i ix t u dom f
trừ ra nhiều nhất một số hạng. Nó hữu hạn khi và chỉ khi tất
cả các giá trị
0( ' )i if x t u
là hữu hạn.
Hiệu chia còn có thể đƣợc định nghĩa quy nạp nhƣ sau
0 0 0
0 0 0 0( , ' , ) ( ' )f x u t f x t u
,
và
0
0 0( , ' ,..., ' , ,..., )
n
n nf x u u t t
=
1 0 ' ' '0 2 0 2( , ,..., , , ,..., , )n n n n nf x u u u t t t
1 0 ' ' '0 2 1 0 2 1( , ,..., , , ,..., , )n n n n nf x u u u t t t 1n nt t
( Nếu
nằm trong số các giá trị của hàm f thì các chỉ số cần phải sắp xếp
lại).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19
Tính chất sau đây là một trong số các tính chất chính của hiệu chia và
đƣợc sử dụng khi chứng minh biểu diễn lại đạo hàm theo phƣơng qua hiệu
chia.
0( ')f x tu
= 1
0
0 0
1
( , ' ,..., ' , ' ,..., ' ) ( )
n
i
i i i
i
f x u u t t t
+
0
0 1 0 1( , ' ,..., ' , ', ' ,..., ' , ) ( )
n
n n nf x u u u t t t t .
Ta giả thiết rằng
0 ' i ix t u dom f
, i = 0, ..., n – 1 và do đó cùng lắm
thì
0( ')f x tu
và hiệu chia cuối cùng trong vế phải có thể nhận giá trị vô hạn.
Mối quan hệ giữa đạo hàm theo phƣơng và hiệu chia đƣợc chỉ ra trong
định lý sau đây.
Định lý 1.6 ( [5] )
Đạo hàm theo phương
( ) 0( , )nf x u
, n = 0, 1,..., được biểu diễn quy nạp
dưới ngôn ngữ hiệu chia cùng với dãy các số A0, ..., An như sau
A0 : =
0 0
( , ') ( 0, )
( , ', )
t u u
lim inf f x u t
=
(0) 0( , )f x u
.
Đạo hàm
( ) 0( , )nf x u
, n
1, tồn tại khi và chỉ khi các số A0,..., An-1 xác
định và hữu hạn. Khi đó,
An :=
0
0 1 0 1
( , ') ( 0, )
( , ,..., , ', ,..., , )k s s s sn n
st u u
lim inf lim f x u u u t t t
= 1
!n
( ) 0( , )nf x u
,
trong đó
0 1 0 1( ,..., , ,..., )
s s s s
n nu u t t
là dãy tuỳ ý thoả mãn ba điều kiện sau:
1)
0sit
,
s
iu u
khi
s
, với i = 0, ..., n – 1,
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20
2)
0 s si ix t u dom f
với i = 0, 1, ..., n – 1,
3) Ai =
0
0 0 ( , ,..., , ,..., )
i s s s s
i i
s
lim f x u u t t
với i = 0, 1, ..., n – 1.
1.3. ĐIỀU KIỆN TỐI ƢU CẤP HAI
Đạo hàm cấp một
(1) 0( , )f x u
của hàm
:f E
có thể biểu diễn nhƣ
sau
(1) 0( , )f x u
=
1
0 (0) 0
1
( , ' ) ( 0, )
1
( ' ) ( , )
u u
lim inf f x tu f x u
t
. (1.3)
Để tiện cho việc khai triển đạo hàm cấp hai, ta đƣa ra ký hiệu
0
2 1( , , , ' , ' , )f t x u u u
=
0
2
1
( ' )
1
f x tu
–
0
1
1
( ' )
(1 )
f x tu
+
(0) 01 ( , )f x u
. (1.4)
Ta xét khai triển dƣới đây với giả thiết rằng t > 0 là cố định, u
S, đạo
hàm dƣới cấp không
(0) 0( , )f x u
và đạo hàm dƣới cấp một
(1) 0( , )f x u
là hữu
hạn,
' '
1 2, Su u
và
là số thực dƣơng thoả mãn
0 '
1 x tu dom f
.
Với giả thiết
(0) 0( , )f x u
và
(1) 0( , )f x u
hữu hạn, ta nhận đƣợc biểu diễn
sau đây cho đạo hàm dƣới cấp hai
(2) 0( , )f x u
:
(2) 0( , )f x u
=
2
0 (0) 0 (1) 0
22
( , ' ) ( 0, )
2!
( ' ) ( , ) . ( , )
t u u
lim inf f x tu f x u t f x u
t
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21
=
2
0 (0) 0
22
( , ' ) ( 0, )
2!
( ' ) ( , )
t u u
lim inf f x tu f x u
t
1
0 (0) 0
1
( , ' ) ( 0, )
1
( ' ) ( , )
u u
t lim inf f x tu f x u
t
=
2 1
0
22
( , ' ) ( 0, ) ( , ' ) ( 0, )
2(1 ) 1
( ' )
1t u u u u
lim inf lim sup f x tu
t
0 (0) 0
1
1 1
( ' ) ( , )
(1 )
f x tu f x u
=
2 1
0
2 12
( , ' ) ( 0, ) ( , ' ) ( 0, )
2
( , , , ' , ' , )f
t u u u u
lim inf lim sup t x u u u
t
. (1.5)
Trong các đẳng thức trên, sự hội tụ
1( , ' ) ( 0, )u u
chỉ theo những
giá trị
1( , ' )u
mà
0
1' x tu dom f
.
Để đơn giản, ta xét trƣờng hợp hàm f liên tục tại x0 . Khi đó ta có
(0) 0 0( , ) ( )f x u f x
và
2 0
0 1 2( , ' , ' , ' ,0, , )f x u u u t t
=
0
22
1 1
( ' )
1
f x tu
t
0 (0) 0
1
1 1
( ' ) ( , )
(1 )
f x tu f x u
.
Sử dụng phép biểu diễn này và định lý 1.6, ta có thể thu đƣợc sự biểu diễn
(1.5). Từ các định lý 1.1, 1.2 ta có định lý sau cho trƣờng hợp cấp hai.
Định lý 1.7 ( Điều kiện cấp hai )
Cho hàm
:f E
và 0 Ex .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 22
(A) Điều kiện cần: Giả sử x0 là điểm cực tiểu địa phương của f, u
S.
Khi đó, một trong ba điều kiện sau đây được thoả mãn:
(a0) (0) 0 0( , ) ( )f x u f x ,
(a1) Nếu (0) 0 0( , ) ( )f x u f x thì (1) 0( , ) 0f x u ,
(a2) Nếu (0) 0 0( , ) ( )f x u f x và (1) 0( , ) 0f x u thì (2) 0( , ) 0f x u .
(B) Điều kiện đủ:Giả sử S compact đối với tôpô S. Giả sử với mỗi u
S,
một trong ba điều kiện sau được thoả mãn:
(b0) (0) 0 0( , ) ( )f x u f x ,
(b1) (0) 0 0( , ) ( )f x u f x và (1) 0( , ) 0f x u ,
(b2) (0) 0 0( , ) ( )f x u f x , (1) 0( , ) 0f x u và (2) 0( , ) 0f x u .
Khi đó x0 là điểm cực tiểu địa phương chặt của f.
Ở đây đạo hàm
(1) 0( , )f x u
và
(2) 0( , )f x u
được biểu diễn lần lượt bởi
(1.3) và (1.5).
Ví dụ 1.6
Lấy E = 2 và hàm
:f E
xác định bởi
2( ) 2 ( )f x r r r sin
,
trong đó
( , )r
là toạ độ cực của x , nghĩa là x = (x1, x2) =
( , )rcos rsin
.
Hiển nhiên x0 = (0,0) là điểm cực tiểu chặt của f(x). Ta có thể áp dụng
điều kiện đủ của định lý 1.7 để suy ra x0 là cực tiểu.
Chứng minh
Hàm f liên tục, do đó với phƣơng bất kỳ u =
( , )cos sin
ta có
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 23
(0) 0 0( , ) ( )f x u f x
= 0.
Nếu
0sin
thì
2( ) 2f x r r sin
,
0 r sin
,
và
(1) 0( , ) 2f x u sin
> 0.
Trong trƣờng hợp nếu u =
( 1, 0)
ta đƣợc
(1) 0( , ) 0f x u
và do đó
điều kiện cấp hai phải sử dụng để thiết lập tính tối ƣu của x0.
Xét trƣờng hợp u = (1, 0). Phƣơng đơn vị v =
( , )cos sin
với
0
đủ nhỏ gần u tuỳ ý. Các điểm tv và
tv
có toạ độ cực lần lƣợt là
( , )t
và
( , )t
. Do đó với
0 t sin
và
0 1
ta có
0 2( ) 2f x tv t tsin ,
và
0 2( ) ( ) 2f x tv t tsin .
Do đó
0
2
1
( , , , , , ) 1f t x v v u
t
.
Bây giờ ta chỉ ra rằng điều kiện cấp hai trong định lý 1.7 thoả mãn. Với
u = (1, 0) , ta lấy lân cận của các vectơ đơn vị
W =
w w w 2 = ( , ) :w cos sin
,
V =
v v v 1 = ( , ) :v cos sin
, trong đó
1 20
.
Chọn t <
2sin
và lấy 0 <
< 1. Nếu v
V , ta có
0( )f x tv
= 2 2 1
2 2
2 . , ( ) ,
3 2 . , 0 ( ),
v v
v v
t t sin arcsin t
t t sin arcsin t
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 24
và
0( )f x tv 2 2t
. Dấu bằng xảy ra khi
( )v arcsin t
.
Khi đó,
0
2
( , ) ( 0, )
2
( , , , , , )f
v u
lim sup t x w v u
t
=
0
2
( , ) ( 0, )
2 2
( )
(1 ) 1v u
lim sup f x tw
t
=
0
2
2
( )f x tw
t
.
Tƣơng tự, với w
W ,
0( )f x w
= 2 w w 2
2
w w
2 , ( ) ,
3 2 , 0 ( ),
t tsin arcsin t
t tsin arcsin t
và ƣớc lƣợng
0( )f x tw
2t
. Dấu bằng xảy ra khi
w ( )arcsin t
.
Do đó,
(2) 0( , )f x u
=
0
2
( , ) ( 0, )
2
( )
t w u
lim inf f x tw
t
= 2 > 0.
Do tính đối xứng nên ta cũng có đẳng thức nhƣ vậy với phƣơng
u = ( –1, 0 ). Do đó, các điều kiện đủ của định lý 1.7 thoả mãn. Nhƣ vậy, tính
tối ƣu của điểm x0 có thể suy ra từ định lý này.
Ta so sánh kết quả trên với một số kết quả khác.
Giả sử
:f E
với E là không gian hữu hạn chiều, f liên tục và tại
x
0
có các đạo hàm sau:
(1) 0( , )BZf x v
=
0 0
0
1
( ) ( )
t
lim f x tv f x
t
,
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 25
(2) 0( , , )BZf x v z
=
0 2 0 (1) 0
2
0
1
( ) ( ) ( , )BZ
t
lim f x tv t z f x tf x v
t
,
với v, z
S tuỳ ý. Đạo hàm
(1) 0( , )BZf x v
là đạo hàm theo phƣơng thông thƣờng
cấp một,
(2) 0( , , )BZf x v z
là đạo hàm parabolic cấp hai theo nghĩa BenTal –
Zowe [3].
Định lý sau đây cho ta các điều kiện cần dƣới ngôn ngữ các đạo hàm
parabolic.
Định lý 1.8 ( [3] )
Nếu x0 là điểm cực tiểu địa phương của hàm
:f E
thì
(BZ1) (1) 0( , ) 0BZf x v với mọi v S,
(BZ2) (1) 0( , ) 0BZf x v kéo theo (2) 0( , , ) 0BZf x v z với mọi z S.
Ta chỉ ra rằng với lớp các hàm đã xét, định lý 1.7 kéo theo định lý 1.8.
Thật vậy, giả sử các điều kiện trong định lý 1.7 thoả mãn.
Hiển nhiên ta có bất đẳng thức
(1) 0 (1) 0( , ) ( , ) 0BZf x v f x v
Nhƣ vậy điều kiện (BZ1) thoả mãn.
Bây giờ ta giả sử
(1) 0( , ) 0BZf x v
. Từ các bất đẳng thức
(1) 0 (1) 00 ( , ) ( , ) 0BZf x v f x v
ta suy ra
(1) 0( , ) 0f x v
. Do đó
(2) 0( , ) 0f x v
.
Theo định nghĩa của
(2) 0( , , )BZf x v z
,
(2) 0( , , )BZf x v z
=
0 0
2
0
1
( ( )) ( )
t
lim f x t v tz f x
t
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 26
0 (0) 0 (1) 0
2
( , ') ( 0, )
1 2
( ( )) ( , ) . ( , )
2 t v v
lim inf f x t v tz f x v t f x v
t
=
(2) 01 ( , )
2
f x v
.
Do đó, bất đẳng thức
(2) 0( , ) 0f x v
kéo theo
(2) 0( , , ) 0BZf x v z
, hay
điều kiện (BZ2) thoả mãn.
Ví dụ sau đây chỉ ra rằng các điều kiện cần (BZ1) và (BZ2) của định lý
1.8 không kéo theo các điều kiện cần (a0) – (a2) của định lý 1.7.
Ví dụ 1.7
Hàm
2:f
xác định bởi
f (x1, x2) =
3 3 3
2 1 1 1 2 1
3 3 3
1 2 1 1 2 1
1
2 , 0, ,
2
3
3 2 , 0, ,
2
0
x x x x x x
x x x x x x
Hiển nhiên, x0 = (0, 0) không là điểm cực tiểu.
Ta có
(1) 0 (2) 0( , ) ( , , ) 0BZ BZf x u f x u z
với mọi u
S, mọi z .
Với u0 = (1, 0) ta có
0 (1) 0 00 ( ) ( , )f x f x u
và
(2) 0 0( , ) f x u
Nhƣ vậy các điều kiện cần (BZ1) và (BZ2) của định lý 1.8 không kéo theo các
điều kiện cần (a0) – (a2) của định lý 1.7.
, trong các trƣờng hợp khác.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 27
1.4. CỰC TIỂU CÔ LẬP
Trong mục này, ta mô tả điểm cực tiểu thoả mãn các điều kiện đủ của
định lý 1.2 và trả lời câu hỏi đã đặt ra sau ví dụ 1.2.
Giả sử
:f E
và n0 là một số nguyên không âm.
Nhắc lại [10]: điểm cực tiểu x0
E của f gọi là cực tiểu địa phương cô
lập cấp n0 của f nếu tồn tại lân cận U của x
0
và hằng số
> 0 sao cho
00 0( ) ( )
n
f x f x x x
với mọi x
U 0x
. (1.6)
Ta nói x
0
là điểm cực tiểu địa phương cô lập của f có nghĩa là x0 là
điểm cực tiểu địa phƣơng cô lập cấp n0 của f với n0 là một số nguyên không
âm nào đó.
Trong trƣờng hợp n0 = 0, bất đẳng thức (1.6) trở thành
0( ) ( )f x f x
với mọi x
U 0x
. (1.7)
Do bất đẳng thức (1.6) là chặt nên
0( ) f x
tại điểm cực tiểu địa
phƣơng cô lập x0.
Định lý 1.9 ( Điều kiện cần )
Giả sử x0 là điểm cực tiểu địa phương cô lập cấp n0 của hàm
:f E
. Khi đó, với u
S bất kỳ, tồn tại số nguyên không âm n(u)
n0
sao cho điều kiện
0( ) ( , )n uS x u
thoả mãn.
Chứng minh
Giả sử có (1.6). Trƣớc hết ta chỉ ra rằng
(0) 0 0( , ) ( )f x u f x
,
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 28
và bất đẳng thức là chặt nếu x0 là điểm cực tiểu cô lập cấp 0.
Giả sử ngƣợc lại rằng
(0) 0 0( , ) ( )f x u f x
.
Theo định nghĩa đạo hàm dƣới cấp không thì tồn tại dãy
0kt
và
ku
S sao cho
0 0( ) ( ) ( )kk kf x t u f x f x
,trong đó
0 0k
k kx t u x
.
Bất đẳng thức này mâu thuẫn với bất đẳng thức (1.6).
Giả sử x0 là điểm cực tiểu địa phƣơng cô lập cấp 0. Bây giờ ta chứng
minh rằng
(0) 0 0 0( , ) ( ) ( )f x u f x f x .
Giả sử bất đẳng thức này không đúng. Khi đó tồn tại dãy
0kt
và
ku
S sao cho
0 0( ) ( ) ( )kk kf x t u f x f x , trong đó 0 0k k kx x t u x .
Bất đẳng thức này mâu thuẫn với bất đẳng thức (1.7).
Giả sử n
n0 là số nguyên dƣơng thoả mãn
(0) 0 0( , ) ( )f x u f x
,
(1) 0 ( 1) 0( , ) ... ( , ) 0nf x u f x u
.
Ta chứng minh rằng
( ) 0( , ) 0nf x u
và bất đẳng thức là chặt nếu x0 là
điểm cực tiểu địa phƣơng cô lập cấp n.
Giả sử ngƣợc lại rằng
( ) 0( , ) 0nf x u
. Theo định nghĩa đạo hàm theo
phƣơng dƣới cấp n thì tồn tại dãy
0kt
và
ku
S sao cho
1
0 ( ) 0
0
!
( ) ( , )
!
in
i
k kn
ik
n t
f x t u f x u
t i
=
0
0
!
( ) ( )k
n
k
n
f x f x
x x
< 0 ,
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 29
trong đó
0 0k
k kx x t u x
. Bất đẳng thức này mâu thuẫn với bất đẳng thức
(1.6).
Giả sử n = n0. Ta chứng minh rằng
( ) 0( , ) ! 0nf x u n
Giả sử ngƣợc lại rằng
( ) 0( , ) !nf x u n
. Khi đó, với dãy
0kt
và
ku
S,
tƣơng tự nhƣ trên ta có
0
0
!
( ) ( )k
n
k
n
f x f x
x x
<
!n
.
Từ đó suy ra
0 0( ) ( )
n
k kf x f x x x
với
0 0k
k kx x t u x
.
Bất đẳng thức này mâu thuẫn với bất đẳng thức (1.6).
Điều kiện đủ để điểm x0 là điểm cực tiểu cô lập cấp n0 đƣợc phát biểu
nhƣ sau:
Định lý 1.10 ( Điều kiện đủ )
Giả sử hàm
:f E
, x
0
E và S compact đối với tôpô S. Giả sử n0 là
một số nguyên không âm và với mỗi u
S, tồn tại số nguyên không âm
n = n(u)
n0 sao cho điều kiện
0nS ( , )x u
thoả mãn. Khi đó, x0 là điểm cực
tiểu địa phương cô lập cấp n0 của f.
Chứng minh
Bất đẳng thức cuối cùng trong phần chứng minh của bổ đề 1.1 chỉ ra
rằng tồn tại số
( )u
sao cho
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 30
0 0( ') ( ) ( ) nf x tu f x u t , với mọi 0 < t < ( )u và 'u U(u).
Sử dụng u1, ..., us và các ký hiệu sau đây nhƣ trong chứng minh định lý
1.2.
Đặt
0 1( ),..., ( ),1smin u u
,
1( ),..., ( )smin u u
,
1( ),..., ( )sn max n u n u
.
Khi đó nhƣ trong chứng minh định lý 1.2 ta đƣợc
0 0( ) ( )
n
f x f x x x
với mọi 0 <
0x x
<
0
.
Do đó x0 là điểm cực tiểu địa phƣơng cô lập cấp n, và vì thế cũng là điểm cực
tiểu địa phƣơng cô lập cấp n0 vì n n0.
Ví dụ 1.8
Lấy E = 2 , C =
0
, n0 1 là số nguyên và x
0
= (0, 0).
Hàm
:f E
xác định bởi
f (x1, x2) = 01 2
2
, 0,
0 , 0.
n
x x
x
Khi đó, x0 là điểm cực tiểu địa phƣơng cô lập cấp n0 của bài toán
( ), Cmin f x x
Chứng minh
Đặt g(x1, x2) = 01 2
2
, 0,
+ , 0.
n
x x
x
Hàm g khác hàm f tại những điểm không thuộc C, tại đó g bằng
+
.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 31
Ta nói rằng x0 là điểm cực tiểu địa phƣơng cô lập cấp n0 của bài toán
( ), Cmin f x x
nếu x0 là điểm cực tiểu địa phƣơng cô lập cấp n0 của hàm g.
Ta có
(0) 0( , ) g x u
, với ( u1, u2) S mà u2 0 .
Nếu u = (
1
, 0) thì ta có
0( 1)(0) 0 0( , ) ... ( , ) 0
n
g x u g x u
,
0( ) 0
0( , ) ( )!
n
g x u n
.
Do đó điều kiện đủ của định lý 1.10 cho ta x0 là điểm cực tiểu địa
phƣơng cô lập cấp n0.
Ví dụ 1.9
Xét hàm
2:f
xác định bởi f ( x1, x2) = x1.
Lấy x0 = (0, 0) và u = (
1, 0). Khi đó đạo hàm cấp hai Hadamard là
(2) 0( , ) f x u
còn đạo hàm cấp hai theo phƣơng cổ điển là
0''( , ) 0f x u
.
Chứng minh
Đạo hàm cấp hai Hadamard là
(2) 0( , )f x u
=
0 (0) 0 (1) 0
2
( , ') ( 0, )
2
( ') ( , ) ( , )
t u u
lim inf f x tu f x u t f x u
t
=
(0)12
( , ') ( 0, ) ( ', ') ( 0, )
2 1
' 0 (0 ') (0, )
't u u t u u
lim inf u t lim inf f tu f u
t t
=
12
( , ') ( 0, )
2
'
t u u
lim inf u t
t
=
Với đạo hàm theo phƣơng cổ điển ta có
0'( , )f x u
= 0 0
0
( ) ( )
t
f x tu f x
lim
t
1 2( , )u u u
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 32
=
1
0
0
t
tu
lim
t
=
1u
0''( , )f x u
= 0 0 0
2
0
( ) ( ) '( , )
2
t
f x tu f x t f x u
lim
t
=
1 1
2
0
0
2
t
tu tu
lim
t
= 0
Ví dụ 1.10
Hàm
:f
xác định bởi
f (x) = 2
1
( ), 0,
0 , 0.
exp x
x
x
Ta có f thuộc lớp
C
. Điểm x0 = 0 là cực tiểu địa phƣơng chặt, nhƣng không
là điểm cực tiểu địa phƣơng cô lập.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 33
Chƣơng II
ĐIỀU KIỆN TỐI ƢU CẤP CAO CHO BÀI TOÁN TỐI ƢU ĐA
MỤC TIÊU KHÔNG TRƠN CÓ RÀNG BUỘC TẬP
Chƣơng II trình bày một số tính chất của cực tiểu Pareto địa phƣơng
chặt cấp n và cực tiểu Pareto địa phƣơng chặt, và các điều kiện cần và đủ cho
hai loại cực tiểu đó của bài toán tối ƣu đa mục tiêu không trơn với ràng buộc
tập dƣới ngôn ngữ đạo hàm theo phƣơng cấp cao Ginchev. Các kết quả trình
bày trong chƣơng này là của Đ.V.Lƣu – P.T.Kiên [7] và B.Jiménez [6].
2.1. CÁC KHÁI NIỆM VÀ KẾT QUẢ BỔ TRỢ
Cho hàm f có giá trị thực mở rộng xác định trên không gian định
chuẩn X.
Nhắc lại [5]: đạo hàm theo phương dưới và trên cấp n,
( ) ( , )nf x d
và
( ) ( , )nf x d
, tại
x X
( n là số nguyên dƣơng ) theo phƣơng d đƣợc định nghĩa
lần lƣợt nhƣ sau:
(0) ( , )f x d
=
0
'
( ')
t
d d
lim inf f x td
, (2.1)
(0) ( , )f x d
=
0
'
( ')
t
d d
lim sup f x td
, (2.2)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 34
( ) ( , )nf x d
= 1
( )
0
0'
!
( ') ( , )
!
jn
j
n
t
jd d
n t
lim inf f x td f x d
t j
, (2.3)
( ) ( , )nf x d
= 1
( )
0
0'
!
( ') ( , )
!
jn
j
n
t
jd d
n t
lim sup f x td f x d
t j
, (2.4)
trong đó
0t
có nghĩa là
0t
.
Chú ý rằng trong các định nghĩa (2.1) – (2.4) của I.Ginchev đã thừa
nhận rằng
( ) ( , )nf x d
và
( ) ( , )nf x d
tồn tại và thuộc khi và chỉ khi tƣơng
ứng
( ) ( , )if x d
và
( ) ( , )if x d
( i = 0, 1,..., n – 1) tồn tại và thuộc .
Hơn nữa, đạo hàm cấp không của các hàm gián đoạn luôn tồn tại và
thuộc .
Trong trƣờng hợp f liên tục và n = 1, đạo hàm Ginchev trên và dƣới
chính là đạo hàm Dini theo phƣơng trên và dƣới [5].
Phù hợp với định nghĩa đạo hàm của Ginchev [5], ta định nghĩa đạo
hàm theo phương cấp n của ánh xạ f từ X vào không gian định chuẩn Y nhƣ
sau:
(0) ( , )f x d
=
0
'
( ')
t
d d
lim f x td
, (2.5)
( ) ( , )nf x d
= 1
( )
0
0'
!
( ') ( , )
!
jn
j
n
t
jd d
n t
lim f x td f x d
t j
, (2.6)
nếu các giới hạn đó tồn tại.
Nếu f khả vi Fréchet tại
x
với đạo hàm Fréchet là
'( )f x
thì
(1)( , )f x d
=
'( )f x d
.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 35
Trong trƣờng hợp Y = , sự tồn tại của
( ) ( , )nf x d
kéo theo sự tồn tại
của
( ) ( , )nf x d
và
( ) ( , )nf x d
, và chúng trùng nhau.
Ta nhắc lại nón tiếp liên của tập C tại
x clC
:
KC( x ) = {d X : tồn tại 0nt và nd d sao cho n nx t d C , n },
ở đây
clC
chỉ bao đóng của C.
Trong chƣơng này ta xét bài toán tối ƣu đa mục tiêu sau:
(P)
( ) :min f x x C
,
trong đó f là ánh xạ từ không gian định chuẩn X vào không gian định chuẩn
Y, C là một tập con của X .
Giả sử Q là nón lồi đóng trong Y. Nhắc lại: điểm
x C
gọi là điểm cực
tiểu địa phương yếu của bài toán (P) nếu tồn tại một lân cận U của
x
sao cho
( ) ( )f x f x intQ
x C U
Chú ý rằng với điểm cực tiểu địa phƣơng yếu, ta giả thiết rằng
intQ
.
Điểm
x
gọi là điểm cực tiểu Pareto địa phương của bài toán (P) nếu
tồn tại một lân cận U của
x
sao cho
( ) ( )f x f x Q {0}
x C U
.
Điểm
x
gọi là điểm cực tiểu Pareto địa phương chặt của bài toán (P)
nếu tồn tại một lân cận U của
x
sao cho
( ) ( )f x f x Q
x C U { }x
.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 36
Với một số nguyên m
1, ta nhắc lại [6] rằng
x
gọi là điểm cực tiểu
Pareto địa phƣơng chặt cấp m của bài toán (P) nếu tồn tại hằng số
> 0 và
lân cận U của
x
sao cho
( ) ( ), mf x Q B f x x x
x C U { }x
, (2.7)
trong đó
( , )B x
là hình cầu mở bán kính
, tâm
x
. Chú ý rằng hình cầu mở
( ), mB f x x x
trong (2.7) có thể đƣợc thay bằng hình cầu đóng
( ), mB f x x x
bán kính m
x x
, tâm
( )f x
, bởi vì với
1 (0, )
,
(2.7) kéo theo
1( ) ( ), mf x Q B f x x x
x C U { }x
.
Trƣờng hợp Y = và Q =
, (2.7) trở thành
( ) ( ), mf x B f x x x
x C U { }x
.
Điều đó tƣơng đƣơng với
( ) ( )
m
f x f x x x
x C U { }x
,
trong đó
là tập các số thực không âm. Điều này có nghĩa là
x
là cực tiểu
địa phƣơng chặt cấp m.
Chú ý rằng mọi điểm cực tiểu Pareto địa phƣơng chặt cấp m cũng là
điểm cực tiểu Pareto địa phƣơng chặt cấp k với mọi k
m. Với mỗi số
nguyên m
1, ta có mối quan hệ sau [6]:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 37
Cực tiểu Pareto địa phƣơng chặt cấp m
Cực tiểu Pareto địa phƣơng
chặt
Cực tiểu Pareto địa phƣơng
Cực tiểu địa phƣơng yếu.
Bây giờ, ta trình bày hai kết quả của B.Jiménez [6].
Mệnh đề 2.1
Giả sử
x C
. Điểm
x
không là điểm cực tiểu Pareto địa phương chặt
cấp m của bài toán (P) khi và chỉ khi tồn tại dãy
nx C { }x
,
nd Q
sao cho
nx x
và
( ) ( )
0n n
m
n
n
f x f x d
lim
x x
. (2.8)
Chứng minh
Bởi vì
nx x
và (2.8) đúng cho nên
0 00, ( )n n
sao cho
0n n
, ta có
,n nx C x x
và
( ) ( )
m
n n nf x f x d x x
.
Điều này có nghĩa là
( ) ( ), mn n nf x d B f x x x
.
Nếu nhƣ
x
là cực tiểu Pareto địa phƣơng chặt cấp m của bài toán (P)
thì tồn tại
,U B x
và
0
sao cho (2.7) đúng. Với
,min
, tồn
tại
0 0( )n n
sao cho với mỗi
0n n
ta có
,nx C B x
và
( ) ( ), ( ),m mn n n nf x d B f x x x B f x x x .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 38
Điều này lại mâu thuẫn với (2.7). Vì vậy,
x
không là cực tiểu Pareto địa
phƣơng chặt cấp m của bài toán (P).
Theo giả thiết, với
0
và
0
,
,x C B x x
sao cho
( ) ( ), mf x Q B f x x x
.
Do đó, với 1
n
, 1
n
, tồn tại 1
,nx C B x
n
x
và
nd D
sao cho
1
( ) ( ),
m
n n nf x d B
Các file đính kèm theo tài liệu này:
- Về điều kiện tối ưu cấp cao trong tối ưu không trơn.pdf